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Automatic Symmetry Detection From Brain MRI
Based on a 2-Channel Convolutional
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Abstract—Symmetry detection is a method to extract the ideal
mid-sagittal plane (MSP) from brain magnetic resonance (MR)
images, which can significantly improve the diagnostic accuracy
of brain diseases. In this article, we propose an automatic sym-
metry detection method for brain MR images in 2-D slices based
on a 2-channel convolutional neural network (CNN). Different
from the existing detection methods that mainly rely on the local
image features (gradient, edge, etc.) to determine the MSP, we use
a CNN-based model to implement the brain symmetry detection,
which does not require any local feature detections and feature
matchings. By training to learn a wide variety of benchmarks
in the brain images, we can further use a 2-channel CNN to
evaluate the similarity between the pairs of brain patches, which
are randomly extracted from the whole brain slice based on
a Poisson sampling. Finally, a scoring and ranking scheme is
used to identify the optimal symmetry axis for each input brain
MR slice. Our method was evaluated in 2166 artificial synthe-
sized brain images and 3064 collected in vivo MR images, which
included both healthy and pathological cases. The experimental
results display that our method achieves excellent performance
for symmetry detection. Comparisons with the state-of-the-art
methods also demonstrate the effectiveness and advantages for
our approach in achieving higher accuracy than the previous
competitors.

Index Terms—2-channel convolutional neural network (CNN),
brain MRI, deep learning, mid-sagittal plane (MSP) detection,
symmetry detection.

I. INTRODUCTION

W ITH the rapid development of medical image analysis,
we can extract useful high-level information from a

large amount of existing medical raw data to assist diagnoses.
As many organs of our human body are nearly symmetrical,
symmetry is one of the useful high-level features. Actually,
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Fig. 1. Symmetry detection of brain MRI. MSP is extracted in each brain
image.

if an organ is found to be approximately asymmetrical, it is
likely to be caused by the pathological changes [1]. A human
brain has two apparently similar hemispheres, where the brain
is divided into two parts separated by the fissure interhemi-
spheric [2]. Usually, we name the middle plane of the fissure
interhemispheric as the mid-sagittal plane (MSP), because it
is a perpendicular plane to divide the brain into left and right
parts under a virtual geometric plane. A typical example of
MSP detection in brain images is shown in Fig. 1. The anatom-
ical tissues of the human brain reach maximum symmetry on
both sides of MSP. Currently, it is proved that the approxi-
mate symmetry of the brain changes with the lesion, possibly
resulting in changes in brain structure or tissue texture, such as
mental illness [3], [4]; brain injury [5], [6]; brain tumors [7];
and neurodegenerative changes [8].

For the requirement of the practical applications, symmetry
detection and MSP extraction of brain image have a significant
impact in image registration, brain segmentation, pathological
detection, and medical image classification. For instance, the
MSP detection is often the preprocessing step in spatial nor-
malization or anatomical standardization of brain images [9]
using automatic extraction of pathological brain slices and
tumor segmentation. Therefore, symmetry analysis of the brain
image is regarded as a promising and necessary technique.
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However, symmetry detection from brain magnetic resonance
(MR) images is still challenging and remains an important
task after decades of research. Currently, there are two main
categories of the MSP detection methods. The first one is
based on symmetry to locate MSP, and the second category is
based on image recognition. But most of the existing meth-
ods for brain symmetry detection mainly rely on the local
image feature detection and feature matching [10]. As the
complexity of the feature selection for brain structures and
various noise artifacts in brain MR images, the accuracy of the
feature-based methods still cannot reach the requirement of the
real applications. Recently, the deep-learning technique pro-
vides an automatic framework for applications for computer
vision [11]–[13], which also opens a new space for medical
image analysis.

In this article, we propose a novel symmetry detection
method for brain MR images based on the convolutional neural
network (CNN) model. Unlike the conventional feature-based
brain symmetry detection methods, our approach is a learning-
based method that does not require any feature detection and
matching operations. Specifically, Poisson sampling is used
to extract several pairs of brain image patches, which could
have various resolutions. We then use a 2-channel CNN to
compare one brain patch with its corresponding brain patch.
Finally, a scoring and ranking algorithm is proposed to obtain
the optimal symmetry axis for the brain MR slice. To the
best of our knowledge, our method is the first attempt to
employ this deep learning framework to extract the fissure line
by learning a symmetry representation (fissure line) for the
human brain. The stable and real-time performance has been
demonstrated by the effectiveness of our method in achiev-
ing a high accuracy of symmetry detection. We evaluated our
method using both artificially synthesized brain images and
the collection in vivo MR images. The experimental results
demonstrated the effectiveness and advantages of our purpose
in achieving higher accuracy than the existing feature-based
brain symmetry detection methods.

II. RELATED WORK

Symmetry detection for brain MR images remains a hot
topic in medical image analysis. As MSP plays an essential
role in the brain MR image analysis, many brain sym-
metry detection methods have been proposed in the past
decades [14]–[16]. Currently, the existing MSP detection
methods can be mainly divided into two categories [17]. One
of them is to extract the MSP by maximizing the symmetry
score according to the symmetry. Instead, another one is to
extract MSP based on the pattern recognition method.

The first kind of MSP extraction method assumes global
bilateral symmetry to maximize similarity measurements
between original brain scans and its reflective versions.
Zhang and Hu [18] first described an efficient PCA outline
to represent MSP images. Liu et al. [19] then detected the
most matching symmetric plane by deploying the shape-based
criteria. Ray et al. [20] also described a real-time algorithm to
cut brain tumor using the symmetry of the brain MR Images
based on the partial symmetry of the brain. Furthermore,

Hu and Nowinski [21] located fissure line segments by min-
imizing the local symmetry index. Cornelius and Loy [22]
proposed a feature detector and descriptor independently to
detect planar rotational symmetry under affine projection.
More recently, Wu et al. [23] extracted the MSP by max-
imizing global symmetry which was fitted by detecting the
symmetry constraint feature points. Liao et al. [24] detected
symmetry by means of asymmetric quantification. These sym-
metry detection methods can be applied to other image
processing. But above symmetry-based algorithms rely heav-
ily on the image features, which also often require complex
image preprocessing and thus with unsatisfied precision.

On the other hand, several MSP extraction methods are
based on pattern recognition. Xiao et al. [25] first proposed
a method to measure MSP by identifying a thin layer of the
septum pellucidum between the frontal horn and the lateral
ventricle in a given CT study. Ferrari et al. [26] also proposed
a slice thickness measurement method by iteratively detecting
the MSP in MR image by the weighted least-squares fitting
algorithm. Liu and Dawant [27] used the regression forests
method to locate the plane automatically. However, most of
these kinds of methods are limited by the training data which
are used to build the models. Generally speaking, the pattern
recognition-based methods are usually more robust than the
first kind of methods, but they still cannot reach the expected
accuracy due to the interference of local deformation, image
noises, and outliers.

In recent years, deep learning is widely used as
a filter library for feature extraction [28] and expres-
sion recognition [29], target motion detection [30], [31],
medical services [32], etc. Especially, the CNNs have
been widely used in the biomedical field, including
segmentation [33]–[35], brain extraction [36], segmenting
human left ventricle [37], reflection symmetry detection, etc.
Typically, Kamnitsas et al. [38] used a multiscale 3-D CNN
to segment brain injury. Shakeri et al. [39] used F-CNN to
segment subcortical structures. Based on the deep-learning
neural network, the hidden image features can be obtained.
Without any specific feature detection and selection, we can
implement many medical image analysis applications with
very high accuracy. More important, compared with the tra-
ditional feature-based methods, it is proved in many practical
applications that CNNs have a better potential prospect in com-
puter graphics, computer vision, and medical image analysis
domains.

In this article, we propose an automatic symmetry detec-
tion method for brain MR images based on a 2-channel CNN.
Based on our defined 2-channel CNN, we can measure the
variations of the appearance for both color and space domains
in the brain images, without any specific image feature detec-
tion or selection. We also can learn a general patch similarity
function directly from the original brain MR image, which is
encoded in the form of a 2-channel CNN model. Our method
automatically detects MSP based on the global symmetry of
the brain image and the similarity of a brain image patch in
the 2-channel network. The experimental results and compar-
ison with state of the art demonstrated the effectiveness of the
proposed method.
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Fig. 2. Framework of our system.

III. METHOD

The framework of our proposed method is shown in Fig. 2.
Given an MR brain image, we first obtain the image centroid
from the external contour of the brain image and take the line
passing through the centroid and perpendicular to the x-axis as
the initial symmetry axis candidate. Then, a Poisson sampling
algorithm is used to fetch a number of brain patches in the
two sides of the symmetry axis. All sampled brain patches
obtained in pairs are further put into our 2-channel CNN model
to learn the similarity function. The sampling and the learning
processes are repeated by rotating the initial candidate axis
with a small step from 0◦ to 180◦ counterclockwise. Finally,
we obtain the optimal symmetry axis according to the final
scoring and ranking scheme.

A. Symmetry Axis Candidates Selection

Given a brain MR image (256×256), we first need to deter-
mine the initial position and the angle of the symmetry axis
candidates. Obviously, the initial position of the symmetry axis
is the first key step to implement our brain symmetry detec-
tion. In our experiment, we found that an excellent choice for
symmetry axis initialization should pass through the center of
mass for the brain, as shown in Fig. 3. To determine the cen-
troid of the brain image C0, we first employ an end-to-end
HED network [40] to extract the external contour of the brain
in the MR image. HED network was modified based on the
VGG network, which has designed five lateral output layers.
To improve the accuracy of edge detection, two pooling lay-
ers and all full connection layers of the VGG network were
removed. In the meantime, we can also improve the signif-
icant edge abstraction with high accuracy and sensitivity for
the texture edge on the brain images, as shown in Fig. 3(b).

After the brain contour extraction, we can further determine
the initialization position for the symmetry axis by calculating
the center of mass. As shown in Fig. 3(c), we can roughly
capture the external contour for the brain based on the result
of the HED network in Fig. 3(b). Meanwhile, we also collect
the coordinate set of the contours. Let the coordinate of each
pixel be (xi, yi). Then, we can easily obtain the coordinate of

Fig. 3. Symmetry axis candidate selection. (a) Input. (b) Brain contours
extracted with the HED network. (c) External brain contour and the brain
centroid. (d) Initial symmetry axis candidate.

the brain centroid C0 = (xc, yc) via the following formulas:

xc = 1

n

n∑

i=1

xi (1)

yc = 1

n

n∑

i=1

yi (2)

where xc and yc represent the coordinate values of the x-axis
and y-axis of the centroid, respectively. n is the number of
pixels on the brain contours. So far, we can determine the
initial position for the symmetry axis candidate by drawing a
line passing through the C0. As more than one line is passing
through the C0 in theory, in our experiment, we select the line
perpendicular to the x-axis one as the initial symmetry axis
candidate, as shown in Fig. 3(d).

B. Symmetric Patches Extraction

Based on the initial symmetry axis Ai, we can evaluate the
symmetric relationship of the image content between the left
and right parts besides the axis. One may directly compare
the two subimages as a whole to implement global symmetry
detection. However, this can easily obtain a wrong MSP due
to the interruption of local deformation, tumor, and imaging
noise. In our experiment, we assess the symmetric relationship
of the two parts besides the axis based on a number of pairs of
local brain patches. As shown in Fig. 4, we can randomly pick
a pair of patches pi and qi from the left and right hemispheres
beside the initial symmetry axis. Note that pi and qi have
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Fig. 4. Symmetry patches extraction based on the Poisson sampling.

a symmetric relationship according to the symmetry axis Ai.
Then, we can evaluate the symmetric relationship between pi

and qi by matching the two image patches.
As we assume the symmetry axis is a line passing through

the centroid of the brain, we can generate a set of symme-
try axis candidates by rotating the initial symmetry axis with
a small step from 0◦ to 180◦ counterclockwise, as shown in
Fig. 4. To chose the best axis from all symmetry axis candi-
dates, we need to pick a number of pairs of symmetric patches
to evaluate each axis candidate. For a simple implementation,
one may suggest picking the local symmetric patches via a
repeated randomly selection. Obviously, purely repeating the
random selection for the local symmetric patches may occur
in a nonuniform selection. More important, we cannot guar-
antee that all regions in the left and right hemispheres would
be definitely picked after several times of random selection,
because the nature of the randomizing can ultimately ignore
some local brain regions. So we employ a Poisson disk sam-
pling [41] in our local symmetric patches selection. Because
Poisson disk sampling can generate a set of sampling points
randomly and uniformly, it is also often used in image render-
ing, image processing, and other applications. In our method,
we use Poisson distribution to increase the randomness and
uniform distribution for the sampled image patches. When
generating a new sampling point, we take the sampling point
as the center and crop a local image patch with a resolution of
64×64. In our experiments, we have tested the performance of
our algorithm with different patch sizes. As the inputs for the
2-channel network, we can set the patch sizes with different
resolutions for symmetry detection, including 8 × 8, 16 × 16,
32 × 32, 64 × 64, and 128 × 128. Among different patch size
settings, we found that a resolution of 64 × 64 can obtain the
best accuracy performance in the following symmetry detec-
tion. The Poisson sampling and patches distribution is shown
in Fig. 4. For each symmetry axis candidate Ai, we randomly
and uniformly pick 100 pairs of patches, which are symmetric
with each other in the space domain according to Ai. Note
that we also flip the patches in the right hemisphere for the
patch matching convenient. Finally, all patch pairs are stored
in two sets, which are denoted as Il,i and Ir,i, respectively. By

Fig. 5. Architecture of 2-channel CNN.

rotating the initial symmetry axis with a small step from 0◦
to 180◦ counterclockwise, we can repeat the above symmet-
ric paths extraction to generate enough image patches data for
2-channel CNN training in the next step.

C. 2-Channel CNN

After brain patches extraction, we need to measure the sim-
ilarity between each pair of symmetric patches. Similar to
Zagoruyko and Komodakis [42], we employ a 2-channel CNN
to measure the similarity between two image patches. The
idea of 2-channel CNN comes from the Siamese model [43].
The structure of the 2-channel network used to measure patch
similarity is as shown in the decode module. Given a pair of
patches (pi and qi), we first generate two streams of image
data for pi and qi by downsampling and cropping, as shown
in Fig. 5. According to [42], we know that such a multiscale
input design is very helpful in improving the network accuracy
for patch matching. Specifically, we can see that our network
architecture includes a decoded module and a decision module.
In the decode module, the branch on the left side of Fig. 5
is the low-resolution channel, which we call it to surround
stream. And the branch on the right is the high-resolution
channel called the central stream. Obviously, the structure of
the two branches is quite similar and including a series of
convolution layers, ReLu, and pooling layers. In general, the
underlying structure of the two branches can be used as a
decoder for the image patch with different resolutions. The
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TABLE I
STRUCTURE AND PARAMETERS OF 2-CHANNEL NEURAL NETWORK

output of the surround stream and central stream is concate-
nated together as the input to the top layer. The top layer
of the decision module is the two fully connected layers. We
also use a spatial pyramid network structure to connect the full
connection layer and the convolution layer. Finally, we obtain
the similarity of two patches from the output of the decision
module as a 1-D vector.

As shown in Fig. 5, it is known that a full connection is
usually connected behind the convolutional layer for a typi-
cal CNN structure. Because the feature number of the entire
connection layer is fixed when training the network, the size
of the feature map will remain unchanged. As a result, this
may require the image patches having a fix resolution as an
input. However, we need a more flexible setting because the
size of the image patches can be different under different medi-
cal imaging environments or other different symmetric patches
extraction algorithms. Therefore, we added a spatial pyramid
pool (SPP) [44] network between the convolutional layer and
the fully connected layer. We can see that after the convolution
of the first layer, the pixels of the two images are weighted and
mapped. Table I is the detailed parameters of our 2-channel
CNN.

D. Learning

We train the network model in a strongly supervision
way [42]. First, we trained the objective learning functions
based on weighted hinge loss and squared L2 regularization,
as the following:

min
w

λ

2
‖w‖2 +

N∑

i=1

max
(
0, 1 − yio

net
i

)
(3)

where w is the weight of our neural network. Onet
i is the

network output for the ith training sample. And yi ∈ {−1, 1}
is the corresponding label, where we use −1 and 1 to denote
a nonmatching and a matching pair, respectively.

In our experiment, various parameters like ASGD with con-
stant learning rate is 1.0. And momentum is 0.9. Weight decay
λ = 0.0005 is used to train the models, where our train-
ing is done in mini-batches of size 128. The weights are
also initialized randomly, and all models are trained from
scratch. To create a better dataset and extend the dataset, we
further increase training images by flipping two patches hor-
izontally and vertically and rotating them to 45◦, 90◦, and
120◦, respectively. Overfitting can be ignored in the training
step, so we can test the performance of our model after iter-
ating a certain number of times. For our 2-channel networks,
we compute descriptors for each pixel in both the two image
patches once and then match them with the decision top
layer. For implementation detail, we use Titan GPU in Torch,
and all convolution routines are taken from Nvidia cuDNN
library [45].

E. Scoring and Ranking

After the processing of our 2-channel CNN on the pi and
qi, we can denote the final 1-D similarity vector S(Aθ , i) as
follows:

S(Aθ , i) = Onet(pi, qi) (4)

where Aθ represents the symmetry axis candidate on the angle
of θ . Onet(pi, qi) is the similarity output of the 2-channel CNN
for a pair of patches pi and qi.

Also, we can further obtain the overall similarity score
G(Aθ ) between the two image parts beside the symmetry axis
candidate Aθ by a simple summation on patch similarities,
which is denoted as follows:

G(Aθ ) =
n∑

i=1

(S(Aθ , i)) (5)

where n is the pair number of patches extracted around the
symmetry axis candidate Aθ .

By rotating the initial candidate axis by a small step of
0◦ to 180◦ counterclockwise, we can obtain 180 symmetry
scores for all axis candidates. Finally, we can obtain the best
symmetry axis with a quick sorting algorithm. The optimal
axis Aopt can be denoted as follows:

Aopt = Max(G(A0), G(A1), . . . , G(A180)) (6)

where G(Ai) is the symmetry similarity score for a specific
symmetry candidate at angle i from 0 to 180. Through a max-
imum selection, the optimal symmetry axis Aopt is determined.
For 2-D cases, we can use angle and position errors between
our symmetry detection result and the ground-truth to evaluate
the performance of our method. In order to accurately define
the symmetry axis of the brain MR image, we use the stan-
dard polar coordinates to represent the axis of the extracted
optimal symmetry axis Aopt as follows:

ropt = xc cos θopt + yc sin θopt (7)
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Fig. 6. MSP extracted from the synthetic images with known ground truth
(the first row). Artificial tumor, local deformation, Gaussian blur, and different
kinds of noises were added to the original images in the second, third, fourth,
and fifth rows, respectively.

where (xc, yc) is the centroid C0 of the brain MR image, and
θopt is the angel counterclockwise between the horizontal line
and the extracted optimal symmetry axis Aopt.

IV. RESULTS

We implemented our method in C on a PC with 4 Intel
Xeon CPUs of 3.20 GHz, 32-GB RAM, Nvidia GeForce
GTX TITAN Xp GPU and 12-GB video memory. In our
experiments, we applied our method in both synthetic and
in vivo MRI datasets to evaluate its effectiveness in sym-
metry detection and MSP extraction. Comparisons with three
state-of-the-art methods were also conducted to demonstrate
its advantages.

A. Evaluation on Synthetic Datasets

As the symmetry axis is very difficult and also time con-
suming to be manually identified by a clinical doctor, we first
generated a synthetic dataset for our brain symmetry detection
evaluation. To synthesize a brain MRI with a known symmetry
axis ground truth vertically located in the center of the image
(as shown in the first row of Fig. 6), we first cropped one
half of brain MR image by manually extracting the fissure
line from an in vivo brain MR image. Then, we created its
reflected version by flipping the cropped half image according
to the fissure line. Finally, we can successfully synthesize a
brain MR image by simply stitching the cropped half image
and its flipped version. Obviously, above synthesized brain

image has a known symmetry axis ground truth on the fis-
sure line, as the two half images beside it are with an exactly
reflectional symmetry relationship. Typical examples are as
shown in the first row of Fig. 6, where we can see that the
image contents are exactly reflectional symmetry according
to the green axis. In our experiments, thousands of perfectly
symmetrical brain images were synthesized for our symmetry
detection evaluation. For more realistic brain image synthe-
sis, we can also add a certain amount of artificial tumors,
deformation, blur, and different kinds of noises (including RF
noise, Johnson noise, thermal noise, shot noise, and Gaussian
noise) to the synthetic datasets, such as the images shown in
Fig. 6. Based on the above-synthesized datasets with known
symmetry ground truth, we can evaluate our method quanti-
tatively without any subjective factors from a clinical doctor
when drawing the symmetry axis.

We applied our method to perform the symmetry detec-
tion for the brain MR images on our synthesized datasets. To
observe the accuracy of our method, we presented several rep-
resentative slices are shown in Fig. 6. The green line is the
symmetry axis detected using our method. We can observe that
our method can accurately extract the symmetry axis. Note that
all symmetry axes are perfectly passing through the centroid
of the brains for our synthetic datasets. To further test the
tolerance of our method to structural asymmetry, distortion,
blur, and noises, we also applied our method on the synthetic
datasets with an artificial tumor, distortion, Gaussian blur, and
different kinds of noises (including RF noise, Johnson noise,
thermal noise, shot noise, and Gaussian noise). The results are
as shown in the second to fifth rows of Fig. 6, where we can
also observe the stability of our method in successfully identi-
fying the symmetry axes. In our experiment, we used uniform
grayscale spheres as artificial tumors. As shown in the sec-
ond row of Fig. 6, the size and number of artificial tumors
in these synthetic spheres are randomly generated. By chang-
ing the size and number of artificial tumors, we can test our
method’s tolerance for structural asymmetry. It can be seen that
our method can still accurately extract MSP, even if there have
several artificial tumors in the brain, and the size is a quarter of
the brain image. To assess the ability to prevent local distortion
interference and MR images bias uneven, we also added dis-
tractions manually in MR images, such as the locally distorted
areas and prejudiced inhomogeneity in the images. Besides,
we also add local deformation, Gaussian blur, and different
kinds of noises (including RF noise, Johnson noise, thermal
noise, shot noise, and Gaussian noise) to the synthesized MR
image, as shown in the third to fifth rows of Fig. 6. We can see
that our method can successfully identify MSP in MR images
with local deformation, Gaussian blur, and different noises.
The above results also proved that our 2-channel CNN could
robustly detect the ideal symmetry axis, where the artificial
tumors, local deformation, Gaussian blur, and different MR
noises have minimal impacts on our symmetry detections.

Besides adding artificial tumor, noises, and blur, we also
tested the tolerance of our method on the rotations of the
brain images. As shown in Fig. 7, we rotated the synthe-
sized MR image counterclockwise by 15◦, 30◦, 45◦, and 120◦,
respectively. The synthesized database was expanded by five
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Fig. 7. Symmetry detection in the rotated synthesized examples. The sym-
metry axes (green lines) are extracted from the synthetic images with known
ground truth (the first column) and the brain MR images rotated counterclock-
wise with an angle of 15◦, 30◦, 60◦, and 120◦ (in the second, third, fourth,
and fifth columns, respectively).

times. In the first row of Fig. 7, we can see that our method
can accurately find the MSP in the composite MR images,
which are rotated by 15◦, 30◦, 45◦, and 120◦ counterclock-
wise. In the second, third, and fourth rows of Fig. 7, we
further combined the other three interfering factors, includ-
ing rotation, noises, and artificial tumor with rotations to test
the performance of our method. The results shown in Fig. 7
demonstrated that our method also performed well under the
influence of multiple interfering factors, which is also point-
ing out that our 2-channel CNN has stable performance in the
brain symmetry detections.

For a thorough quantitatively comparison, we also imple-
mented three state-of-the-art methods, including Wu et al. [23],
Li et al. [17], and Ferrari et al. [26]. To quantitatively verify
the tolerance of our method to the rotation, noise, blur, and
asymmetry, we applied our method and three other competitors
on the synthetic datasets with different degrees of rotations,
noises, artificial tumors, and blur, respectively. We randomly
selected 65 perfectly symmetrical brain MR images and recon-
structed four types of datasets. In our experiments, the four
competitors were compared in a total of 1460 synthetic brain
MR images with different degrees of rotation, Gaussian noise,
Gaussian blur, and artificial tumors. As shown in Fig. 8, the
results of Wu et al. [23], Li et al. [17], Ferrari et al. [26],
and our method are as shown in (b)–(e) columns of Fig. 8,
respectively. As we can see from Fig. 8, Wu et al. [23] can-
not deal well the data with high blur. The accuracy of MSP
extraction is affected when the blur radius (sigma) is more
than 12 mm or when the data is suffering from other types
of blur. Li et al. [17] are not suitable for processing small-
scale image data, and the algorithm is greatly affected by the
blur and noise. High noise and fuzzy intensity would affect

Fig. 8. Visual comparison of different methods in detecting MSP from the
synthetic datasets. (a) Input images. The MSP extracted using Wu et al. [23],
Li et al. [17], Ferrari et al. [26], and our method are shown in (b)–(e),
respectively.

the number of SIFT feature points extracted, resulting in a
decrease of algorithm accuracy. Furthermore, there required
a prior training template set, and the performance depends
on the accuracy of the template. Ferrari et al. [26] have a
poor performance in detecting MSP on the test cases with
large directional rotation, and cannot deal with the occlusion
of tumors. Compared with the above traditional approaches,
which usually heavily depended on specific feature detection
or a prior training template, our deep-learning-based method
does not require any feature selection and detection. Moreover,
the experiments also demonstrated that our method generally
outperformed the three state-of-the-art methods in the brain
symmetry detection. So our 2-channel CNN is not only superior
to existing single-channel CNN with a two-scale brain represen-
tation but also superior to the state-of-the-art of feature-based
methods.

In addition to visual comparison, we also calculated the
polar angle error (in degrees) and radius error (in millimeters)
between the detected MSP (rd, θd) and the ground truth
value axis of symmetry (rg, θg) for quantitative comparison
with our method and the other competitors. To evaluate the
tolerance of rotation, we first rotated the MR brain images
counterclockwise by 20◦, 40◦, 60◦, 80◦, 100◦, and 120◦,
respectively. Second, we produced different degrees of the
noise of −5, −10, −15, −20, −25, and −30 db on the MR
brain images to evaluate the noise tolerance. Third, we also
created a Gaussian blur with a blur radius of 2, 4, 6, 8, 10,
and 12 mm on the MR brain images to evaluate the tolerance
of blur. Besides, we further generated artificial tumors with a
radius of 20, 40, 60, 80, 90, and 100 mm on the MR brain
images to evaluate the tolerance of asymmetry for different
methods. Finally, we plotted the mean polar error and radius
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Fig. 9. Comparison of different methods in tolerance to rotation.

Fig. 10. Comparison of different methods in tolerance to noise.

Fig. 11. Comparison of different methods in tolerance to blur.

error between our method and the other three competitors on
the synthetic datasets with different degrees of rotation, noise,
blur, and asymmetry occlusion, as shown in Figs. 9–12. From
the results, we can know that our deep-learning-based method
also generally outperformed the other three competitors in
the accuracy of both angular and radius in polar coordinates.

Furthermore, it can be observed that our method has a much
more significant accuracy improvement if there have heavier
degrees in rotation (Fig. 9), noise (Fig. 10), blur (Fig. 11), or
asymmetry (Fig. 12). This also points out the importance of
using a 2-channel CNN framework to detect the symmetry
axis.
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Fig. 12. Comparison of different methods in tolerance to occlusion of the artificial tumors.

TABLE II
In Vivo DATASETS COLLECTED FOR EVALUATION

B. Evaluation on the In Vivo Datasets

On the other hand, we also evaluated our proposed method
on the in vivo datasets, including both normal and patient
cases. As shown in Table II, we collected a total of 3064
in vivo MR images from both normal and patient brains based
on an open-access brain MRI dataset [46]. More specifically,
our in vivo datasets include 708 images from normal sub-
jects, 426 images from patients with meningiomas, 643 images
from patients with gliomas, and 930 images from patients with
pituitary tumors. Similar to the real clinical conditions, our
datasets are diverse enough for the brain symmetry detec-
tion evaluations. Based on the above in vivo datasets, we
still applied our method and the other three state-of-the-art
methods to perform symmetry detection for real brain images.
The results for the four different symmetry detection methods
are as shown in Fig. 13. Since there is no existing ground
truth of MSP for the collected datasets, we invited a clinical
expert to draw a line (red) to be the symmetry axis manu-
ally. Typical examples of the manual results are as shown in
Fig. 13(a), which can be treated as the ground truth for the
in vivo datasets. To make the comparison results more clearly,
we have over imposed the MSP results obtained by different
methods with the one drawn manually by a clinical expert.
Therefore, we can compare the results of four automatic meth-
ods [Fig. 13(b)–(e)] with the manual results [Fig. 13(a)]. From
the visual comparison, we can obviously observe that none of
the three competitors can achieve a stable symmetry detec-
tion because they heavily relied on the gray level, skull shape,
or internal edges to determine the symmetry axes, which is
sensitive to local image deformation, noise, or asymmetry. By

TABLE III
ACCURACY STATISTICS OF DIFFERENT METHODS

FOR THE In Vivo DATASETS

using a more stable 2-channel CNN framework, our method
generally outperformed the other methods. Thanks to the abil-
ity of our method in handling images with multiresolution or
complex structures, we can clearly see that our results are
more close to the clinical expert’s results, especially, when
the images have imaging noise, local deformations, or brain
tumors. In addition, we also calculated the mean error between
the clinical expert and each competitor, as shown in Table III.
To evaluate if our improvement is statistically significant, we
also calculated a P-value using mixed model analysis to com-
pare our method with each state-of-the-art method. As shown
in Table III, compared with other methods, our method has
significant improvement in terms of accuracy of both polar
angle and radius at the 5% level (P-value is less than 0.05).

To test the efficiency, we further estimated the average run-
ning time of our method and the other three methods. In our
experiments, we selected 300 brain MR images (256 × 256)
from the in vivo datasets. To further evaluate the efficiency of
different methods in handling brain images with different res-
olutions, we also resized the 300 cases into 128 × 128 and
512 × 512 by down sampling and up sampling. Then, we
applied our method and the other three competitors repeatedly
on the 300 cases with three different resolutions and collected
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Fig. 13. Visual comparison of different methods in vivo datasets. (a) MSP
(red) drawn manually by a clinical expert. MSP results of Wu et al. [23]
(yellow), Li et al. [17] (blue), Ferrari et al. [26] (orange), and our method
(green) over imposed on the results of clinical expert are as shown in (b)–(e),
respectively.

the average running time. Since the training of the parame-
ters for our 2-channel, CNN can be done offline and only be
required done a single time, so it is unnecessary to include
the training time for our symmetry detection. The statistics of
running time for different methods on our selected dataset is as
shown in Table IV. In addition, we also collected the average
running time for each step in our method to evaluate the com-
putational complexity of our method, as shown in Table V.
From the statistical results, we can clearly observe that our
method also outperforms the other three methods because our
method does not require any specific image feature detection
and selection.

C. Discussions and Limitations

Through the comparison experiments for both synthetic
and in vivo datasets, we can see that our method has excel-
lent tolerance to the rotation, blur, artificial tumor asymme-
try, and different types of noise in MR images, including
RF noise, Johnson noise, thermal noise, and shot noise.
Compared with the traditional local feature descriptors, the
feature maps extracted by our 2-channel CNN contain much
more detailed semantics and structural information. Unlike the
single-channel CNN, which may only consider the input image
under one static resolution, our 2-channel CNN can learn much
more multiscale detailed feature maps in the texture seman-
tic level [47]. As a result, the feature maps in the texture

TABLE IV
AVERAGE RUNNING TIME COMPARISON OF DIFFERENT

METHODS FOR THE In Vivo DATASETS

TABLE V
AVERAGE RUNNING TIME FOR EACH STEPS IN OUR METHOD

Fig. 14. Brain MRI with a part of neck and artifacts. (a) Brain MRI.
(b) Segmentation. (c) Result.

semantic level usually can better explain the subtle changes
between brain image patches. So the results of our experi-
ments benefit from our unique 2-channel CNN design, with an
excellent tolerance ability to local image deformation, noise,
or asymmetric interference. Moreover, our 2-channel CNN-
based symmetry detection method can be further extended to
other image processing applications.

Currently, our brain MR slices are collected with the hor-
izontal imaging planes, which is perpendicular to the central
axis of our human body. So we can always see the clear
(whole) images in our results. If the images contain a part
of the neck or artifacts of the cerebral cortex, we need a seg-
mentation preprocessing to crop the brain and remove the neck
or other artifacts. As our aim is only to extract the ideal MSP
from the brain images, the neck and other artifacts should
not be taken into account. A typical example is as shown in
Fig. 14, the segmentation result in Fig. 14(b) is obtained using
a state-of-the-art method [48]. We can see that our method can
also handle well that case with a segmentation preprocessing.

Although our method is a novel framework for brain sym-
metry detection, our proposed method is still based on a
combination of several existing techniques, including Poisson
disk sampling, HED CNN, and 2-channel CNN. Fortunately,
our technique combination has been well validated. A Poisson
disk sampling is an excellent sampling technique widely used
in image rendering, image processing, and other applications,
so we can obtain a set of sampling points randomly and
uniformly distributed in the brain images. The CNN-based
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Fig. 15. Failure cases. Our method has limitation when the MSP is a curve.

techniques also have been well verified and widely applied
in the other applications of image matching and image reg-
istration, so our method can obtain a stable performance in
symmetry detection based on the above combination.

On the other hand, our method still also has limitations.
Similar to most previous methods for detecting MSP of the
brain, our method also assumes that the ideal symmetry axis
in the brain image is a straight line. It is proved that the true
anatomical structure of the human brain may contain a fis-
sure line exhibiting nonlinearity due to tumors or injuries.
Therefore, the assumption that the brain MSP is a straight line
has limitations. Fig. 15 shows several failure examples, where
we can clearly see that the axis of the brain is a curve. Based
on the straight-line assumption, our experiments also demon-
strated that our method cannot handle well when the MSP is
a curve. However, because we may only require to identify
a reference symmetry axis in a brain MR image under sev-
eral situations, so our 2-channel CNN-based brain symmetry
detection method still provides an excellent tool for clinical
applications.

V. CONCLUSION

In this article, we presented a 2-channel CNN-based sym-
metry detection method for 2-D MR images. Our contribution
is that we proposed the first deep-learning framework to extract
the fissure line by learning a symmetry representation for the
human brain. Unlike the conventional feature-based symmetry
detection methods, our method does not require any feature
detection and specific matching operations. Specifically, we
used a Poisson sampling to randomly and uniformly extract
a number of pairs of brain image patches, which may have
various resolutions to satisfy SPP structures in the CNN frame-
work. Our 2-channel CNN with both high- and low-resolution
channels is then used to compare brain patches based on
central and surround structures. Finally, the optimal sym-
metry axis is determined based on a scoring and ranking
scheme. Our method is evaluated with both artificial and in
vivo brain datasets. Convincing experimental results verified
the effectiveness of our method in achieving high accuracy
of symmetry detection. Comparisons with the state-of-the-
art methods also conducted to demonstrate that our method
outperformed the existing feature-based symmetry detection
methods in both accuracy and efficiency.
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