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Multiview High Dynamic Range Image Synthesis
Using Fuzzy Broad Learning System

Hongbin Guo, Bin Sheng ~, Ping Li

Abstract—Compared with the normal low dynamic range
(LDR) images, the high dynamic range (HDR) images provide
more dynamic range and image details. Although the existing
techniques for generating the HDR images have a good effect
for static scenes, they usually produce artifacts on the HDR
images for dynamic scenes. In recent years, some learning-based
approaches are used to synthesize the HDR images and obtain
good results. However, there are also many problems, includ-
ing the deficiency of explaining and the time-consuming training
process. In this article, we propose a novel approach to syn-
thesize multiview HDR images through fuzzy broad learning
system (FBLS). We use a set of multiview LDR images with
different exposure as input and transfer corresponding Takagi—
Sugeno (TS) fuzzy subsystems; then, the structure is expanded
in a wide sense in the ‘“enhancement groups” which transfer
from the TS fuzzy rules with nonlinear transformation. After
integrating fuzzy subsystems and enhancement groups with the
trained-well weight, the HDR image is generated. In FBLS, apply-
ing the incremental learning algorithm and the pseudoinverse
method to compute the weights can greatly reduce the training
time. In addition, the fuzzy system has better interpretability.
In the learning process, IF-THEN fuzzy rules can effectively
help the model to detect the artifacts and reject them in the
final HDR result. These advantages solve the problem of existing
deep-learning methods. Furthermore, we set up a new dataset of
multiview LDR images with corresponding HDR ground truth to
train our system. Our experimental results show that our system
can synthesize high-quality multiview HDR images, which has a
higher training speed than other learning methods.
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I. INTRODUCTION

ITH the rapid demand of information contained in
W images [2]-[5], the high dynamic range (HDR) images
acquisition technique is growing at an explosive speed. The
current methods to obtain the HDR images are usually
divided into two categories: 1) directly capturing with a
professional camera and 2) merging from a set of differ-
ent exposure low dynamic range (LDR) images which take
from an ordinary digital camera. The former approach can
directly obtain the high-quality HDR images in dynamic
scenes using a professional camera with unique equipment.
Nayar and Mitsunaga [6] placed an optical mask adjacent
to a conventional image detector array to sample the spatial
and exposure dimensions of image irradiance simultaneously.
McGuire et al. [7] used multiple sensors to capture from the
same viewpoint but have different image sensors and image
parameters simultaneously. Hasinoff et al. [8] proposed the
noise-optimal capture to capture the HDR or reduce noise
using the SNR advantage of high ISO settings. Tocci et al. [9]
presented an optical architecture for HDR imaging that allows
simultaneous capture of high-, medium-, and low-exposure
images on three sensors. However, these expensive profes-
sional hardwares result that the former methods could not
popularize to the public easily. The second method, such as
Debevec and Malik [10] and Mann and Picard [11] gener-
ated well HDR image from LDR images in the static scenes.
However, if the scenes are dynamic or the camera is hand-held,
these methods produced artifacts like ghosting during the pro-
cess of aligning in the final HDR image. Therefore, “deghost-
ing” is an important work in the process of synthesizing an
HDR image. With the development of the HDR technology,
patch-based approaches of Sen et al. [12] and Hu et al. [13],
learning-based approaches of Kalantari and Ramamoorthi [14]
and Eilertsen et al. [15], and other approaches of [16]-[21] all
obtain good progress for ghost-free HDR image.

However, the existing methods focus on dynamic scenes
which are moving or the slight shake of the hand-held camera.
They neglect the change of views caused by the movement of
the person holding the camera, which produces the multiview
LDR images, for example, as shown in Fig. 1. Thus, we start
to work on multiview HDR synthesis. The essential of synthe-
sizing multiview HDR is to reduce artifacts produced in the
process of aligning. Furthermore, we find that the artifacts can
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Multi-view LDR images

Fig. 1. Our method uses three different exposure LDR images of the multi-
view scene (shown on the bottom) as input, and output a high-quality HDR
image (shown on the top) via FBLS. Note that we take the middle exposure
LDR image as a reference, then use optical flow method of Liu [1] to align
images with low and high exposures to the reference, respectively, to produce
the alignment LDR images. Then, use alignment LDR images to synthesize
HDR image which contains all of the three LDR images’ lighting information
through the FBLS.

be reduced significantly during the process of synthesizing by
detecting artifact regions, which reduces the bad effect in the
final HDR result. Thus, we use the learning method to imi-
tate this complex process. Specifically, we use the fuzzy broad
learning system (FBLS) [22] as our learning model, since IF-
THEN fuzzy rules can effectively help the model to detect the
artifacts and reject them in the final HDR result. This model
not only solves the shortcomings of deep learning’s long train-
ing time but also is interpretable compared with the traditional
deep-learning model.

Generally, the process of obtaining the final HDR images
can be divided into three steps: 1) align multiview LDR images
to the reference, respectively; 2) synthesize the aligned LDR
images into an HDR image; and 3) display HDR images
after tonemapping. In this article, we take three multiview
LDR images with high, medium, and low exposures and
use the method of Liu [1] to align multiview LDR images.
The LDR images with high and low exposures are aligned
to the medium exposure (reference), respectively, to obtain
three aligned images. In the second step, to eliminate the
artifacts produced during the alignment, we adopt the FBLS
to synthesize an HDR image. In this system, we use the
acquired three aligned LDR images as input. We extract fea-
tures through IF-THEN fuzzy rules to transfer corresponding
Takagi—Sugeno (TS) fuzzy subsystems. Simultaneously, the
structure is expanded in a wide sense in the “enhancement
groups” which transfer from these extract features with non-
linear transformation to preserve the characteristic of inputs.
Therefore, the structure of the system becomes wider instead
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Fig. 2. Structure of increasing fuzzy subsystems and enhancement groups.

of deeper. Due to the FBLS’s flat network, using pseudoin-
verse to compute the output-layer weights is a very convenient
approach to reduce the training time. Finally, we connect all
the fuzzy subsystems and enhancement groups to the out-
put layer with a target weight. In the last step, we need
tonemapper since the HDR images could not be displayed
on a normal monitor which grayscale is 8 bits. Many pow-
erful tonemapping techniques have been implemented and
we choose Photoshop CS6 to tone map our HDR image. In
addition, we retrain the model using the incremental learn-
ing algorithm through increasing the fuzzy subsystems and
enhancement groups. It proves that our method is efficient
and high quality. The experimental results demonstrate that
our system is correct and efficient. In summary, our approach
has the following contributions.

1) Multiview HDR Image Synthesis: This article proposes
a novel research direction on the multiview HDR image
synthesis which uses three multiview LDR images with
different exposures. Most existing HDR datasets are
captured from static scenes. Some of the datasets lack
ground-truth images or have a small number of scenes
with only rigid motion. In other datasets, the dynamic
scenes are caused by the movement of the subject, while
the views of different LDR images are the same. As a
result, we create the multiview HDR dataset.

2) Using FBLS to Synthesize HDR Image: We adopt FBLS
as our learning model. In the learning process, IF-
THEN fuzzy rules can effectively help the model to
detect the artifacts and reject them in the final HDR
result. Its efficient, fast, and interpretable characteris-
tic produces high-quality HDR result. Due to the flat
structure of the FBLS, the coefficients in the conse-
quent part of fuzzy rules in every fuzzy subsystem
and the weights connecting the final output layer with
the outputs of the enhancement layer can be com-
puted using pseudoinverse. As a result, compared with
the deep-learning-based methods, our method has fast
computation nature.

3) Incremental Learning Algorithm for FBLS: Our system
greatly reduces time as a result of incremental learn-
ing, which is a fast remodeling via increasing fuzzy
subsystems and enhancement node groups instead of
retraining the entire system compared to the other learn-
ing methods (see Fig. 2). When we increase the number
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of fuzzy subsystems and enhancement node groups, the
new weight matrix can be computed via the formerly
calculated weights. Thus, we do not have to retrain the
entire model, which saves lots of computational time to
update the model.

II. RELATED WORK

HDR images have received extensive research over the past
two decades and acquired a lot of valuable progress. Here, we
will introduce the related work about aligning LDR images,
rejecting moving object, and FBLS, respectively.

A. Align LDR Images

Ward [23] and Tomaszewska and Mantiuk [24] aligned the
LDR images through the automatic approaches. Ward [23]
used an inexpensive shift and difference operations over each
image to translate. Tomaszewska and Mantiuk [24] used the
SIFT algorithm to search for key-points which constitute
homography matrices. However, these simpler approaches are
unable to use in the dynamic scene. There are also mas-
sive alignment algorithms based on optical flow. Bogoni [25]
used local unconstrained motion estimation to align the LDR
images. Kang et al. [26] used optical flow to compute a dense
motion field that formed a local correction to the global trans-
formation and then merged HDR images by rejecting the pixel
which was not corresponding to the reference. Mangiat and
Gibson [27] performed simpler block-based motion estimation
and refined the motion vectors using color similarity in the
adjacent frames. In [28], HDR images were aligned with the
energy-based optical flow which minimizes an energy func-
tion of the data term on the gradient constancy assumption
and smoothness term. Hu et al. [13] presented a displacement
estimation method based on generating a perfectly aligned
image which successfully deals with large saturated regions
in the reference image. However, the state-of-the-art alignment
algorithms using optical flow in the challenging scenes also
produce artifacts on the final HDR image.

B. Reject Moving Object

Rejecting moving object is another important work to
synthesize the HDR images. These approaches identify and
reject the moving object to avoid generating ghost. Liu and
El Gamal [29] used advanced CMOS image sensors to cap-
ture multiple images within a normal exposure time to reject
ghost. Grosch [30] predicted the pixel color from one image
to another using camera response function and the differ-
ence between the two colors which indicated object motion.
Gallo et al. [16] and Raman and Chaudhuri [31] did the
similar approach with Grosch [30]. Khan et al. [32] and
Heo et al. [17] did not require explicit object detection and
motion estimation. Khan et al. [32] iteratively weighted each
pixel according to its probability of belonging to the back-
ground. Heo er al. [17] utilized the global intensity transfer
functions which obtained from the joint probability density
functions between different exposure images and weighted
each exposure according to the Gaussian-weighted distance to
a reference value. Jacobs et al. [33] detected motions which
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used the difference in local entropy between different expo-
sure images. Jinno and Okuda [34] used Markov random
field [35], [36] to estimate displacements, occlusion, as well
as saturated regions, and reject motion blur. Sidibe et al. [37]
proposed a detection for ghosting region via an order relation
between pixel values in consecutive images.

Min et al. [38] proposed a histogram-based ghost removal
method, in which object motion and background change
between two exposures were detected using multilevel thresh-
olding of the intensity histogram. Pece and Kautz [39] used
the median threshold bitmap algorithm to generate bitmaps for
each exposure image and detected movement when the value
changes in a pixel. Wu et al. [40] proposed three criteria of
monotonous, pixel error, and color error to detect the moving
objects. Zhang and Cham [41] utilized the gradient direction
changes to reveal object movement. Sen ef al. [12] proposed a
novel patch-based energy-minimization formulation that inte-
grates alignment and reconstruction in a joint optimization
through an HDR image synthesis equation. Based on the Sen’s
patch-match method, Kalantari et al. [42] proposed the HDR
video generation using alternate exposures in 2013 and used
deep learning to reject artifact in 2017 [14] which was the
first learning method in the HDR field. Granados et al. [43]
proposed a method that models the noise distribution of color
values and used a Markov random field to reconstruct irra-
diance from pixels that were likely to correspond to the
same static scene object. Lee er al. [19] assumed that irra-
diance maps were linearly related to LDR image exposures
and formulated ghost region detection as a rank minimization
problem by restricting moving objects. Oh et al. [44] improved
the Lee’s method that handled moving objects with large
overlapping area.

C. FBLS

Before understanding fuzzy broad learning, we first intro-
duce the deep learning and broad learning, respectively. Deep
learning is a new field in machine-learning research [45]—[48],
and it has a wide range of applications in image processing,
speech recognition, and large-scale data processing [49]—[52].
Deep belief network (DBN) was one of the earliest neu-
ral networks. Hinton et al. [53] proposed the restricted
Boltzmann machines which can be stacked and trained in
a greedy manner to form a DBN. The convolutional neu-
ral network (CNN) [54] is the most popular neural network.
Kalantari and Ramamoorthi [14] used CNN as a learning
model and compared three different architectures which out-
put the estimated HDR image, blending weights, and refined
aligned to merge HDR images, respectively. Although they
presented high-quality results, they suffered too long train-
ing time. The single-layer feedforward neural (SLFN) network
has been widely used in many fields for its good learning
ability [55], [56]. However, it has slow training speed, which
easily falls into local minima and could not reach the global
minimum. The random vector functional-link neural network
(RVFLNN) [56], [57] effectively eliminated the drawback of
the long training process. However, it could not do well on
large-scale data and time variety. Chen and Wan [58] proposed
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a fast learning algorithm which found optimal weights of the
flat neural networks. Based on the work in [58], the broad
learning system (BLS) [59], [60] was proposed. The feature
nodes and the enhancement nodes from the input data were
integrated into the output and the incremental learning algo-
rithm can remodel the architecture through increasing input
data, feature nodes, and enhancement nodes without retraining
original architecture.

In the study of past fuzzy systems, the network based on a
set of IF-THEN fuzzy rules of fuzzy system with the learn-
ing and connecting structure of neural network, called fuzzy
neural network (FNN) achieved a lot of excellent results.
However, the FNN follows the neural network’s training
method to train the parameters in the fuzzy rules and cost
much time. Due to the massive data and big dimension, fuzzy
rules’ accuracy choice is a problem. To solve these prob-
lems, many improved approaches have been proposed recently.
Wang et al. [61] proposed a novel hierarchical hybrid FNN
which the fuzzy subsystems aggregates several discrete input
variables into an intermediate variable and neural network rest
consist of continuous input variables and intermediate vari-
ables. Rong et al. [62] proposed an online sequential fuzzy
extreme learning machine (OS-Fuzzy-ELM), its learning can
be done with the input data coming in a one-by-one mode
or a chunk-by-chunk mode with and randomly assigned all
the antecedent parameters of the membership functions to cut
down the learning time. Sun ef al. [63] proposed a neuro-fuzzy
inference system which grouped the data by the k-means clus-
tering method and the membership of arbitrary input for each
fuzzy rule was derived through an ELM. However, they only
consider one fuzzy system in their models. Recently, Feng and
Chen [22] proposed a fuzzy learning model based on the BLS
which includes fuzzy subsystems and enhancement groups.

III. APPROACH FRAMEWORK

In our proposed method, we use a set of multiview LDR
images with different exposures (L1, Ly, L3) to synthesize
high-quality HDR images (H) with little ghost via FBLS (see
Algorithm 1). In the alignment stage, we regard the middle-
exposure image (L) as the reference; then, align low-exposure
image (Lj) and high-exposure image (L3) to the reference
(the middle exposure) using optical-flow method of Liu [1],
respectively. The new generated aligned images with different
exposures are denoted as I = {Iy, I, I3}. The most advanced
algorithm which used optical flow to align the LDR images
could not work accurately and produce ghosting artifacts in
some complex motions. To reduce the influences of this phe-
nomenon on the final HDR images, we proposed to generate
HDR image using FBLS. In the training step, we take the
aligned images I, I, and /3 and the ground truth as input and
output the connection weight. In the testing step, we input the
aligned image Iy, I>, I3 and output our HDR result. The pro-
cess of synthesizing multiview HDR image is shown in Fig. 3.
In some cases, if the quality of the final HDR image quality
could not reach our expectation, we need incremental learning
to proceed to refine our learning model. We describe the HDR
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Algorithm 1 Synthesis HDR Image Using FBLS
Input: Aligned Images /, fuzzy rules K;, fuzzy subsystems p,
enhancement node groups ¢
Output: Final HDR Image
1: Take X = I;
2: Random the parameter (x,"d in [0, 1];
3: for i=1;i<=p do
4 for s=1;5s <=n do
5: Calculate Zg; using Eq. (4);
6
7
8
9

Calculate Fg; using Eq. (9);
end for
Obtain the Z; using Eq. (5);
Obtain the F; using Eq. (10);
10: end for
11: Obtain ZP using Eq. (6);
12: for j=1;j<=g¢q do

13: Randomly generated wj, B;;
14: Calculate H; using Eq. (7);
15: end for

16: Obtain the enhancement node groups HY using Eq. (8);

17: Obtain the fuzzy subsystems F? using Eq. (11);

18: Use trained well weight W to generate final HDR image
with Eq. (12);

synthesis system in Section IV and interpret the incremental
learning in Section V.

IV. GENERATE HDR IMAGE
A. Preprocessing

If the format of the multiview LDR images is not RAW,
we use camera response curve in [10] to linearize them.
Then, we use gamma curve (y = 2.2) on these linear
images to obtain LDR images (L1, L,, L3) suitable for our
method. This step makes the LDR images closer to the real.
Before aligning, we need to adjust exposure of the reference
image (L) to high-exposure image L3 and adjust low-exposure
image L; to the reference image L, respectively, since the
optical-flow methods require brightness constancy. Formally,
it is denoted as: L2 = clip(Llexposure(Ll,Lz)(l/y)) and
L>3 = clip(Lyexpourse(La, L3)(1/7)), where exposure() is the
exposure ratio between the reference and the low or high expo-
sure. Then, we use optical-flow method in [1] to compute the
flow between L; and L12, and the flow between L3 and %3
to obtain the aligned images I = {I1, I>, I3}.

B. HDR Synthesis

In this step, we use the aligned images [ as input of FBLS
X = (x1,X2,...,%,)] € R™™ and output the HDR image.
At first, we use the first-order TS fuzzy model to map the
input xX; = (X51, Xs2, - - . , Xgny) to the ith fuzzy system. In the
first-order TS fuzzy model, the function of xy; is the first-order
polynomial, where t = 1,2, ..., m. This can be defined as

m
dp = g )
t=1
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Fig. 3.

Overview of the FBLS-HDR synthesis process. We take three multiview LDR images with different exposures L1, Ly, L3 as the input data. After

preprocessing, we obtain the aligned LDR images. In this step, we use optical flow as our aligned method which use high- and low-exposure LDR image to
align with middle exposure (reference), respectively, to generate aligned LDR images I, I», I3. Then, we take Iy, I, I3 as input of FBLS and extract features
through K; fuzzy rules to transform fuzzy subsystems F;. Simultaneously, the structure is expanded in a wide sense in the enhancement groups H; which
transfer from these extract features with nonlinear transformation to preserve the characteristic of inputs. Finally, we connect all the fuzzy subsystems and

enhancement groups to the output layer with a target weight.

where a;;t is a parameter generated randomly and k
1,2,...,K; is the number of fuzzy rule of the ith fuzzy
system. We adopt the Gaussian membership function as our
membership function, this can be denoted as

W Cisr) = € N 2
where c;'d are the centers of the Gaussian membership func-
tions and the width o/, is a fixed value. We use classic k-means
method on the training data to obtain K; clustering centers. The
values of c;'“ are decided by these clustering centers. Then, the
weighted activation level for each rule can be computed as

i l_[;nzl :u’;([ (xSl )
wsk = Ki m i *
Zkzl H;=1 Mkt(xxt)
After the above calculation, the intermediate output Zg; for

the sth training sample of the ith fuzzy subsystem can be
denoted as

3)

’ wéK,'ZiKi) (4)

the intermediate output Z; for all the training samples of the
ith fuzzy subsystem can be denoted as

Zi:(Zli’ZZis"'vzni)iiZ172a"'7p'

L il i i
Zs = (wslzsl’ Weplsps - -+

®)

Then, the intermediate output Z” of p fuzzy subsystems can
be denoted as

7= (Zl Lo, .., Zp) € R (& +K2+~--+Kp)'

(6)

Then, we enhance the intermediate output to the enhance-
ment node groups, this can be defined as

Hj:l//(prj'Fﬂj)’ ji=1L2,...,q9 (7N

where H; is the enhancement groups transformed from Z7,
which can preserve the characteristic of inputs. @; and B;
are the weight and bias randomly generated from [0,1] with
proper dimensions which transform Z7 to Hj. v(-) is an acti-
vation function which use the Sigmoid function. And all the
enhancement node groups are denoted as

H? = (Hi,Hy, ..., H,). (8)

The output vector Fy; for the sth training sample of the ith
fuzzy subsystem consists of zék. To avoid the computational
complexity, we do not compute the coefficient o, in pseudoin-
verse explained in (13), but introduce a new parameter A; . It
can be defined as

K; Ki
Fyi = Z M1 OgpZags + - 5 Z M PsiZa
k=1 k=1
K; m
_ i i
= Zkkla)sk Z“ktxst Yo
k=1 t=1
Kl' m
i i
Z A1 @k Z Xt
k=1 =1
i i
m 11 1c
_ i i i
= Zakl“xSt(wsl’ e, a)SKi) ©)]
)\’K,'] )\'K,’C
where ¢ = 1,2, ..., C. The output matrix F; for all the training
samples of the ith fuzzy subsystem is denoted as
Fi = (Fi;, Fy, ..., Fy) = DV (10)
where D = diag{}_/" | a,id_x“, N S a,"dx‘,,,}, and
1 1 1 l
@7 Dik; 11 1c
Qi — . A.i — . .
i i i i
Wy Wk, Akl e

Let FP denote the aggregative output of p fuzzy subsystems,
written as
1
P P o A
P =) F=) Dpx=D(e,....)| : | =DeA
i=1 i=1 AP
(1D
where Q = (Q', ..., Q) and we denote (AT, ..., AT
as A.
Finally, we connect the fuzzy subsystems FP and the
enhancement node groups HY to the output Y. The weights
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connecting to the output of F” and H? are Wy and W,
respectively. Hence, the FBLS model can be denoted as

Y = FPW; + H'W,,
= DQA + HIW,,

= (DQ,Hq)(VI‘}h)

— AW (12)

where A = (DQ, H?) and the values of the weights W; are

A
settobe 1. W = W,

of the FBLS. The weight matrix W can be computed using
the training targets Y : W = ATY.

The pseudoinverse matrix A* could be obtained by the
optimization problem

is the final connecting weight matrix

. 2
A+=argmvbn ||AW—Y||2+)»||W”1. (13)
We use an improved least square to obtain the connecting
weight W with smallest training errors, and A denote the fur-
ther constraints on the sum of the squared weights in [59].
The first terms is an l,-norm regularization which denotes
the training errors. The second term is an /i-norm regular-
ization which prevents our model from overfitting. Obviously,
we could obtain W = (AE + AAT)"'ATY, where E is a unit
matrix. If A — 0, we have : AT = lim; . o(AE + AAT)"TAT.
Overall, in this step, we can synthesize the HDR image using
the trained-well weight matrix W in the FBLS system.

V. OPTIMIZATION OF TRAINING RESULT

In other deep-learning models, if the learning effect does
not work well as expected, they will increase the number of
the filter or increase the number of the layer, which needs to
retrain the new network for a long time. In our FBLS, we can
increase additional enhancement node groups and fuzzy sub-
systems to reconstruct the model using an incremental learning
algorithm without the process of retraining the entire system
(see Algorithm 2). It has better performance. We use PSNR to
evaluate the accuracy of our HDR results. If the PSNR value
of the final HDR images is less than 40, we need to increase
the enhancement node group and fuzzy subsystem to raise our
HDR result’s quality. We denote the additional enhancement
node group as Hy1 = ¥(Z7 - wg+1+ B,41), where wg41, and
B,+1 are the weight and bias generated randomly from the
fuzzy subsystems to the additional enhancement node group
with proper dimensions. And the new matrix after increasing
additional enhancement node group is denoted as A7+!

AT = [AHg41]. (14)

Then, we calculate the pseudoinverse of the new matrix
(A9t as

(Aq+1>+ _ [A+ - (Al;rTHqH)BT} (15)

where B is explained detailedly in [59].
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Algorithm 2 Incremental Learning Algorithm

Input: Training samples (X, Y), original connecting weight
QOutput: Dynamic updated connecting weight

1: repeat

2 if increase the enhancement group then

3: Randomly generated w1 and Bg41;

4 Calculate new enhancement node group H,y1 =

Y@ + By

5 Set the new matrix A, using Eq. (14);

6 Update (A9T1)* using Eq. (15);

7: Update connecting weight W9+! using Eq. (16);

8 end if

9 if increase the fuzzy subsystem then

10: Calculate new fuzzy subsystem F,;; =
DQP'H )J’H;

11: Set the new matrix Ap11;

12: Update (Ap4+1)" using Eq. (18);

13: Update connecting weight WP*+! using Eq. (19);

14: end if

15: until The PSNR value is satisfied
16: Update connecting weight;

Finally, the dynamic updating weight W9*! can be calcu-
lated by

Wit = [W - (A+Hq+1)BTY}. (16)

BTY
Only increasing the enhancement nodes may also not satisfy
our quality requirements, because the feature mapping of the
fuzzy subsystem we extract may not completely include the
entire features of the input data. Therefore, we can increase
the number of fuzzy subsystems to improve the quality. We
denote the additional fuzzy subsystem as F),1

Fpi = DQ/Hrt! (17)

We denoted the new matrix as A?t! = [A|DQP1!]. Then,
we calculate the pseudoinverse (APT!)* similar to (15) and
the dynamic updating weight W*! similar to (16)

N\RpT

(Ap+1)+ _ [A+ - (AJI;I;QP“L )B } 18)
\%% N\RpT

WPl = [ - (A?T%H B Y]. (19)

Overall, due to our model’s flat structure, we can increase
the fuzzy subsystems and enhancement node groups through
pseudoinverse to avoid retraining the entire model.

VI. EXPERIMENTAL RESULTS

In this section, in order to prove that our proposed method
is efficient and generates a high-quality result, we will show
the experiment in four parts, including datasets and implemen-
tation, evaluation, comparisons, and running time.

A. Datasets and Implementation Details

1) Datasets: In order to train our FBLS to have a better
performance without artifacts, we need a large dataset which
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Fig. 4. Parameter analysis experiment. We keep the remaining parameters in our defined value and adjust some parameters in each experiment. (a) Experiment
of increasing the fuzzy rules and fuzzy subsystem-enhancement group. (b) Experiment of increasing the fuzzy subsystems from 50 to 100 to observe the
PSNR-L and the training time simultaneously. (c) Experiment of increasing the enhancement nodes from 500 to 1500 to observe the PSNR-L and the training

time simultaneously.
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Compare the values of PSNR-T with the state-of-the-art methods (Hu et al. [13], Sen et al. [12], Qin et al. [20], Ma et al. [21], Lee et al. [19],

Oh et al. [44], and Kalantari and Ramamoorthi [14]) on our multiview test set and Kalantari and Ramamoorthi [14] test set (deep-learning method), respectively.
(a) Test on 100 scenes of our multiview test set. (b) Test on 15 scenes of Kalantari test set.

TABLE 1
QUANTITATIVE RESULTS OF THREE METRIC METHOD

., Method
Kalantari’s Dataset { Sen [12]  Hu[13] Oh [44] Kalantari [T4]  Ours
PSNR-T 2070 3553 3227 07 1324
PSNR-L 37.98 30.81 34.37 41.20 4233
HDR-VDP-2 63.85 6074  61.28 64.03 63.51

consists of the multiview LDR images with different exposure
and the corresponding ground truth. However, there is no
such existing dataset. Therefore, we create a new dataset of
multiview HDR synthesis which includes a set of 100 training
scenes and 100 test scenes, each set of the scene contains three
different exposure multiview LDR images in .tif format with
its corresponding ground-truth image in .hdr format. The
training scenes contain indoor, outdoor, sunny day, and cloudy
day. The resolution of these images is 1500 x 1000 and
the exposure biases of the LDR images are (—2.0, 0.0, 2.0).
Note that we wuse the approach of Kalantari and
Ramamoorthi [14] to generate the corresponding ground-truth
HDR image.

2) Implementation Details: We implement our approach
using MATLAB on a laptop with 4.00-GHz Intel i7 CPU,
32-GB memory. We use the set of 100 scenes as our training
data. We set the randomly generated weights in the enhance-
ment node groups w; and f ) within the interval of (—1, 1), the

50

40

30

PSNR-L

20

25

70

fuzzy subsystems fuzzy rules

Fig. 6. With the fuzzy subsystems and fuzzy rules increasing, the values of
PSNR-L are on the rise on the whole. It confirms the stability of our system.

coefficients a,’;t are initialized randomly in (0, 1). In addition,
we set the parameter A for ridge regression in (13) as 107°
and set the Glét in (2) as 1. The activation function which
transforms the enhancement node groups is the nonlinear sig-
moid functions. For setting the number of fuzzy subsystems,
enhancement node groups, and fuzzy rules, in the beginning,
we set the number of fuzzy rules as 15, fuzzy subsystems
as 50, and enhancement nodes as 500; then, we, respectively,
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Multi-View LDR Images

Fig. 7.

Ours Sen et al. Hu et al. Oh et al.

Compare the HDR results on man! of our multiview dataset with the state-of-the-art methods of Sen et al. [12], Hu et al. [13], and Oh ez al. [44].

TABLE II
COMPARE RUNTIME IN SECONDS

Scenes  Image Size Sen et al. [12] Hu et al. [13] Lee et al. [19] Oh et al. [44] Kalantari et al. [14] FBLS
MATLAB+Mex MATLAB+Mex MATLAB+Mex MATLAB MATLAB+Mex MATLAB
manl 1500 1000 210.28 314.96 106.91 120.93 113.78 122.41
man2 1500 1000 237.52 332.34 115.35 108.41 106.12 131.53
man3 1500 1000 242.19 340.13 136.39 140.03 124.65 103.96
mand 1500 1000 205.57 338.70 121.27 129.14 119.76 116.72
arch 699x1024 95.38 154.96 56.24 70.33 52.04 60.39
forrest 1024 x 683 159.28 213.27 82.46 91.40 83.20 79.15

increase the amount of fuzzy subsystems from 50 to 100, and
enhancement nodes from 500 to 1500 to retrain our model.
Simultaneously, we observe the variety of PSNR-T (computed
using tonemapped outputs and ground truth) and PSNR-L
(computed using linear images and ground truth) to obtain
the optimal model parameters. Then, we increase the number
of fuzzy rules from 15 to 25 to adjust our model while keep-
ing the number of fuzzy subsystems and enhancement nodes
are constant. Finally, we set the number of fuzzy subsystems
as 90, the number of enhancement groups as 1300, and the
number of fuzzy rules as 22, which can obtain the highest
quality HDR image and cost the least time relatively. If we
keep on increasing the number of fuzzy subsystems, enhance-
ment nodes, and fuzzy rules, the quality of the result has little
improved and also cost much time. This parameter analysis
experiment is shown in Fig. 4. From Fig. 4(b) and (c), we can
see that the training time has a large decline when increasing
the number. It proves that we do not need to retrain the entire
model when increasing the fuzzy subsystems and enhancement
nodes.

B. Evaluations

In this section, we compare our method with the state-of-
the-art methods, including two-based patch method [12], [13];
a deep learning CNN method [14]; and a motion rejection
method [44]. All of the results are implemented by the authors’
improved code. In order to prove that our method has better

Our Tonemapped

: %
Multi-View Hu et al. Oh et al.
LDR Images
Fig. 8. Compare HDR results on man2 of our multiview dataset with the

state-of-the-art methods of Sen et al. [12], Hu et al. [13], and Oh et al. [44].

performance, we make quantitative evaluation using PSNR-T,
PSNR-L, and HDR-VDP-2 [64] which is a calibrated visual
metric for visibility and quality prediction for HDR images
on 15 scenes of the Kalantari’s test set [14]. Note that there
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Fig. 9. Compare HDR results on man3 of the Kalantari’s dataset with the state-of-the-art methods of Kalantari and Ramamoorthi [14], Eilertsen et al. [15],

Sen et al. [12], Hu et al. [13], and Oh et al. [44].
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Fig. 10. Compare HDR results on man4 of the Kalantari’s dataset with the state-of-the-art methods of Kalantari and Ramamoorthi [14], Eilertsen et al. [15],

Sen et al. [12], Hu et al. [13], and Oh et al. [44].

is no training data used in the test data. The higher aver-
age value of three kinds of metric methods denotes which
is more similar to the ground truth. From Table I, we can see
that our values of PSNR-T and PSNT-L are higher than the
state-of-the-art methods, which means our proposed method
better restores the real scene detail. The Kalantari’s method
obtains the highest HDR-VDP-2 score. We also compare the
values of PSNR-T on 100 scenes of our multiview test set
and 15 scenes of the Kalantari’s test set with the state-of-the-
art methods (Hu er al. [13], Sen et al. [12], Qin et al. [20],
Ma et al. [21], Lee et al. [19], Oh et al. [44], and Kalantari and
Ramamoorthi [14]) in Fig. 5. The row coordinates are differ-
ent test images. From the figure we can see, our FBLS has
better performance on both two test sets. It indicates that our
proposed method can produce high-quality HDR results not
only on the multiview but on the traditional dynamic scenes.
However, other approaches are not able to apply in our mul-
tiview scenes. In addition, we evaluate the stability of our
model. We set the enhancement nodes as 1500 and test our
model with the increasing of fuzzy rules and fuzzy subsys-
tems. From Fig. 6, we can see the values of PSNR-L are
rising generally. It shows that our model is stable.

C. Comparisons

We compare our method on our multiview test data with the
state-of-the-art methods of Sen ef al. [12], Hu et al. [13], and
Oh et al. [44] which is shown in Figs. 7 and 8. In the left of
each figure is the three multiview LDR images with different
exposures and the middle is the reference. Fig. 7 shows a man
on the street on a cloudy day. In the red block, Oh et al. [44]
are not able to avoid alignment artifacts caused by the signifi-
cant multiview motions. And in the dark region, Hu ef al. [13]
are not able to recover the detail of the black clothes. In the
yellow block of the building in the distance, Oh et al. [44] still
produce a lot of alignment artifacts, Hu et al. [13] produce blur
and Sen et al. [12] generate both alignment artifacts as well
as blur. Our method can synthesize a blur-free and artifact-
free high-quality HDR result. Fig. 8 shows a man in the green
park on a cloudy day. In the red block, other approaches are
not able to avoid alignment artifacts (Oh et al. [44]) could
not recover the highlight (Sen et al. [12]) and produce blur
in the entire image (Hu ef al. [13]). In the yellow block, the
approach of Hu et al. [13] could not recover the highlight of
the sky behind the leaves. The approach of Sen et al. [12] pro-
duces blur around the tree and the approach of Oh er al. [44]
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Mertens ef al. Gallo et al.

Sen et al.

Fig. 11.
Photoshop CS6, Hu et al. [13], Sen et al. [12], and Oh et al. [44].

generates serious artifacts. In contrast, our result has better
performance.

We compare our method on the Kalantari’s dataset [14]
with the state-of-the-art methods of Kalantari and
Ramamoorthi [14], Sen et al. [12], Hu et al [13],
Oh et al. [44], and Eilertsen et al. [15], which is shown
in Figs. 9 and 10. In Fig. 9, because of the signifi-
cant foreground motions of the people, the patch-based
approaches (Sen et al. [12] and Hu et al. [13]) produce a
lot of artifacts around the moving region. In contrast, the
learning-based approaches (Kalantari and Ramamoorthi [14],
Eilertsen et al. [15] and ours) produce better results. However,
the result of Kalantari and Ramamoorthi [14] also has some
artifacts and the result of Eilertsen et al. [15] produces
saturated highlights and blur. Our approach is able to produce
a high-quality HDR image with little artifacts and highlights.
Similarly, in Fig. 10, in the highly saturated highlight regions,
the result of Kalantari and Ramamoorthi [14], Sen et al. [12],
Hu et al. [13], and Oh et al. [44] produces a lot of artifacts.
The result of Eilertsen et al. [15] is better but still has a little
blur. Our results are able to hallucinate plausible details in
the saturated regions.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 5, MAY 2021

Oh et al.

Ours

Compare HDR results on arch of the Gallo’s [16] dataset with the state-of-the-art methods of Mertens et al. [18], Gallo et al. [16], Heo et al. [17],

We compare our method on the Gallo’s dataset [16] with
the state-of-the-art methods shown in Figs. 11 and 12. The
ArchSequence in Fig. 11 consists of five different exposure
LDR images, we choose three of them to test our proposed
method with exposure value (—2.0, 0.0, 2.0). In Fig. 11, the
result of Mertens et al. [18] has an obvious ghost of moving
person, because they do not align the dynamic scenes and just
handle the static scenes. In the lower-left corner and lower-
right corner of Gallo et al. [16], their result produces blur and
saturated highlights, respectively. The result of Heo et al. [17]
and Photoshop CS6 generated the halo artifacts and blending
artifacts, respectively. The patch-based result of Hu et al. [13]
and Sen et al. [12] produced blur and noise in the dark regions
since they preserved information from the reference heav-
ily. These results all reject ghost successfully in addition to
Mertens et al. [18]. The result of Oh et al. [44] and most
of these results are not able to recover the sky. Our method
shows more details and high quality of the scenes especially.
In Fig. 12, we compare our result with Gallo et al. [16],
Hu et al. [65], and Hu et al. [13]. In the red block which is a
bright region, our result and Gallo’s have better performance,
however, Hu ef al. [65] and Hu et al. [13] produce highlight.
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Fig. 12. Compare HDR results on forrest of the Gallo’s [16] dataset with the state-of-the-art methods of Gallo et al. [16], Hul2 et al. [65], and Hul3 et al. [13].

On the contrary, in the yellow block which is a dark region,
Gallo ef al. [16] did not restitute detail of the scene and the
tree stump contained some blur. Moreover, compared to our
method in the blue block, other methods have different degrees
of blur.

D. Running Time

In order to prove our proposed approach is efficient, we
compare the execution time with Hu et al. [13], Sen et al. [12],
Oh et al. [44], Kalantari and Ramamoorthi [14], and
Lee et al. [19] on six scenes from different dataset in Table II.
From Table II, we can see our running time is much less than
Sen et al. [12] and Hu et al. [13], and close to the running
time of other methods. In addition, the greatest advantage of
FBLS is the fast training. We compare the training time with
Kalantari and Ramamoorthi [14] which cost nearly three days
to train their CNN network on the Kalantari’s dataset, while
our FBLS only cost 10 min. We first input 30 sets of images as
the training set, then add 10 sets each time and record the train-
ing time. With the increase of the training images, Kalantari’s
(the traditional deep-learning method) training time has sig-
nificant growth. However, due to our model is a flat network,
our training time is much less than the deep learning.

VII. CONCLUSION

In this article, we propose a novel model in the HDR syn-
thesis filed which synthesizes an HDR image using a set
of multiview LDR images. For generating high-quality HDR
results, we use the FBLS as our learning model and create
the dataset of multiview LDR images with its corresponding
ground truth. The training time of our system is much less than
the deep neural network since our model is a flat network

consisting of fuzzy subsystems and enhancement groups. In
addition, we present the incremental learning algorithm for this
model. We can increase the enhancement groups and fuzzy
subsystems to optimize our model instead of retraining the
entire network. We compare massive substantial experiments
with the state-of-the-art methods to prove our results contain
more details and less ghosting.

However, there are some limitations in this article. Due to
the restriction of the model, we could not support multiple
input LDRs for more than three images. More LDR images can
contain more complete details of the scene. In addition, there
are many matrix operations in the computation of weights,
which requires lots of memory. Therefore, in the future, we
will attempt to optimize our model to support more LDR
inputs. And, we will try to reduce the space complexity for
the computation of weights.
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