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Retinal Vessel Segmentation Using Minimum
Spanning Superpixel Tree Detector

Bin Sheng

and David Dagan Feng

Abstract—The retinal vessel is one of the determining factors
in an ophthalmic examination. Automatic extraction of retinal
vessels from low-quality retinal images still remains a challeng-
ing problem. In this paper, we propose a robust and effective
approach that qualitatively improves the detection of low-contrast
and narrow vessels. Rather than using the pixel grid, we use
a superpixel as the elementary unit of our vessel segmentation
scheme. We regularize this scheme by combining the geometrical
structure, texture, color, and space information in the superpixel
graph. And the segmentation results are then refined by employ-
ing the efficient minimum spanning superpixel tree to detect and
capture both global and local structure of the retinal images.
Such an effective and structure-aware tree detector significantly
improves the detection around the pathologic area. Experimental
results have shown that the proposed technique achieves advan-
tageous connectivity-area-length (CAL) scores of 80.92% and
69.06% on two public datasets, namely, DRIVE and STARE,
thereby outperforming state-of-the-art segmentation methods. In
addition, the tests on the challenging retinal image database
have further demonstrated the effectiveness of our method. Our
approach achieves satisfactory segmentation performance in com-
parison with state-of-the-art methods. Our technique provides
an automated method for effectively extracting the vessel from
fundus images.
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I. INTRODUCTION

TABETIC retinopathy (DR), also known as diabetic eye

disease, refers to the progressive retinal damage occur-
ring in people suffering from diabetes. This disease causes
a narrowing of the small retinal vessels and often shows
no symptoms in its early stages. However, it can progress
rapidly and cause vision loss through several pathways.
Ophthalmologists can effectively examine diabetic patients
by checking for retinal lesions, microaneurysms, and abnor-
mal/fragile blood vessels. However, owing to the high preva-
lence of diabetes and shortage of human experts, screening
programs are costly and time-consuming for clinics. A reliable
automatic retinal image examination method would signifi-
cantly reduce the workload of ophthalmologists and facilitate
a more effective screening process [1]. The motivation of this
paper is to develop an automatic and effective retinal vessel
extraction from fundus images. We enhance both the low-level
feature estimation process and the subsequent vessel extraction
process by using an efficient minimum spanning superpixel
tree (MSST) detector that can accurately capture both global
and local structure features for retinal vessel segmentation.
Furthermore, this paper could be extended to human identifi-
cation (ID), as the retinal vessel structure is unique to each
person. We believe that in real-life applications, some bio-
metrical features would be more applicable than others [2]
in certain cases. For example, in Zhou et al’s [3] work,
human ID was achieved based on a new biometrical method:
sclera recognition, which was based on a Gabor wavelet-based
sclera vessel patterns detection. And their experimental results
have shown comparable recognizing rate to iris recognition in
visible wavelengths.

Numerous methods have been proposed for vessel
extraction. These methods can be broadly -categorized
into three types: 1) the machine-learning-based -classifi-
cations; 2) the tracking-based approaches; and 3) the
enhancement/thresholding methods. Among these methods,
machine-learning-based classifications usually obtain the best
segmentation accuracy, and such a strategy can provide satis-
factory results for healthy retinal images [4], [5]. However,
these methods usually require the ground-truth segmenta-
tions for model training, however, these ground truth image
labels are difficult to generate in practice. Meanwhile, another

2168-2267 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 12:07:10 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-8510-2556
https://orcid.org/0000-0002-2961-0860
https://orcid.org/0000-0002-3381-214X

2708

problem for these methods is that they often require a time-
consuming retraining process when applied to a new image
set. On the other hand, most of the tracking-based approaches
are interactive, requiring a lot of user interactions [6] which
will significantly increase the workload of ophthalmologists.
Although Behrens et al.’s [7] as-automated-as-possible algo-
rithm needs limited initial inputs and user interaction, the
method requires a given scale tube diameter for processing.
Thus, our technique pursues a fast, robust, automatic, and
accurate vessel segmentation.

In general, traditional vessel extraction algorithms (such as
the thresholding methods) consist of four steps. First, a prepro-
cessing step aims to remove illumination noise and enhance
specific features in the original retinal images. Second, the
“vesselness” (likelihood of being a vessel) of each image
pixel is computed using approaches, such as matched filter-
ing [8] and Hessian-based filtering [9]. Third, vessel/nonvessel
areas are classified on the basis of the vesselness measure-
ment; in this paper, a threshold is used for the classification.
Finally, false vessel pixels are removed by examining certain
properties, such as connectivity [10]. Kirbas and Quek [11]
have categorized vessel segmentations into six major types:
1) pattern recognitions; 2) model-based methods; 3) tracking-
based methods; 4) Al-based methods; 5) neural network-based
methods; and 6) tube-like object detections.

The concept of a matched filter (MF) for improve ves-
sel detection in eyes was first adopted in [8]. In their
method, 12 different templates are constructed on the basis
of a 2-D design MF, which uses intersectional vessel infor-
mation and minimum changes in distance. Some revised
versions of MF with improved effects were introduced
in [10], [12], and [13]. Hoover er al. [12] presented a
method using the threshold for area-based vessel classi-
fication. Al-Rawi et al. [13] improved the response and
performance of a Gaussian MF by proposing a general-purpose
optimization technique to determine better filter parameters.
Zhang et al. [10] introduced a revised MF for enhancing the
vessel detection processing in the case of nonvessel struc-
tures. However, a major drawback of MF-based approaches
is the ambiguous assumption that the intensity distribution of
a vessel cross section obeys a Gaussian function, which is not
always the case.

The line operator in [14] is a useful method for detect-
ing linear structures in mammographic photos. Given a target
pixel and multiple lines passing through the pixel, the method
selects the largest gray-level value as the line strength of the
target pixel. Ricci and Perfetti [15] introduced the basic line
operator to detect retinal vessels along all directions, as ves-
sels can have different orientations, widths, and intensities.
Nguyen et al. [16] generalized the basic line operator and
combined various scales to produce a satisfactory segmenta-
tion result. Although the basic line operator is effective for
vessels with a central reflex (a bright strip that is sometimes
present along the center of wider vessels), we find that it has
two critical limitations. The first is its ineffectiveness in detect-
ing small vessels owing to illumination noise and extremely
small gray-level variance in the neighborhood of small ves-
sels. The line operator mainly distinguishes vessels from the
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background according to their gray levels. However, the gray
levels of thin and low-contrast vessels are similar to those of
the background. Therefore, it is extremely difficult to set a
threshold for discrimination. The second limitation is the spu-
rious response to nonvascular structures, such as the optic disc
boundary and pathologic area, which commonly have a strong
boundary and tend to be falsely detected as vessel boundaries
by the line operator.

Supervised methods for retinal segmentation are discussed
in this paper written by Singh and Kaur [17]. First of all, the
supervised method is trained with the marked dataset. Then,
the method is applied to classify retinal pixels. Khan et al. [18]
and Ocbagabir et al. [19] gave the overview of some blood
vessel segmentation methods. Supervised classifications are
discussed in [20]. Fraz et al. [21] discussed both the unsu-
pervised and supervised methods for blood vessel detections.
Fraz et al. [21] introduced the supervised methods in detail.
But supervised methods require manually segmented results
as a training set. They will be inconvenient without the
training set. Recently, there are several new methods to han-
dle retinal vessel extraction. Zhang et al. [22] proposed
filtering-based method using 3-D rotation. They have applied
a left-invariant rotating derivative frame, and a locally adap-
tive derivative frame. Annunziata et al. [23] presented a vessel
extraction using unsupervised learning. An image inpainting
method is applied to enhance the vessel detection rate during
enhancement processing. Khalaf er al. [24] proposed a new
formulation of deep convolutional neural networks that allows
simple and accurate segmentation of the retinal vessels using
classification. Wang and Jiang [25] investigated various color
channels combination to improve vessel segmentation with the
fine color fusion method.

In addition, there are some novel image segmentation meth-
ods. Song [26] applied regularized gradient flux flows for an
accurate extraction of object boundary and contour, which
not only reduce noise information but also keep nice edge
information. Zhang et al. [27] presented a method to estimate
bias field and segment images with intensity inhomogeneity
at the same time. Zhang et al. [28] introduced a level set
approach to segment the images with intensity inhomogeneity.
Experimental results on different types of images have shown
the effectiveness of the method. Funke ez al. [29] proposed
a learning-based approach for enhancing objects segmenta-
tion with the information of boundary cues. The result is
favorable when applying to cell segmentation. It has a cer-
tain reference to vessel segmentation. These new methods
are valuable for vessel segmentation. Many existing meth-
ods for vessel segmentation use pixel grid as underlying
representation. Felzenszwalb and Huttenlocher [30] used the
image grid with local neighborhood pixels, and distinguish
value difference in image intensities for neighbors. For ves-
sel segmentation, using pixel grid is not accurate enough. We
believe that a pixel form is not good enough for vessel struc-
tures, whereas superpixels provide a more natural and efficient
way to compute local image features and distinguish vessels
from other retinal structures. The superpixel method, which is
becoming increasingly common in the field of image process-
ing, can group pixels using the degree of feature similarity,
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Superpixel Generation

Feature Extraction

Fig. 1.

thereby allowing for redundant information about the image
to be acquired. This method fully utilizes spatial information
and thus provides excellent anti-noise performance. In addi-
tion, it can retain the edge information of the original image
while enhancing the local consistency. Xu et al. [31] com-
bined superpixel and bottom-hat filtering to segment retinal
vessel, but the characteristic of superpixel is not utilized when
using bottom-hat filtering. We need a superpixel-based method
instead of pixel-based method to detect vessel superpixels.

In this paper, we apply the simple but effective linear

iterative clustering (SLIC) algorithm to segment a retinal
image into a set of superpixels using a feature combination
of spatial distance, color distance, and texture distance.
The features are computed for two aims. First, features are
computed within a superpixel to determine the probability
that the superpixel is part of a vessel. Second, the sets
divide the input image into patches by distributing each
pixel to the nearest primitive. We construct the minimum-
spanning tree structure based on these superpixels, called
MSST. Such structure-preserving MSST-based detector is
employed to evaluate the vesselness of each superpixel
and determine pixels in a patch as either vessel pixels or
nonvessel pixels. Finally, segmentation results are refined
further by applying a path-opening processing to reduce
negative feedback for detection and to avoid nonvascular
structures. An overview of the proposed method is shown in
Fig. 1. To evaluate our method, we constructed a database
of manually labeled images. The dataset is referred as NIVE
dataset. The NIVE database can be downloaded at http://
www.mediafire.com/download/t9omausqtfSrfar/NIVE.rar. It
consists of totally 40 fundus images. For comparison, our
method is also evaluated using the digital retinal images for
vessel extraction (DRIVE) and structured analysis of the
retina (STARE) databases. The results indicate that despites
its simplicity, the proposed approach matches or outperforms
state-of-the-art methods. The main contribution of this paper
is a novel superpixel-based vessel tree detector framework
with the following unique characteristics.

1) It combines the superpixel and minimum spanning tree
to segment retinal vessel.

2) It effectively addresses the detection of narrow and low-
contrast vessels, preventing influences from other retinal
structures.

3) It achieves satisfactory segmentation performance in
comparison with state-of-the-art methods.

4) The framework could be extended to human ID, as the
retinal vessel structure is unique to each person.

MST-based Superpixel Tree
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Vessel Segmentation Chissiisation

i

Overview of the proposed minimum spanning superpixel-based tree detector for retinal vessels.

Extract green channel CLAHE

(@ (b)

Fig. 2. Step-by-step illustration of preprocessing performed. (a) Input fundus
image. (b) Extracted green channel. (c) Local contrast enhancement using
CLAHE. (d) Retinal boundary growth using germinating.

Grow retinal boundary

II. METHODS
A. Preprocessing

Fundus images have a special feature of high contract in the
field of view (FOV), false vessel detection may occur around
the edge area of the retina image. Therefore, a preprocessing
algorithm is executed to remove noise information preparing
for further processing the following manipulations as shown
in Fig. 2. Walter and Klein [32] introduced the key facts and
contributions for image enhancement using different prepro-
cessing techniques. Our preprocessing step includes contrast
enhancement and retinal boundary growth. The contrast-
limited adaptive histogram equalization (CLAHE) algorithm
could generate image with the effects of local contrast
enhancement shown in Fig. 2(c). Therefore, in this paper,
we adopt CLAHE through dividing our input images with
8 x 8 = 64 areas. In addition, to further eliminate the
drawbacks generated around camera aperture border through
wavelet transformation, we have applied a boundary germi-
nating method using iteration-based computing to expand the
concerned area [see Fig. 2(d)]. More related information of
the processing is discussed in [4].

B. Feature Extraction

1) Illumination Layer: Inspired by the work in [33], we
obtain two layers from an original retinal image I, and one
layer is smoother than the other layer. The smoother layer is
referred to as the illumination layer L, and the other layer
is referred to as the reflectance layer L;. The illumination
layer is used for subsequent superpixel-based segmentation.
The intrinsic image model is formulated as

1=L+ L. (1)

The extraction process utilizes a gradient-based sparsity prior
on reconstructed layers and an additional constraint on the
smooth layer. To address layer separating, a probability-based
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Fig. 3. Feature extraction. (a) Original input image. (b) Illumination layer.
(c) Reflectance layer. (d) Texture layer.

method is adopted to obtain most-likely representation of the
original image; further details can be found in [33]. The final
results are shown in Fig. 3(b) and (c), where the reflectance
layer appears to be very bright, whereas some areas are poorly
illuminated and unevenly distributed in the FOV. In con-
trast, the illumination layer is smoother and more consistent,
guaranteeing good image quality.

2) Texture Layer: Textures in images play an essential
place in many tools like remote sensing, environmental mon-
itoring, and medical image processing. They usually have a
natural sequence in the orientation and the multinarrow-band
frequency information. This represents some fundamental
features of visual appearances and is crucial in the percep-
tion of color. Retinal image textures provide us with spatial
color and intensity information, and such information can be
applied for superpixel-based vessel segmentation. In this paper,
Gabor wavelets are employed as texture layer detectors. These
wavelets have orientation selectivity, multiscale properties, a
linear stage, and nice localization in spatial and frequency
fields, making them proper for texture analyzing. In this sec-
tion, we utilize the expressions in [34] for the representation,
and the Gabor transform is defined in the following as:

Ty(b,6,a) = Cy~"a! / U@ rog(x = b)IX)d*x  (2)
w(x) — e/’koxe—xAx/Z 3)

where, [ is the image to be processed, A = diag[n_l/z, 1]
denotes the 2 by 2 matrix that the off-diagonal entries are
zero, ko denotes a vector for frequency. ¥, ¥*, a, and b are
the given 2-D Gabor variables, more details of the wavelet
expressions and processing could be found in [34].

To obtain a good initial response from vessels orientation
in different directions, the 6 value of the filter is varied from
0 to 170 to generate high-quality feedback. Through all the
orientations, the maximum wavelet feedback for every pixel
is computed as

My (b, a) = mgax [Ty (b, 0, a). 4)

The thickness of blood vessels in the retina varies from 50 um
to 200 pum, with a median of 60 pum. Here, a is set to 1.5
experimentally for the high-quality detection of easy-missing
vessels, and multiple scales wavelet could be utilized for
multiscale vessel detection. Fig. 4 gives the superpixel block-
ing result based on illumination layer and on conventional
RGB layer. It is obvious that illumination and texture infor-
mation help generate superpixels adaptively so that they can
adhere well to boundaries.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 7, JULY 2019
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Fig. 4. Comparison of the superpixel blocking result based on (a) conven-
tional RGB layer and (b) illumination layer, respectively.

C. Minimum Spanning Superpixel Tree Detector

Superpixels are usually formed by over-segmentation. In
this paper, we take illumination and texture layer information,
and employ the SLIC algorithm [35] to partition the original
image as a group of superpixels. SLIC begins by sampling
starting cluster centers on a regular grid spaced S = /N/K
pixels apart. Next, to prevent putting these cluster centers at
edges, they are moved to seed locations relate to the low-
est gradient position through 3 by 3 neighborhood. Then, the
clustering process is iteratively applied to give every pixel to
the nearest cluster center according to color and spatial rela-
tion. At the end of this process, pixel connectivity is enhanced
by relabeling disjoint segments using labels from the largest
neighboring cluster. Compared with other superpixel methods,
SLIC has low computational complexity and excellent bound-
ary adherence. In addition, SLIC is easy to use because it needs
only one parameter to produce the target superpixel number.

Generally, SLIC clusters image pixels using color, texture,
and image plane spaces according to a weighted distance met-
ric. In this paper, we measure the distance between a pixel i
and the SLIC cluster center Cy in the illumination and texture
layers, respectively. In addition, we take the spatial distance
into consideration, as the pixel position [x, y]” may vary for
different sized images. Just applying the 6D Euclidean distance
in the space generated by combining information from all three
layers may cause inconsistencies during clustering superpixels
of different sizes. For large superpixels, spatial distances out-
weigh illumination information; more essentialness is given to
the spatial information than to color contents. Such operations
will generation superpixels which do not conform very nice to
edges. While in the case of smaller superpixels, the effects are
more accurate. We try to join the two distances as one metric
and assign different weights to the three layers. The overall
distance measure D is defined as follows:

drp = Rty — Ri)® + (G, — Gi)? + (Bry — B> (5)

dr =/ (g, — 8K,)* (©6)
ds = /Gty — 50 + Oty — yi)? %
D =\ mygpelZ, + mud? + myd? ®)

where R, G, B, [xkl,ykl]T, [xkz,ykz]T denote the red, green,
and blue channels of the illumination layer, the pixel posi-
tion, and the coordinates of the cluster center, respectively.
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Further, d,gp, d;, and dy represent the illumination, texture,
and spatial proximities, respectively, and n1,¢p, m,, and my are
the weights of the illumination distance, texture distance, and
spatial distance, respectively. [llumination and texture informa-
tion both help generate superpixels adaptively so that they can
adhere well to boundaries. The information represents some
basic characteristics that are crucial in the perception of color.
To fully utilize the illumination and texture feature, we set the
weight proportional to the difference between pixel and the
coordinates of the cluster center.

Fig. 5 shows some superpixel-based fragments of a retinal
image (DRIVE, 01). It is clear that superpixel blocks adhere
well to vessel boundaries when we combine the three layers of
information, especially for some small vessels. Fundus images
are known to suffer from uneven illumination noise, which can
be eliminated by clustering pixels into superpixels. This in turn
would enhance both big and small vessels, because inherent
homogeneities are spread across their neighbors in the process
of k-means clustering. When a set of superpixels is generated
through k-means clustering with the distance measure defined
above, the superpixel attributes can be viewed as a set of local
nearby homogenous pixels. Based on our observation, vessel
superpixels in fundus images are characterized as slender edge
areas, which may not be comprehensively preserved by gen-
eral enhancement methods, such as the well-known bilateral
filter, because they deal with slender areas based on a locally
averaging operator that tends to smooth out the small homoge-
nous vessel regions. Moreover, they often suffer from severe
deviation from the original sharp edges, because the geometric
image structures are ignored.

To evaluate the vesselness of superpixels, a new edge-
preserving tree detector is employed to determine weighted
average. Compared with traditional enhancements, our ves-
sel tree detector distinguishes small connected components
(details) from large connected components (major structures)
in a nonlocal manner, achieving impressive results for slen-
der areas such as retinal vessels in fundus images. As shown
in Fig. 6, the tree detector utilizes a minimum spanning tree
to deal with large connected components in superpixel graph.
Each superpixel represents a graph node, and superpixel-based
feature differences provide edge weights between the nearest
neighboring superpixels. An MSST is formed by repeatedly
removing edges with large weights, such that any two close
but dissimilar superpixels are automatically dragged apart.

To optimize a graph, there are many frequently used meth-
ods like normalized-cut (N-cut), max-flow min-cut, minimum
spanning tree, and so on. By comparing these methods, we
found that MST is the most suitable one in this situation.

1) The N-cut method measures both the total dissimilarity
between the different groups as well as the total simi-
larity within the groups. It is an NP-complete problem
and has high complexity.

2) The graph-cut method based on max-flow min-cut the-
orem utilizes the property that the smallest total weight
of the edges which if removed would disconnect the
source from the sink. It can get the global optimal solu-
tion efficiently, and it has good noise immunity. But we
have to choose the pixel inside and outside the target as

2711

Fig. 5. Patches showing the superpixel region after clustering.

seed point manually, which limit its application in image
segmentation.

3) The MST method can reserve the details inside the
boundaries of vessels. Its self-adaptability when search-
ing for minimum weight helps to get the global features,
which show the perception of color that is similar to
human’s eye. Also, it has low complexity. So we choose
MST to optimize a graph. Considering the important
property that retinal vessels appear to be similar to vas-
cular tree structures, we can easily connect the vessel
superpixel sets by constructing the MSST.

Unlike other related algorithms, our approach builds the
MSST in the superpixel plane instead of the image pixel grid.
Given an image I, let G = (V,E) be an undirected graph
in which V (the set of vertices) is the set of superpixels in
the retinal image, and every two superpixel nodes p, g are
connected by an edge ¢;; € E, to which a weight is assigned

w((p.q) = I(p) —1(q)] ©)

where /(p) is the mean value of the image intensity at super-
pixel p. A tree that spans a component C € V and has the
minimum total weight is the MSST.

With the MST-based superpixel information, we define the
similarity between two nodes p and g in the MSST as

S, q) =S(q.p) = em(—@) (10)

where o is a constant to adjust the similarity and D(p, q)
denotes the distance between p and ¢ in the MSST. If the
two pixels p and ¢ are close, i.e., if D(p, ¢) has a small value,
p and g are similar, and vice versa. Thus, the edge-preserving
tree detector can be formulated as

I(p) =) S, 9)l(g) = Y exp

qe2 qe2

(—D(”’ ")1<q>) (an

o
where € is the set of all nodes in the entire superpixel
graph. This equation indicates that each pixel receives sup-
port weights not within the local user-specified window but
from all the other superpixel nodes in the MSST. Therefore,
the MSST distinguishes small connected components (details)
from large connected components (major structures) in a non-
local manner. Thus, the tree filter is able to deal with slender
regions such as retinal vessels in fundus images. As shown in
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(d) (e)

Fig. 6. Illustration of superpixel tree generation. (a) Original image. (b) After applying SLIC. (c) Illustration of evenly located superpixel nodes. (d) Superpixel

graph. (¢) Minimum spanning tree based on superpixel graph.

(a) (b)

Fig. 7. Comparison of final vessel response and several magnified
regions showing improved results. (a) Response image of Marin et al. [36].
(b) Response image of Soares et al. [4]. (c) Result by our tree detector.

Fig. 7, vessel merging and vessel disconnection are found in
Soares et al. [4] and Marin et al. [36], while the proposed
vessel tree detector can effectively preserve high-contrast,
fine-scale details, thereby achieving impressive results.

A limitation of the proposed vessel tree detector is its high
computational complexity because it involves a search pro-
cedure as well as computation of tree distances among all
pixel pairs. However, by using the proposed MSST nonlocal
aggregation, the vessel tree detector can be recursively imple-
mented and achieve very fast computation. Here, we provide
a brief introduction to the proposed MSST nonlocal aggrega-
tion algorithm. An MSST is built using Kruskals algorithm
by treating the superpixel graph as a standard 4-connected
grid, the nodes of which are the partitioned superpixels. After
selecting a node as the root node (v4), an iterative aggregation
algorithm is employed for the root node to receive supports
from any other node, as shown in Fig. 8. Let I4(v) denote the
aggregated support values and P(v.) denote the parent of node
ve; then, for each node v € V

L) =10+ Y SO, ve) - Ia(ve).

P(ve=v)

12)

Similarly, as shown in Fig. 9, the aggregated support value
for each node consists of two parts, the node itself and the
supports it receives from its subtrees, given by

I4(v) = 1(v) + S(P(v), ) - Ia(P(v) = S(v, P(v)) - I(v))
= S(P(W), v) - A(P(v) + (1 = S (v, PO)) - 1a(v)). (13)

Thus, the entire nonlocal aggregation can actually be sepa-
rated into two steps: 1) aggregation of the original supports
from the leaf nodes toward the root node and 2) distribu-
tion of the supports from the root node toward the leaf
nodes. Note that in (12) and (13), S(v,v.), S(P(v),v), and
1 — S%(v, P(v)) depend only on the edges of MSST built in
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Fig. 8.  Step-by-step illustration of upward aggregation process: root node
receiving supports from all the other nodes.
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Fig. 9. The aggregated support value for each node includes two parts: the
node itself, and the supports it receives from its subtrees.

superpixel graph and can be computed beforehand. Only two
addition/subtraction operations and three multiplication oper-
ations for one pixel detection are required, therefore the tree
detector can achieve real-time running speed for retinal vessel
extraction. Fig. 10 compares running times of two implementa-
tions. Although they show competitive performance on image
size (100 x 100), the implementation with acceleration exhibits
significant advantages over that without acceleration when
image size is growing to 1000. According to our experiments,
the whole superpixel-tree-based filtering with acceleration can
process 500 x 500 24-bit RGB-color image in about 4.57 s on
our CPU, which outperforms state-of-the-art vessel segmenta-
tions. We used STARE database to test the runtime of several
methods. The average runtime of our method, Soares et al. [4],
Zhang et al. [10], and Nguyen et al. [16] are 5 s, 10 s, about
3 m, 10 s, and 3 s, respectively. Combining it with Table I, we
can see that our method is efficient and accurate comparing
to these methods.
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Fig. 10. Comparison of different algorithm implementations in terms of
running time. (a) Before acceleration. (b) After acceleration based on upward
and downward aggregation.

Vessel detection could be further enhanced using
techniques of path opening to avoid false extraction.
Buckley and Talbot [37] introduced the method of path open-
ing, and it is further enhanced in [38] and [39]. Through path
opening, we could obtain highly local-based objects’ contours
with significant contrast difference in the image environments.
Here, we use Npin to indicate the edge path length, and we
use Ny to denote acceptable missing pixels number. When the
path meets the requirements of Npyi, and Nj, the algorithm
will give largest intensity value to the pixels. For the path
filters, the choice of length parameter N, is significant, and
it will determine the size of the structure for the elements.
Applying the method of path opening processing, undesired
information like image noise could be filtered out, while
vessels with thin structures could be retained.

III. EXPERIMENTS ON DATASETS
A. DRIVE Dataset

Through a DR screening program in Holland, the DRIVE
dataset is created for doing further researches. The sample
size for the DR screening is 453 persons ranging from 31
to 86 years old. There are totally 40 retinal images in the
DRIVE dataset, where 7 out of 40 images have different types
of pathological changes. The dataset is obtained through using
professional retinal image capturing device. The retinal images
we downloaded are with the resolution of 565 x 584 with three
channels of color in TIF format, the radius for the FOV is
around 270 pixels. Fig. 11(a) and (b) show some example reti-
nal images in this DRIVE dataset. Mainly, the DRIVE dataset
is further categorized into two subsets, namely, 20 images
to form the training set and 20 images to form the testing
set. Under supervision of professional ophthalmologists, three
human observers have manually extracted the vessel details
from the fundus images for DRIVE dataset, providing a mini-
mum certainty of 70%. Fourteen retinal images in the training
set are extracted by the first observer, the other six retinal
images are extracted by the second observer. To ensure the
accuracy, the retinal images in the testing set are extracted by
twice giving testing set A and testing set B. Thirteen retinal
images in the testing set A are extracted by the first observer,
the other seven retinal images are extracted by the second
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(@) (b) (d

Fig. 11. Sample retinal images in DRIVE dataset and STARE dataset. (a) a
fundus image (18_test) in DRIVE. (b) a fundus image (06_test) in DRIVE.
(c) a fundus image (im0022) in STARE. (d) a fundus image (im0017) in
STARE.

(a) (b)

Fig. 12. Sample fundus images from the NIVE dataset. (a) a fundus image
(im21) in NIVE. (b) a fundus image (im23) in NIVE.

observer; the third observer works independently to extract
the testing set B. Generally, the testing set A and testing set B
agree with each other in vessel pixel extraction. In this paper,
without losing generality, we apply the testing set A as the
benchmark for ground-truth vessel extraction.

B. STARE Dataset

Hoover et al. [12] created the structured analysis of the
retina (STARE) dataset for research and analysis. There are
totally 20 images in this dataset, and half of them have patho-
logical changes. The dataset is also obtained via professional
retinal image capturing device, where the FOV is set at 35. The
fundus images downloaded are with the resolution of 700 x 605
with three channels of color in PPM format, the radius for
the FOV is around 325 pixels. Fig. 11(c) and (d) show some
sample retinal images in this STARE dataset. Two human
observers have extracted the vessel details from the fundus
images for STARE dataset. The two human observers have
slight differences in indication of vessel information, namely,
10.4% of total pixels for observer one and 14.9% of total pix-
els for observer two. In this paper, we assume to utilize the
extraction results from the first human observer as the bench-
mark for ground-truth vessel extraction for STARE dataset.
The whole images are applied in [12] to perform the vessel
segmentation, which may cause some problems in extraction.
Here, we only apply the area of FOV for the processing using
our approach.

C. NIVE Dataset

Through a DR screening project in Shanghai, the NIVE
dataset is created for research study. There are totally 40 retinal
images in the NIVE dataset. The Canon CR-DGi is applied to
as the high-quality professional fundus image capturing device
in the project for taking the retinal images setting at an FOV
of 45. The retinal image quality in NIVE is with sufficient
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Fig. 13.  Comparison of our approach with [3] in terms of human ID.
(a) Segmented sclera region. (b) Original sclera color image. (c) Relative
retinal image. (d) Segmented retinal vessel. (e) Segmented vessel of sclera
region.

resolution allowing analysis of small and thin vessels. The
retinal images downloaded in NIVE are with the resolution
of 600 x 400 with three channels of color in TIF format, the
radius for the FOV is around 225 pixels. Fig. 12 shows some
examples from the NIVE fundus images.

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

We have applied our approach in the above mentioned three
datasets for the evaluation of our method, namely, the DRIVE,
STARE, and NIVE dataset. Comparisons have been made
with the state-of-the-art methods for all the three datasets,
also with the ground-truth vessel extraction defined in the last
section for the DRIVE and STARE datasets. We have com-
pared our approach with Zhou et al. [3] in terms of human
ID. As shown in Fig. 13, only the sclera vessel structure
is extracted from original eye image in [3]. In contrast, our
method acquires the whole retinal vessel patterns, utilizing
which the human ID process can achieve higher accuracy.
Moreover, with superpixel-based graph structure employed,
our method enables combination with other biometrics, such
as iris recognition to perform multimodal biometrics. Overall,
the retinal vessel segmentation exhibits promising prospects
for positive human ID.

A. Quality Assessment

Qualitative assessment for vessel extraction quality performs
an essential role in retinal image segmentation. Usually, the
overall vessel segmentation quality for each algorithm is eval-
uated according to conventional evaluation metrics mainly
related to different kinds of detection rates [40]. However, the
conventional evaluation metric suffers from a drawback [40],
where the medical scientists usually do not describe the reti-
nal images using exact math as the exact positions for the
retinal vessels are hard to be addressed by medical scientists.
Manual extraction of blood vessels in images are not fully
objective and easy to make mistakes. The retinal vessel seg-
mentations from different experts for even the same fundus
image may not be the same. Especially for the thin vessels,
the segmentation results from different human experts may
look roughly the same but do not match exactly. Thus, if two
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TABLE I
PERFORMANCE FOR VESSEL EXTRACTION (STARE)

Approaches C A L CAL Score
Manual 0.9998 0.8476  0.8600 0.7288
Hoover et al. [12]  0.9998  0.6866  0.7299 0.5010
Soares et al. [4] 0.9942  0.7494  0.7690 0.5729
Nguyen et al. [16]  0.9914  0.7903  0.8082 0.6332
Zhang et al. [10] 0.9986  0.7828  0.8007 0.6259
The Proposed 0.9996  0.8242  0.8382 0.6906

experts jointly segment the same fundus image, such facts will
downgrade the segmentation accuracy to a greater degree than
the case in which one of the observers does not label any
vessel. Consequently, attempts to produce reference-standard
images with high accuracy are worth discussion. In this paper,
we hence apply a new method for qualitative evaluation of ves-
sel extraction quality for retinal images. Generally, we have to
compute the connectivity-area-length (CAL) score [40] to eval-
uation the retina segmentation quality as: C*A x L, where, the
component C is the vessel connectivity, the component A is the
area, and the component L is the length for vessel extraction.
The ranges for all the three valuables C, A, and L are between
0 and 1, with 1 as the highest score. The final CAL score is the
product of C, A, and L. Geguindez-Arias et al. [40] has justified
that the CAL score offers better quality evaluation considering
the facts of human perception in retinal image segmentation.

B. Assessment Using DRIVE Dataset

Some retinal vessel extractions of images in DRIVE dataset
are shown in Table II. The input retinal images are shown
in the first column, the manual vessel extractions from
human expert are shown in the second column. The third
column shows the fundus image extraction effects from
Zhang et al. [10], and the fourth column shows the fundus
image extraction effects using Nguyen et al. [16]. Our reti-
nal image extraction effects are shown in the fifth column. It
can be seen clearly from Table II that the results using [10]
are easily disconnected, while the extraction results from [16]
are not sensitive to thin and light blood vessels. However, our
approach is able to perform well on the DRIVE dataset and
provide good solutions to thin vessels compared to the state-of-
the-art methods. Our method could extract more essential thin
vessels compared with existing approaches. Table III shows the
quality evaluation of vessel extraction on the DRIVE dataset. It
can be seen clearly from Table III that our proposed approach
offers better CAL score compared with the state-of-the-art
methods. For each of the three components, namely, connectiv-
ity, area, and length, our approach also provides better results.

C. Assessment Using STARE Dataset

Some retinal vessel extractions of images in STARE dataset
are shown in Table IV. The three input retinal images are
shown in the first column, the three manual vessel extractions
from human expert are shown in the second column. The third
column shows the fundus image vessel extraction effects from
Hoover et al. [12], and the fourth column shows the fundus
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TABLE I
VESSEL EXTRACTION COMPARISON ON THE DRIVE DATASET

I.D. Input Manual

Extraction Effects

Zhang et al. [10]

Nguyen et al. [16] Our Proposed

#1
#2
#3
TABLE III
PERFORMANCE FOR VESSEL EXTRACTION (DRIVE)
Approaches C A L CAL Score
Manual 1 0.9398  0.9347 0.8784
Marin et al. [36] 0.9990 0.8327 0.8314 0.6916
Soares et al. [4] 0.9952 0.8920 0.8889 0.7891
Nguyen et al. [16] 0.9895  0.8727  0.8687 0.7502
Zhang et al. [10] 0.9988  0.8097 0.8108 0.6557
The Proposed 0.9998  0.9006  0.8988 0.8092

image extraction effects using Nguyen et al. [16]. Our reti-
nal image extraction effects are shown in the fifth column.
It can be seen clearly from Table IV that the results using
Hoover et al. [12] include vessels that are not extracted cor-
rectly, while the extraction results from [16] have blood vessels
that are connected not very well. Compared to the state-of-
the-art methods, our approach is able to perform well on the
STARE dataset and provide good solutions to especially thin
vessels in addition to thick vessels. Table I shows the quality
evaluation of vessel extraction on the STARE dataset. It can be
seen clearly from Table I that our approach offers better CAL
score compared with the state-of-the-art approaches [4], [10],
[12], [16]. For the area and length, our approach provides bet-
ter results; for the connectivity, the results using our approach
are comparable to the state-of-the-art method. Another advan-
tage of our method is the performance in the case of lesions.
As shown in Fig. 14, there are some hard exudates in the orig-
inal image, which are highly unfavorable for vessel extraction.

Fig. 14. Vessel extractions for a pathological retinal image in the STARE
dataset. (a) Input retinal image. (b) Manual ground-truth segmentation.
(c) Extraction using Nguyen et al. [13]. (d) Segmentation using the proposed
approach.

The region of exudates not only covers the blood vessels origi-
nally exist in image but also degrades the entire image quality.
The results from [16] are evidently prone to exudates, while
our method filters them out with better quality.

D. Assessment Using NIVE Dataset

To illustrate the effectiveness of our approach more clearly,
we have assessed its performance on the NIVE dataset and
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TABLE IV
VESSEL EXTRACTION COMPARISON ON THE STARE DATASET

LD. Input Manual

Extraction Effects

Hoover et al. [12]

Nguyen et al. [16] Our Proposed

#1

#2

#3

TABLE V
VESSEL EXTRACTION COMPARISON ON THE NIVE DATASET

LD. Input

Extraction Effects

Zhang et al. [10]

Nguyen et al. [16] Our Proposed

#1

#2

#3

compared it with other methods. Fig. 15 shows two origi-
nal NIVE images. In addition, it shows the vessel extraction
effects generated by the methods of Zhang et al. [10] as well
as those of our proposed method. The main problem with the
results of [10] includes the limited ability to handle vessel
extraction in the condition of noise information. Moreover, we
can see that the segmentation effects of [10] tend to overlook
narrow and low-contrast retinal vessels that are actually essen-
tial in DR analytics. In the mean time, our approach is able

segment out most of the key vessels based on the input retinal
images. Some retinal vessel extractions of images in NIVE
dataset are shown in Table V. The three input retinal images
are shown in the first column. The second column shows the
fundus image vessel extraction effects from Zhang et al. [10],
and the third column shows the fundus image extraction effects
using Nguyen et al. [16]. Our retinal image extraction effects
are shown in the fourth column. It can be seen clearly from
Table V that our approach gets favorable results comparing
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(d)

Fig. 15. Comparison of our method with Zhang er al. [10] on seg-
mentation of retinal images from NIVE. (a) and (d) Input retinal images.
(b) and (e) Extraction results using [10]. (c¢) and (f) Extraction results using
our approach.
TABLE VI
PERFORMANCE FOR VESSEL EXTRACTION (NIVE)

Approaches C A L CAL Score
Zhang et al. [10]  0.9982  0.2882  0.3881 0.1117
Nguyen et al. [16]  0.9989  0.3265 0.4196 0.1369

The Proposed 0.9992  0.3966  0.4679 0.1854

to the other methods. Table VI shows the quality evaluation
of vessel extraction on the NIVE dataset. For retinal vessel
images which are hard to segment, our method still performs
better than these methods.

V. CONCLUSION

Effective vessel segmentation for retinal images is a crit-
ical research domain in medical imaging. Owing to inherent
nonuniform illumination artifacts and complicated neighboring
pathologies, existing methods have achieved reliable results for
wide vessels, but they have failed to adequately segment thin
and low-contrast vessels. We introduced a new ID scheme
for retinal vessel segmentation using superpixel-based tree
structure. Instead of operating on the pixel grid, we regular-
ized the proposed scheme by combining global shape, texture,
color, and space information in the superpixel graph. We
refined our results further by employing an MSST-based ves-
sel tree detector to evaluate the vesselness for each superpixel.
Furthermore, path-opening filters are employed to enhance
the effectiveness for more accurate extraction of retinal blood
vessels avoiding unnecessary nonvascular influences. We fur-
ther will work to 3-D images, and investigate techniques for
classifying different categories of retina-related disease and
avoiding inaccurate placement of vessel structures for differ-
ent pathologies. The current SLIC method has limitations like
time-consuming and unsmooth boundary. As essential parts
of our future work, we will study the latest efficient seg-
mentations for much smoother boundary, including accurate
semantic segmentation [41], improved fast SLIC [42] and seg-
mentation using deep learning [43], [44]. GPU parallelism will
also be incorporated for efficient processing.
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