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FastAL: Fast Evaluation Module for Efficient
Dynamic Deep Active Learning Using Broad

Learning System
Shuzhou Sun , Huali Xu, Yan Li , Ping Li , Member, IEEE, Bin Sheng , Member, IEEE, and Xiao Lin

Abstract— State-of-the-art Active Learning (AL) methods often
encounter challenges associated with a hysteretic learning process
and an expensive data sampling mechanism. The former implies
that data selection in the (i + 1)-th round is solely based on the
learned model’s results in the i-th round. The latter involves
using model inference to calculate data value (e.g., uncertainty
estimation based on model inference), which can be cumbersome,
particularly when working with large datasets or Deep Neural
Networks (DNNs). To address these challenges, we propose
FastAL, an efficient and dynamic deep AL framework. Our
approach includes an efficient method for calculating data value
from the frequency domain perspective, generating multiple can-
didates. Then, we introduce the Fast Evaluation Module, which
directly calculates each candidate’s contribution to future model
training and selects the best options. In addition, current AL
methods, particularly those based on uncertainty, are susceptible
to data bias, which implies that selected data may not represent
the original unlabeled data adequately. To alleviate this issue,
we propose the De-similar Module, which removes partially
similar data. The above three modules are model-agnostic and
thus can be seamlessly integrated into any Active Learning
framework. We conducted rigorous experiments on various
benchmark datasets to validate our approach’s effectiveness. Our
results demonstrate that FastAL outperforms other state-of-the-
art methods by a significant margin, including those based on
uncertainty, diversity, and expected model change.

Manuscript received 13 March 2023; revised 12 June 2023; accepted 17 June
2023. Date of publication 28 June 2023; date of current version 6 February
2024. This article was recommended by Associate Editor X. Cao. (Shuzhou
Sun and Huali Xu contributed equally to this work.) (Corresponding author:
Xiao Lin.)

Shuzhou Sun is with the College of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, Shanghai 200234, China, and also
with the Center for Machine Vision and Signal Analysis, University of Oulu,
8000 Oulu, Finland (e-mail: Shuzhou.Sun@oulu.fi).

Huali Xu is with the Center for Machine Vision and Signal Analysis,
University of Oulu, 8000 Oulu, Finland (e-mail: Huali.Xu@oulu.fi).

Yan Li is with the College of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, Shanghai 200234, China (e-mail:
yanli@shnu.edu.cn).

Ping Li is with the Department of Computing and the School of Design, The
Hong Kong Polytechnic University, Hong Kong (e-mail: p.li@polyu.edu.hk).

Bin Sheng is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail: shengbin@
sjtu.edu.cn).

Xiao Lin is with the College of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, Shanghai 200234, China, also
with the Shanghai Engineering Research Center of Intelligent Education and
Bigdata, Shanghai 200240, China, and also with the Research Base of Online
Education for Shanghai Middle and Primary Schools, Shanghai 200234, China
(e-mail: lin6008@shnu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2023.3288134.

Digital Object Identifier 10.1109/TCSVT.2023.3288134

Index Terms— Active learning, broad learning system (BLS),
neural network, data bias, deep learning.

I. INTRODUCTION

THANKS to the immense amounts of labeled data, Deep
Neural Networks (DNNs) have achieved remarkable suc-

cess in various areas such as classification [1], [2], object
detection [3], [4], and semantic segmentation [5], [6]. How-
ever, in fields that require professional expertise (e.g., medical
images), the labeling of data for network training still incurs
prohibitive costs [7], [8], [9], [10]. To overcome this prob-
lem, Active Learning (AL) samples the most valuable data
from the unlabeled pool for model training. AL methods
can thus mitigate the expense of labeling by discarding low
or even no-value unlabeled data. AL has been proposed
and applied for many years, with typical methods includ-
ing uncertainty-based methods [11], [12], [13], [14], [15],
diversity-based methods [16], [17], expected model change AL
methods [18], [19], [20], etc. Albeit its prosperity, those AL
methods still have the following challenges.

First, AL methods currently follow the hysteretic paradigm,
where unlabeled samples are selected based on the model
learned in the previous round. For example, uncertainty-based
AL methods [11], [12], [21] utilize the model learned in the
previous round to calculate the uncertainty of unlabeled data
for the current round. Likewise, expected model change AL
methods [18], [19], [20] use processed unlabeled data (e.g.,
noise) as inputs in the previous round to observe the changes
in the model outputs. While these methods can leverage the
learning achievements of the previous round, it remains a
significant challenge to ensure that the training data of the
previous rounds cover/represent the entire unlabeled data pool.
Consequently, selecting data based on training achievements
from the previous round does not guarantee continuous contri-
bution to future model training. Our proposed Fast Evaluation
Module addresses this challenge by directly computing the
data’s contribution to future model learning. Fig. 1 illustrates
the difference between the conventional AL framework and
our proposed FastAL framework. More specifically, the Fast
Evaluation Module can directly calculate the future contribu-
tion of the candidates selected by the learned model. The Fast
Evaluation Module is based on Broad Learning System [22],
an efficient model applicable to classification and regression
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Fig. 1. The typical AL framework and our proposed FastAL framework. The
typical AL framework obtains the selected data based on the learned model
in round i . While our proposed FastAL framework first gets the multiple
candidates based on the learned model in round i and then uses the Fast
Evaluation Module to select the one that contributes most to future round
learning.

problems [23]. Thus, the Fast Evaluation Module can maintain
low costs, even with large-scale unlabeled data and Deep
Neural Networks (DNNs).

Secondly, the process of data selection in Active Learn-
ing (AL), particularly in deep AL approaches, is often
influenced by the model being used. For instance, Loss
Prediction Module (LPM) [24] treats unlabeled data as part
of model training to predict the target losses of unlabeled
inputs. In Localization-Aware AL [21], uncertainty is cal-
culated based on the tightness and stability of localization.
However, the learned model must provide intermediate pre-
dictions. Therefore, the model-dependent methods necessitate
redesigning when learning new models or tasks, which can
be a time-consuming and labor-intensive process. To address
this issue, we propose a model-agnostic value calculation
method to calculate the training contribution of unlabeled data
directly without relying on the learned model. In particular, the
proposed model-agnostic value calculation method calculates
the value of the unlabeled data from the perspective of the
frequency domain, which is inspired by the fact that the
frequency domain information of the data is consistent with
the information perceived by the DNNs. For instance, Discrete
Cosine Transform (DCT) [25] reveals that in addition to visual
data itself, incorporating frequency domain information as
input to neural networks enhances the model’s representational
capacity. High-Order Relation module (HOR) [26] highlighted
the consistency of frequency domain information with RGB
domain features and integrated them to improve camou-
flaged object detection. More importantly, our model-agnostic
method for value calculation is more efficient when compared
to model-dependent methods.

Finally, traditional Active Learning (AL) methods,
particularly those that rely on uncertainty-based
techniques [13], [14], [15], [27], are susceptible to data
bias. This issue arises primarily from the imbalanced
distribution and diverse levels of difficulty of different
categories within the training data. As a result, the model
learned in the previous round is inevitably biased toward some
categories while underperforming in others. For example,
if the previously learned model fails to capture essential
features of categories such as cows, buses, or plants, it may

result in high uncertainty for the unlabeled data belonging to
these categories. However, the biased AL methods primarily
emphasize sampling from a few categories with high
levels of uncertainty while neglecting the majority of other
classifications, hence leading to an imbalance in the sampling
process. Unbalanced sampling is inadequate in representing
the original dataset adequately, consequently leading to
data bias problems. Despite extensive research efforts [11],
[12], [21], [28] focused on this issue, most methods require
significant additional training costs and involve designing
complex loss functions artificially. In this paper, We propose
a simple but effective method named the De-similar Module
to mitigate data bias. The De-similar Module calculates the
similarity between selected data and then removes those with
a high degree of similarity.

In summary, our work makes the following main contribu-
tions:

• We thoroughly analyze the typical Active Learning (AL)
frameworks that encounter challenges associated with a
hysteretic learning process and an expensive data sam-
pling process.

• We present a novel, efficient, and dynamic deep Active
Learning (AL) framework, named FastAL, which is com-
posed of three key modules. The first module is the
model-agnostic value calculation module that utilizes
frequency domain information to quickly assess the value
of unlabeled data, irrespective of the training outcomes
of the previous AL round. The second module is the De-
similar Module which calculates the degree of similarity
between the selected data and eliminates redundant data
based on the amount of information present in the data,
thereby mitigating data bias problems. The third module
is the Fast Evaluation Module, which enables the direct
evaluation of the contribution of selected unlabeled data
to the subsequent model training. To expedite this pro-
cess, we propose the use of the Broad Learning System
(BLS) as an evaluation procedure. Notably, the three
modules in FastAL are model-agnostic and thus can be
used in any AL framework.

• Comprehensive experiments were conducted on various
network backbones. The results show that our FastAL
achieves state-of-the-art performance on four popular
benchmarks in terms of two metrics, where one is the
prevalent metric in the active learning literature, and
another is a novel metric introduced in this paper.

II. RELATED WORK

A. Deep Active Learning

Active learning has attracted widespread attention in recent
years due to its impressive performance in saving labeling
costs. The typical AL methods can be roughly classified as
the uncertainty-based AL methods [11], [12], [13], [14], [15],
the diversity-based AL methods [16], [17], and the expected
model change AL methods [18], [19], [20].

The uncertainty-based AL methods calculate the uncer-
tainty of unlabeled data based on the learned model in
the previous round. In addition to traditional methods such
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Fig. 2. The overall pipeline of FastAL. FastAL first abandons traditional, high-cost data sampling mechanisms, such as uncertainty estimation based on
model inference, and instead uses a model-agnostic value calculation method to assess the value of unlabeled data and select multiple candidates. Then, the
proposed De-similar Module removes redundant data from the candidate pool to mitigate data bias. Finally, the Fast Evaluation Module selects the candidate
that best contributes to future Active Learning rounds, overcoming challenges induced by the hysteretic learning process.

as Least Confidence Sampling [13], Margin Sampling [14],
Entropy Sampling [15], among others, some recent efforts
fall into this category. For example, Sparse Modeling Active
Learning (SMAL) [11] uses the sparse linear combination
to represent the uncertainty of unlabeled data with Gaussian
kernels. However, the sparse representation is challenging to
guarantee stability when facing large-scale data. Ensembles-
based Active Learning (ENS) [12] uses an ensemble network
to calculate data uncertainty. Obviously, ENS introduces a
lot of additional computational costs, especially when facing
large-scale unlabeled data and DNNs.

The diversity-based AL methods select a batch sample
from the perspective of data features to cover the entire
unlabeled data. Fisher Kernel Self Supervision (FKSS) [16]
uses the proposed feature density matching methods to predict
the contribution of unlabeled data to future training. The
Core-set approach [17] defines the problem of AL as core-set
selection and chooses a set of points such that a model learned
over the selected subset is competitive for the remaining data
points. Integer Programming Approach (IPA) [29] minimizes
the discrete Wasserstein distance in feature space from the
unlabeled pool to select the core set. ALFA-Mix [30] identifies
unlabeled samples with sufficiently-distinct features by seek-
ing inconsistencies in predictions resulting from interventions
on their representations. Although the above methods have
been shown to be effective for simple and low-scale features,
they will introduce unaffordable costs. Besides, the feature

engineering establishment is unstable when facing more com-
plex and large-scale features.

The expected model change AL methods process the
unlabeled data (e.g., adding noise) and then feed them into the
learned model of the previous round to observe the changes
in the model outputs. Settles et al. [18] estimate the value of
unlabeled data by measuring the changes in model parame-
ters but ignore the underlying data distribution. To address
this issue, Freytag et al. [19] directly calculate the expected
change of model predictions and marginalize the unknown
label. Further, Käding et al. [20] leverage the approximated
gradients of the loss function to enable the Gaussian process
regression AL methods can be used for the deep convolutional
neural network models. However, the expected model change
AL methods introduce the cost of unlabeled data processing
and model reasoning.

In this paper, we propose a novel AL framework FastAL.
FastAL starts with a model-agnostic value calculation method
coupled with a De-similar Module to obtain multiple candi-
dates. Then, our proposed Fast Evaluation Module selects the
candidate who contribute the most to future model learning.

B. Broad Learning System

Although the DNNs have achieved impressive perfor-
mance on multiple tasks, the training process requires
unbearable computing resources and time due to a large
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number of parameters and complex hand-designed struc-
tures [22], [23], [31], [32], [33], [34]. In addition, the
scalability of DNNs is limited because it is difficult for the
learned model to continue to learn new knowledge in the face
of new training data.

To address those troubles, Chen et al. design the
Broad Learning System (BLS) [22], a training-efficient and
scalability-friendly network structure for classification and
regression problems. Meanwhile, Chen et al. [23] also proved
that the BLS has the same universal approximation capability
as the single-layer feedforward network (SLFN) [35]. The
vanilla BLS [22] includes the feature nodes and the enhance-
ment nodes. The former transferred the original inputs and
placed them as “mapped features,” and the latter expanded
the structure in the broad sense. When faced with new data
in the open world, the BLS can achieve “learning new data
without forgetting old knowledge” by expanding the feature
and enhancement nodes. Note that this process is to learn only
new data on the basis of maintaining the original learning
achievements. Also, the BLS showed a huge advantage in
training efficiency, i.e., the training times of MLP, CNN,
and BLS on the MNIST [36] are 21468.12s, 21793.93s, and
29.9157s respectively. Inspired by the above facts, we intro-
duce the BLS to the AL framework and propose the Fast
Evaluation Module based on it. The Fast Evaluation Module
can efficiently select the one that contributes the most to future
model learning from multiple candidates.

III. METHOD

A. Overview

This section presents the implementation methods and tech-
nical details of our proposed framework. Initially, we present
a model-agnostic approach for value calculation of unlabeled
data, which utilizes the frequency domain to generate multi-
ple candidates. Our method is highly efficient, as frequency
domain information can be obtained without model inference,
enabling us to deal with large unlabeled datasets and DNNs
quickly. Subsequently, we introduce the De-similar Module,
which eliminates similar data from each candidate, thereby
mitigating the data bias issue. Finally, we introduce the
Fast Evaluation Module, which facilitates the selection of
informative samples from multiple candidates for AL model
training. Compared to current hysteretic AL methods, our
Fast Evaluation Module selects the samples that make the
greatest contribution to future model learning. Our proposed
deep Active Learning framework is shown in Fig. 2.

B. Model-Agnostic Value Calculation

Active learning is a methodology that seeks to identify
the most informative data from an unlabeled pool to train
a machine learning model. Current Active Learning methods
primarily rely on using the model itself to assess the value
information of unlabeled data. For instance, EDAL [28] uses
evidence learning to estimate the uncertainty of unlabeled sam-
ples, where the class probabilities were placed on a Dirichlet
distribution. It, therefore, needs to use the AL model to reason
about each unlabeled sample. As a result, this line of methods

Fig. 3. The frequency domain information and the neural network features.
The second to fourth columns are frequency domain information under
different thresholds T , where T is the threshold for removing low frequency.
The last three columns are neural network features at different channels. The
used model here is VGG16 [37] pre-trained on the ImageNet [38], and the
extracted layer is block4_conv3.

is computationally demanding, particularly when dealing with
deep neural networks or large volumes of unlabeled data.

To address this challenge, this paper proposes a
model-agnostic approach for estimating the value of unlabeled
data. Specifically, we extract frequency domain information
from the unlabeled data to quantify its potential value.
We observe that the frequency domain information corre-
sponds to object edges, a feature that is known to be important
for neural network models, and this has also been discussed in
much literature [21], [39]. Hence, we argue that rich frequency
domain information is crucial for neural network training.
To support this argument, we present a visualization of the
frequency domain information and neural network features in
Fig. 3. Our approach offers a promising alternative to existing
Active Learning methods, and we expect it to be particularly
valuable for deep neural network applications and scenarios
with large amounts of unlabeled data.

Here we give the details of the proposed model-agnostic
value calculation method. Assume I(h,w) is an unlabeled
image, where h and w are its height and width. We first
use Fourier Transform (FT) to calculate its frequency domain
information F(u, v) and remove the low frequency, and the
results denote F(u, v)′. Then, We use inverse Fourier Trans-
form (iFT) to restore F(u, v)′ to image I(H,W ). The above
process can be calculated as follows:

F(u, v) =

h−1∑
x=0

w−1∑
y=0

I (x,y)

(h,w)e
−2 j5( ux

h +
uy
w ), (1)
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F(u, v)′ =

{
F(u, v), F(u, v) ≥ f
0, F(u, v) < f,

(2)

I(H,W ) =

h−1∑
U=0

w−1∑
V =0

F(U, V )e
2 j5

(
U H

h +
V W
w

)
, (3)

where I (x,y)

(h,w) is the frequency values of coordinate (x, y)

in I(h,w). f is the threshold for removing low frequency.
Finally, we calculate the sum of the frequency domain values
of I(H,W ) and denote it as I f

(H,W ). We regard I f
(H,W ) as the

value of the data I(h,w). We argue that the larger the I f
(H,W ),

the greater the contribution of I(h,w) to model learning.
Using the above method, we can calculate the value of all the
unlabeled data in the pool and select those with large values
for AL model training.

C. De-Similar Module for the Selected Data

Let Q(x,y) and P(x,y) denote the distribution of the unlabeled
data pool and the selected data obtained by an AL method,
and suppose their densities are q(x, y) = q(y | x)q(x) and
p(x, y) = p(y | x)p(x), respectively. We use H(h ∼ H)

to represent the optimal sampling for the original distri-
bution H under the condition of a given sampling rate,
where h obeys the distribution H . Based on this definition,
H((x, y) ∼ P(x,y)) can be calculated as:

H((x, y) ∼ Q(x,y))

= −

∫∫
q(y | x)q(x) ln(q(y | x)q(x))dx dy, (4)

H((x, y) ∼ P(x,y))

= −

∫∫
q(y | x)q(x) ln(p(y | x)p(x))dx dy . (5)

We then use KL divergence DK L(Q(x,y) || P(x,y)) to
describe the extent to which P(x,y) covers Q(x,y):

DK L(Q(x,y) || P(x,y))

= H((x, y) ∼ P(x,y)) −H((x, y) ∼ Q(x,y))

=

∫∫
q(y | x)q(x) ln

q(y | x)q(x)

p(y | x)p(x)
dx dy . (6)

Therefore, we can obtain the optimal Active Learning query
function QAL by minimizing DK L(Q(x,y) || P(x,y)):

QAL = arg min
P(x,y)

DK L(Q(x,y) || P(x,y)). (7)

However, P(x,y) is often biased towards partial categories
in practice. We show a toy example of the data bias prob-
lem in Active Learning in Fig. 4, where P(x,y)is clearly
biased towards the category of the airplane. Assuming that
the optimal sampling of training data under given condi-
tions Q ÃL . Obviously, in P(x,y), some high uncertainty data
Q ÃL\H((x, y) ∼ P(x,y)) are not queried by QAL , but some
low uncertainty data H((x, y) ∼ Q(x,y))\Q ÃL are selected
instead.

In this paper, we propose the De-similar Module as a
solution to the data bias problem. The De-similar Module
calculates the degree of similarity between selected data and
deletes parts with a high degree of similarity. In particular,

Fig. 4. Data bias problem in Active Learning. The data bias problem refers
to the sampling results being biased towards partially similar samples.

for selected data X ∈ R(n×d), we first calculate the degree of
similarity between X i and all other data X\X i , and we denote
it as S (X i | X\X i ). Where S (· | ·) is a similarity calculation
kernel. Then, for the similar pair (we use the threshold t to
set similar or dissimilar), we remove the one with the low
information value from this pair, where the information value
is calculated by our proposed model-agnostic value calculation
method. The above steps are repeated until there are no data
with high similarity to the selected data. In our proposed
De-similar Module, we take the Euclidean Distance of the
frequency domain as the similarity of the data. The details of
the De-similar Module are shown in Algorithm 1, where X
and n′ are the candidates and the number of required samples
in the current AL round, respectively. We use the threshold t to
set similarity or dissimilarity. Obviously, threshold t depends
on X and n′. Thus, different candidates have different t ,
and the threshold t in different rounds will also be different.
In this sense, our AL framework is dynamic since its selection
strategy changes according to the results of model learning.
In contrast, other AL methods are static as they select samples
following the same strategy at different rounds.

D. Fast Evaluation Module

Active Learning typically involves selecting batches of data
from the unlabeled pool for subsequent model training round
by round. Usually, unlabeled data are selected based on the
training model of the previous round. The quit condition of
AL is that the label budget is exhausted or the expected
performance of the model is reached. Our approach is inspired
by a golden rule in AL: The contribution of the unlabeled data
in the i-th round to the model is fixed due to its information
being fixed too. Without loss of generality, we use Broad
Learning System (BLS) [22] to prove the rule above.

Let x ∈ X ∈ R(n×d) be the selected data of the i-th
round, where n and d are the quantity and dimension of data,
respectively. Following the denotations in [23], we consider a
continuous function f ∈ C

(
Id)

, which defined on the standard
hypercube Id

= [0; 1]
d

⊂ Rd . The BLS consists of the feature
node outputs fwz and the enhancement node outputs fwh , and
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Algorithm 1 De-Similar Module

Input: X ∈ R(n×d), n′

Output: X ∈ R(n′
×d)

1: Computer the information I n fX of X ∈ R(n×d),
I n fX ∈ R(n×1)

2: Calculate the similarity of data in X ∈ R(n×d),
similarity S ∈ R(n×n)

3: for i = 1 to n do
4: for j = 1 to n do
5: S (X [i], X [ j]) =

√(∑
X [i] −

∑
X [ j]

)2

6: end for
7: end for
8: Sort the S from large to small, denote the result as S′

∈

Rn2
×1,

9: Get the threshold t , t = S′
[
n + n′

]
10: for i = 1 to n do
11: for j = 1 to n do
12: if S (X [i], X [ j]) > t
13: if I n fX [i] > I n fX [ j]
14: remove X [ j] from X ∈ R(n×d)

15: if I n fX [ j] > I n fX [i]
16: remove X [i] from X ∈ R(n×d)

17: end for
18: end for

it can be denoted as:

fwm,n (x) = fwz + fwh

=

n×k∑
i=1

wiφ
(
xwei + βei

)
(8)

+

m×q∑
j=1

wnk+ jξ
(
zwh j + βh j

)
,

where φ and ξ are nonconstant bounded feature mapping and
activation function, respectively. n × k and m × q are the
numbers of feature nodes fwz and enhancement nodes fwh ,
and wz and wh are their weights to the output. wei , wh j , and
bias β are randomly generated. Assume that those random
variables are defined on the probability measure µm,n , and
notation E is the expectation with respect to the probability
measure. BLS can improve the learning ability of the model
by adding feature nodes and enhancement nodes. As such, the
improved BLS fwm,n (x)+ can be denoted as:

fwm,n (x)+ = ( fwz + f +
wz

) + ( fwh + f +
wh

)

=

n×k+1∑
i=1

wiφ
(
xwei + βei

)
+ wn×k+1φ

(
xwen×k+1 + βen×k+1

)
+

m×q+1∑
j=1

wnk+ jξ
(
zwh j + βh j

)
+ wnk+m×q+1ξ

(
zwhm×q+1 + βhm×q+1

)
, (9)

where f +
wz

and f +
wh

are the incremented feature node outputs
and the incremented enhancement node outputs. Thus, the

distance between fwm,n and f +
wm,n

on the compact set K ⊂ Id

can be denoted as:

ρK

(
fwm,n , f +

wm,n

)
=

√
E

[∫
K

(
fwm,n (x) − fwm,n (x)+

)2 dx
]
. (10)

To solve this formula, we first denote fdwz = f − fwz .
According to the theories in [40], there exists a function
fcwz ∈ C

(
Id)

, and:

ρK
(

fdwz , fcwz

)
<

ε

4
, (11)

where ∀ε > 0. In some cases, we need to increase the number
of feature nodes to improve the capabilities of the BLS, and
we denote the added feature nodes as f +

wz
. According to

the universal approximation property in [35], there exists a
sequence of f +

wz
, and:

ρK

(
fcwz , f +

wz

)
<

ε

4
. (12)

For the case of adding enhancement nodes, we can get sim-
ilar conclusions: ρK

(
fdwh

, fcwh

)
< ε

4 and ρK

(
fcwh

, f +
wh

)
<

ε
4 . Where fdwh

= f − fwz − f +
wz

, and fcwh
is a function similar

to fcwz .
Based on the above analysis, we can finally get:

ρK

(
fwm,n , f +

wm,n

)
=

√
E

[∫
K

(
fwm,n (x) − fwm,n (x)+

)2 dx
]

=

√
E

[∫
K

(
fwz (x) + fwh (x) − f +

wz (x) − f +
wh (x)

)2 dx
]

≤ ρK

(
fwz , f +

wz

)
+ ρK

(
fwh , f +

wh

)
≤ ρK

(
fdwz , fcwz

)
+ ρK

(
fcwz , f +

wz

)
+ ρK

(
fdwh

, fcwh

)
+ ρK

(
fcwh

, f +
wh

)
≤

ε

4
+

ε

4
+

ε

4
+

ε

4
= ε. (13)

Therefore, for the data X ∈ R(n×d) selected in the i-th
round, there exists fwm,n such that ρK

(
fwm,n , f +

wm,n

)
= ε. As a

result, we need to select a batch of unlabeled data that contains
as much information as possible. We naturally seek the AL
method to achieve the above goal. However, AL methods are
currently hysteretic, in which samples are selected based on the
model learned previously. Although those methods can benefit
from the training achievements in the previous model, the
learned model often judges the value of unlabeled data in a lag
way (e.g., uncertainty estimation based on the previous model)
and thus can not ensure that the selected data can contribute
to future learning. Our Fast Evaluation Module solves this
problem by evaluating the feature contribution of the selected
candidate directly and leveraging the BLS to speed up the
evaluation process.
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Here we introduce in detail how the Fast Evaluation
Module calculates the contribution of candidates to future
model learning. Let X train ∈ R(n1×d) denote the train-
ing data selected and labeled in the previous rounds, and
Xremain ∈ R(n2×d) denote the remaining unlabeled data. For
candidates X = [X1, X2, · · · , Xn], X i ∈ R(n×d), we first
use the model to obtain its pseudo-label and denote it as
X ′

= [X ′

1, X ′

2, · · · , X ′
n], X ′

i ∈ R(n×(d+1)). We define a model
kernel ⊙(X, Y ) to represent the result of the model trained on
X and predicated on Y . Therefore, for candidate X i ∈ R(n×d),
we can roughly estimate its contribution 1X i to future model
learning, and it can be calculated as:

1X i = ⊙(X train + X ′

i , Xremain ) − ⊙(X train , Xremain ). (14)

Finally, the contribution of candidates is calculated, and the
largest one is selected as the data for the current round.

IV. EXPERIMENT

This section first shows the experiment preliminaries, i.e.,
dataset, models, parameter settings, and evaluation metrics.
Then, we introduce the training process of the proposed
AL framework and analyze the experimental results of the
classification task. Finally, we did the ablation study to prove
the effectiveness of several key designs in FastAL, including
the model-agnostic value calculation module, the De-similar
Module, and the Fast Evaluation Module.

A. Experiment Preliminaries

1) Datasets: CIFAR-10 [41]. CIFAR-10 contains
60k images (50k for training and 10k for testing), grouped
into 10 categories (airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck), each with 6k images.

CIFAR-100 [41]. CIFAR-100 contains 60k images (50k
for training and 10k for testing) with 20 super-categories
(aquatic mammals, fish, flowers, food containers, fruit and
vegetables, household electrical devices, etc.), each super-
category contains 5 categories (e.g., the categories of the
super-category fish are aquarium fish, flatfish, ray, shark,
trout), and each category has 600 images.

MNIST [36]. MNIST is a handwritten digit dataset with
10 categories (the digits 0∼9), and it contains 70k images
(60k for training and 10k for testing).

Fashion-MNIST [42]. Fashion-MNIST is a fashion prod-
ucts dataset with 10 categories, and it contains 70k images
(60k for training and 10k for testing). Fashion-MNIST is more
difficult than the original MNIST dataset.

2) The Used Models and Parameter Settings: The used
models include InceptionV3 [43], ResNet-50 [44], and
MobileNetV3 [45], and their corresponding implementations
rely on the pre-existing open-source repository1 of Tensor-
Flow. Moreover, the BLS2 in Fast Evaluation Module also
adheres to the official implementation guidelines. We did not
make any changes to the above baseline network structures in
pursuit of a fair comparison. All experiments were trained with

1https://github.com/tensorflow/models/tree/master/research/slim
2https://broadlearning.ai

the same settings: optimizer is SGD, weight decay = 0.00004,
decay factor of learning rate is 0.94, learning rate = 0.01,
momentum = 0.9, batch-size = 32.

3) Evaluation Metrics: Active learning aims to minimize
the cost of data labeling and has two typical applications
in practical scenarios. The first application scene is to select
the most informative batch of unlabeled data within a fixed
labeling budget to optimize the model’s performance. The
second application scene is to use minimal labeled data while
maintaining the expected model performance. We evaluate
the proposed Active Learning framework based on these two
realistic scenarios using two metrics, with the first being the
prevalent metric in the Active Learning literature [11], [12],
[16], [17], [20], [29], [30] and the second being a novel metric
introduced in this paper.

Metric 1: Performance under a fixed labeling budget.
A higher model performance indicates a better Active Learning
framework when evaluated using this metric. The labeling
budget we set during the experiment does not exceed 50%
of the original unlabeled data since Active Learning is usually
employed when labeling costs are constrained.

Metric 2: Labeling budget under expected model perfor-
mance. The sampling approaches that minimize labeling costs
are preferred when evaluated using this metric. We set different
expected performances for different models to ensure low
labeling costs.

Most existing Active Learning methods primarily rely on
Metric 1 to assess the effectiveness of proposed frameworks.
However, given the practical relevance of Metric 2, a simul-
taneous evaluation of both metrics can facilitate a more
comprehensive comparison of the strengths and limitations of
various Active Learning methods.

B. Evaluation on Classification

1) Comparing Baselines: We compare our proposed Active
Learning framework FastAL with the following baseline:

a) Random sample: Samples are randomly selected from
the unlabeled pool.

b) The uncertainty-based AL methods: Sparse Modeling
Active Learning (SMAL) [11] is an AL method that can alle-
viate the data bias problem because it considers the diversity
and density of data at the same time. It is worth noting that
SMAL partitions the dataset into multiple subsets, including
the seed set (labeled set), the unlabeled set, the validation set,
and the testing set. In order to ensure fairness of comparison,
we use random sampling in the first round, and the settings
of other rounds follow the original paper. Ensembles-based
Active Learning (ENS) [12] uses an ensemble network to
calculate data uncertainty. To avoid unbalanced initialization,
ENS uses label information when selecting the samples in the
first round, and this is obviously unreasonable. Also, for the
fairness of comparison, ENS in our experiment and FastAL
use the same samples in the first AL round.

c) The diversity-based AL methods: Fisher Kernel Self
Supervision (FKSS) [16] uses the proposed feature density
matching methods to predict the contribution of unlabeled
data to future training. For the four datasets in the experiment,
we use all the data instead of using only part of the data, like
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Fig. 5. Performance on CIFAR-10 [41] (top) and MNIST [36] (bottom) under fixed labeling budget. The evaluation networks used here are InceptionV3 [43],
ResNet-50 [44], and MobileNetV3 [45]. The compared recent state-of-the-art AL frameworks included uncertainty-based methods ENS [12] and SMAL [11],
diversity-based methods Core-set [17], FKSS [16], IPA [29], and ALFA-Mix [30], expected model change AL methods Käding et al. [20], and random sample.
We repeat the experiment five times and report the mean and the standard deviation (error bar).

FKSS, to artificially create an unlabeled dataset that obeys a
specific distribution. For the other diversity-based AL methods,
Core-set [17], IPA [29], and ALFA-Mix [30], we follow the
training tricks and hyperparameters in the original paper.

d) The expected model change AL methods:
Käding et al. [20] use the approximated gradients of the
loss function to enable the Gaussian process regression
AL methods to be used for deep neural network models.
Following the original paper, we also use a stochastic gradient
approximation with just a single sample to estimate model
parameter updates, and the models we use are all DNNs
to ensure that the baseline can keep its advantages, thereby
ensuring fair comparison.

2) Active Learning Settings: We conducted experiments on
two metrics, i.e., performance under fixed labeling budget
and labeling budget under expected model performance. For
metric 1, we evaluated FastAL and other baseline methods on
the CIFAR-10 and MNIST. We first select 5% of the unlabeled
data (About 3000 for CIFAR-10 and 3500 for MNIST) as
the training data for all AL methods in the first round. Then,
we use FastAL and other baseline methods to select the same
amount of data (5% of the unlabeled pool) for the other rounds.
We repeat the above steps until the selected data reaches the
labeling budget. In this paper, we set the labeling budget is
50%. For metric 2, we evaluated FastAL and other baseline
methods on CIFAR-100 and Fashion-MNIST. Also, we first
select 5% of the unlabeled data (About 3000 for CIFAR-100
and 3500 for Fashion-MNIST) as the training data for all
methods in the first round. Then, we use FastAL and other
baseline methods to select the same amount of data for the
other rounds. We repeat the above steps until the learned
model reaches the expected model performance. Considering
that different models are suitable for different scenarios, we set
different expected model performances for these models, i.e.,
for CIFAR-100, expected model performances are 0.7, 0.75,

and 0.8, for Fashion-MNIST, expected model performances
are 0.85, 0.9, and 0.95.

The following section shows how to generate different Fast
Evaluation Module candidates. Take the selection of 5% data
from the unlabeled pool as an example. We first calculate the
value of unlabeled data through the proposed model-agnostic
value calculation and take out the top 10%, top 15%, top
20%, top 25%, and top 30% data as candidates. Then we
use the De-similar Module to remove part of the similar data
from the above candidates until only the same amount of
data remains for each candidate (5% of the unlabeled pool).
Thus, for different candidates, the threshold t in Algorithm 1
is also different. Generally, the larger the amount of data in
the candidate, the smaller the t . Finally, We directly use the
Fast Evaluation Module to calculate the training results of
candidates to select the samples that will contribute the most
to the future model learning from these candidates.

3) Results and Analysis: Based on the experimental settings
in Section IV-A, we compared FastAL and various types of
baselines. We evaluated our AL framework on both metric 1
(performance under fixed labeling budget) and metric 2 (label-
ing budget under expected model performance) and reported
the results in Fig. 5 and Table I, respectively. Furthermore,
FastAL incorporates BLS as an evaluation module instead of
utilizing the baseline AL model. This design was primarily
based on the exceptional efficiency of BLS. To substantiate
this claim, we present the inference time per image in Table II,
as well as the total overhead per AL round, accounting for
varying latencies across different methodologies. From these
results, we have several observations:

(1) Our proposed FastAL framework outperforms all base-
lines by a clear margin. To be specific, under metric 1, models
based on the FastAL framework have a higher performance
under all fixed labeling budgets (see Fig. 5). Also, under
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TABLE I
LABELING BUDGET ON CIFAR-100 [41] AND FASHION-MNIST [42] UNDER DIFFERENT EXPECTED MODEL PERFORMANCES.

THE EVALUATION NETWORKS USED HERE ARE INCEPTIONV3 [43], RESNET-50 [44], AND MOBILENETV3 [45]. THE
COMPARED RECENT STATE-OF-THE-ART AL FRAMEWORKS INCLUDED UNCERTAINTY-BASED METHODS ENS [12]

AND SMAL [11], DIVERSITY-BASED METHODS CORE-SET [17], FKSS [16], IPA [29], AND ALFA-MIX [30],
EXPECTED MODEL CHANGE AL METHODS KÄDING ET AL. [20], AND RANDOM SAMPLE. WE REPEAT THE

EXPERIMENT FIVE TIMES AND REPORT THE MEAN. THE FIRST AND SECOND BEST RESULTS
ARE COLORED IN RED AND BLUE, RESPECTIVELY

TABLE II
INFERENCE TIME (MS) PER IMAGE AND PER AL ROUND

metric 2, models based on the FastAL framework require less
labeled data to reach the expected performance (see Table I).

(2) Models based on the FastAL framework will have a
more stable training process. We repeat the experiment five
times and report the mean, and standard deviation (see error
bar in Fig. 5) as the training data for all methods in the first
round is randomly selected. Note that our value calculation
method is model-agnostic. Although we can use it to select
valuable data in the first round to get higher performance,
we still adopt random sampling in the first round for the
fairness of comparison. From the standard deviation in Fig. 5,
we can see that the stability of our method is much better
than other baselines. We argue this is primarily due to the
De-similar Module that we propose, which reduces data bias
and improves the performance and stability of model training.
We will further prove this in the ablation study.

(3) Our proposed FastAL offers more obvious advantages
in the early rounds of AL. The early rounds are often more
in line with the needs of AL in actual application scenarios
due to its labeling budget and expected model performance is
lower. Thus, our proposed method will have more advantages
in actual application scenarios.

(4) In some cases, there will a round gap between
FastAL and other baseline methods, i.e., FastAL uses fewer
rounds to achieve the same expected performance (e.g., for
CIFAR-100 [41], MobileNetV3 [45] with FastAL framework
uses 6.0 rounds while Käding et al. [20] need 7.0 to meet
the expected performance of 0.8). Due to the round gap, our
framework can use less labeled data and fewer training rounds
to achieve the training goal, thus saving both labeling and
training costs.

TABLE III
THE PERFORMANCE UNDER DIFFERENT COMPONENT COMBINATIONS.

C.1, C.2, AND C.3 STAND FOR THE FAST EVALUATION MODULE,
THE MODEL-AGNOSTIC VALUE CALCULATION MODULE, AND THE

DE-SIMILAR MODULE. WITHOUT THE COMP.1 MEANS THAT
WE USE CANDIDATE 1 DIRECTLY IN EACH ROUND. THE

ABSENCE OF THE COMP.2 MODULE MEANS THAT WE
GENERATE MULTIPLE CANDIDATES THROUGH

RANDOM SAMPLING IN EACH ROUND. WITHOUT
THE COMP.3 MEANS THAT WE WILL NOT

REMOVE DATA WITH HIGH SIMILARITY
AMONG THE SELECTED DATA

(5) Compared to the direct utilization of the baseline AL
model for computing data contribution to future training, the
BLS we have introduced significantly mitigates time over-
head. According to Table II, BLS can reduce overhead by
367-966 times for each image. Moreover, in view of the
distinct latencies associated with diverse approaches, we have
also presented the aggregate overhead for each AL round,
which demonstrates that BLS can economize on the cost by
404-1121 times.

C. Ablation Study

As described in section III, our work is mainly com-
posed of three components, including the De-similar Module,
the model-agnostic value calculation module, and the Fast
Evaluation Module. This section conducts ablation studies to
confirm the effectiveness of these components. We reported
the experiment results of different component combinations
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Fig. 6. T-SNE [46] embedding of selected samples in different AL rounds (b-d) and full dataset (a), the former feature is extracted from the output of the
model learned by the AL models, and the latter is from Broad Learning System (BLS) [22]. The top (green points) and bottom (blue points) are the sampling
results of the baseline method (Sparse Modeling Active Learning, SMAL [11]) and our proposed AL framework, respectively.

Fig. 7. The performances of different candidates in different rounds. The rules for generating different candidates are the same as those in Section IV-B,
i.e., calculate the value of unlabeled data through the proposed model-agnostic value calculation, and take out the top 10%, top 15%, top 20%, top 25%, and
top 30% data as candidates.

in Table III, and we can conclude from the results that
each component contributes to the FastAL. In the fol-
lowing, we will explore the benefits of these components
further.

1) Without the De-Similar Module: The De-similar module
in our proposed framework can remove some high-similarity
samples, thus alleviating the data bias problem. To demon-
strate this benefit, we visualize the t-SNE [46] embedding of
selected samples in different AL rounds and the full dataset
in Fig. 6. Fig. 6 shows that the samples selected by the
baseline method [11] suffer from the data bias problem (green
points in Fig. 6). For example, the sampling results of the
baseline method in round 1 are biased towards categories
3, 7, and 10 while ignoring categories 1, 6, and 8. Fur-
thermore, we can observe that the data bias problem will
continue to affect the model learning in subsequent rounds.
For instance, in round 2, the baseline method ignored the

biased categories (3, 7, and 10). We argue this is mainly
because the learned model will focus on learning the partial
categories because of the data bias in round 1; these categories,
therefore, will be ignored in the subsequent rounds. However,
the visualization results show that our FastAL framework can
significantly alleviate the data bias problem, i.e., the samples
it selects are not significantly biased toward any partial cat-
egory (blue points in Fig. 6). We believe that this debiased
sampling can effectively prevent the model from converging
to partial categories and thus improve the performance of the
model.

2) Without the Fast Evaluation Module: The data selection
of current AL methods often relies on a single standard
(e.g., data uncertainty in the uncertainty-based methods), and
the standard will not change during this learning process.
However, it may not always be the selected data based on
a single standard that contributes the most to future training.
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Fig. 8. The performances under different thresholds T , where T is the
threshold for removing low frequency. The smaller the T , the more the
frequency domain information is retained, but the more noise is retained at
the same time. The smaller the T , the less frequency domain information is
retained, but at the same time, the less noise is retained.

Fig. 9. The frequency domain information under different thresholds T .
The red boxes and the green boxes represent noise and useful information,
respectively.

Although the data information calculation method we pro-
posed is also based on a single standard (based on the
frequency domain information), we generate multiple candi-
dates through different data selection mechanisms and directly
select the one that contributes the most to future training
through the Fast Evaluation Module. Thus, the standards in
the FastAL framework will adaptively change as the model
learning progresses, as the final candidates selected at different
rounds may be different. We report the performance of differ-
ent candidates at different rounds in Fig. 7, and it shows that
the optimal candidate changes dynamically at different rounds
as expected. Our proposed Fast Evaluation Module aims to
select the best candidate, so it can naturally contribute to the
FastAL.

3) Threshold T in the Model-Agnostic Value Calculation
Module: In this paper, we propose the model-agnostic value
calculation module, which calculates the value of unlabeled
data from the perspective of the frequency domain without
relying on model reasoning. As a result, in the face of
large-scale unlabeled data and DNNs, our method has a huge
cost advantage over model-dependent methods. From Table III,
we can see that the model-agnostic value calculation module
is indeed effective. T is the threshold for frequency domain

information processing in our model-agnostic value calculation
method. We report the model performance under different
thresholds T in Fig. 8 to further explore its influence. We can
see that the performance will decrease when T is very large
or very small. In Fig. 9, we also showed the frequency domain
information of the data under different thresholds T to find the
cause of the above phenomenon. From the presented samples,
we argue that when the T is large, the key information will
be lost (see green boxes in Fig. 9), and when the T is small,
a lot of useless noise will remain (see purple boxes in Fig. 9).
We set T to 100 in this paper.

V. CONCLUSION

We present FastAL, a novel and efficient dynamic deep
Active Learning framework comprising three key components:
the Fast Evaluation Module, the model-agnostic value cal-
culation module, and the De-similar Module. Our proposed
framework demonstrates superior performance compared to
various state-of-the-art AL methods, including uncertainty-
based, diversity-based, and expected model change AL
methods. Specifically, our model-agnostic value calculation
method enables cost-effective processing of large-scale unla-
beled data and Deep Neural Networks (DNNs) without relying
on model inference to calculate the value of the data. Our Fast
Evaluation Module directly calculates the contribution of data
to future rounds of training, which is distinct from existing
methods that primarily rely on the learned model from the
current round. Furthermore, the De-similar Module alleviates
the data bias problem by removing partial data with high
similarity. Our ablation study confirms the effectiveness of
these components.

We demonstrate the effectiveness of our framework on the
classification task and believe that it has the potential to be
applied to more complex visual tasks, such as pedestrian re-
identification, object detection, and segmentation. These will
be the focus of our future work.
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