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Eyeglass Reflection Removal With Joint Learning
of Reflection Elimination and Content Inpainting
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Abstract— Eyeglass reflection removal is of great importance
to the portrait image processing. However, it remains a challenge
to eliminate the reflections on the glass and restore the textual
contents of eyes without introducing visual artifacts. Addressing
this problem, in this paper, we propose an Eyeglass Reflection
Removal Network (ER2Net) by learning reflection elimination
and content inpainting jointly. The reflection elimination branch
is effective in weak reflection regions, and the content inpainting
branch is dedicated to content reasoning in strong reflection
regions. We then propose a result fusion module (RFM), which
adaptively fuses the elimination result and the inpainting result
according to the reflection intensity of each pixel, to produce high-
quality result. We also design a memory module for improving
the content inpainting result, and propose an eye-symmetry loss
to avoid visual artifacts. Additionally, we construct the first
Real-world eyeglass Reflection (ReyeR) dataset for eyeglass reflec-
tion removal. Extensive quantitative and qualitative experiments
demonstrate the superiority of the ER2Net over state-of-the-art
methods for eyeglass reflection removal.

Index Terms— Eyeglass reflection removal, dataset, content
reasoning, eye symmetry, memory augmentation.

I. INTRODUCTION

REFLECTION is a common optical phenomenon in
nature. It can degrade the quality of an image, especially

for portrait images with eyeglass reflection. The reflection
layer in eyeglass obscures the original eye detail, which poses
great challenge for some practical application tasks, such as
image-based verification [1], face recognition [2], [3], face
keypoint detection [4], [5] and etc.. Thus, eyeglass reflection
removal is a meaningful and necessary image processing task.
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The materials of the eyeglass, the types and intensity of
the light source largely affect the intensity of the reflection,
which then determines the degradation degree of an image.
In the weak reflection regions, only the color and brightness
information are changed, while the local texture details are
preserved. However, in the strong reflection regions, not only
the color and brightness information are changed, but the tex-
ture details are completely missing, which makes restoration
more difficult. Therefore, it is challenging to reason about
the accurate contents without introducing visual artifacts in
strong reflection regions and restore the lighting information
while preserving the local texture details in the weak reflection
regions.

Recent years, we have witnessed the success of deep
learning-based methods in various image restoration problems.
Several large-scale real-world datasets [6], [8], [9] and a few
of learning-based methods [6], [8], [10], [11], [12], [13] have
been proposed to eliminate the reflections in natural images.
However, removing reflections in eyeglass images has been
rarely addressed in the literature, and one of the important
reasons is that there is no large-scale real-world datasets
available. Although existing reflection elimination methods
can be directly used in eyeglass reflection removal task, they
are only effective for the weak reflections and has poor ability
to reason about the contents in strong reflection regions,
as shown in Fig. 1 (c).

Another straightforward solution is to leverage the
inpainting-based methods to recover the missing contents in
reflection regions. We have trained the human eye inpainting
method ExGANs [7] for our reflection removal task. As shown
in Fig. 1 (d), although ExGANs can produce semantically-
plausible results, it destroys the textual details and introduce
visual artifacts, since it restores the degradation regions using
the surroundings without considering the texture details in the
weak reflection regions.

Leveraging multiple images of the same scene are helpful
to reason about the contextual contents in strong reflection
regions [14]. However, existing multiple-images-based meth-
ods capture the images with specially designed equipment,
such as the polarization camera [15] or camera with different
focus lengths [16], etc., which hinders the application of such
kind of methods.

In this work, we propose a novel eyeglass reflection removal
method to combine the advantages of the texture detail
preserved elimination-based method and the contents restored
inpainting-based method. To do that, we present an Eyeglass
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Fig. 1. Visualization results of our ER2Net and other SOTA methods.
IBCLN [6] fails to remove the reflection, especially in the strong reflection
regions, it also cannot reason about the accurate contents in the strong
reflection regions. ExGANs [7] cannot preserve the local texture details
in weak reflection regions and introduces obvious visual artifacts. Our
ER2Net performs well on both weak and strong reflections and can produce
fine-grained results.

Reflection Removal Network (ER2Net) including two main
modules, a multi-task network (MTNet) and a result fusion
module (RFM). MTNet consists of a reflection detection
branch, an elimination branch, and an inpainting branch. The
elimination branch learns to eliminate the reflections and
preserve the textual details, which would be effective for
weak reflections. While the inpainting branch learns to restore
the missing contents according to the detection result, which
would be more effective for strong reflections. Therefore,
we design the RFM module to fuse the elimination result
and the inpainting result according to the reflection intensity
of each pixel. Also, we design a memory module to record
the prototypical feature cross images to reason about the
true contents in the inpainting branch. We also propose an
eye-symmetry loss to avoid visual artifacts by employing the
symmetry prior of human eyes.

Additionally, since there is no publicly available real-world
eyeglass reflection dataset, we construct the first Real-word
eyeglass Reflection (ReyeR) dataset containing 13,610 pairs
of high-quality images. All the captured ground-truth images
are performed with pixel offset alignment and color correction
to guarantee the pixel and color tone consistency with the input
images.

Our main contributions are summarized as follows:
1) We present an Eyeglass Reflection Removal Network

(ER2Net) consisting of a multi-task network and a result
fusion module. ER2Net learns to combine the advantages of
the reflection elimination and detail preservation for weak
reflection regions and the contents restoration for strong reflec-
tion regions, and thus can deal with both weak and strong
reflections.

2) We design a memory module to record the prototypical
features cross images for reasoning about the accurate con-
tents, and propose an eye symmetry loss to optimize the final
results to avoid introducing visual artifacts.

3) We construct a real-world eyeglass reflection dataset
(ReyeR) with 13,610 pairs of reflection- and reflection-free
images, which is the first large-scale dataset for training and
evaluation of the learning-based eyeglass reflection removal
method.

II. RELATED WORK

A. Single-Image-based Reflection Removal

Many methods exploit a single image for reflection removal
using prior knowledge, such as the gradient sparsity prior [17],
[18], [19], [20] and the smoothness prior [21], [22]. Sandhan
and Choi [19] extracted prior gradient information from the
reflection layer and the background layer, and transformed the
reflection removal problem into a convex optimization problem
by maximizing the joint probability. Conte et al. [23] proposed
to remove the object reflections in videos by considering
the reflection removing as a global optimization problem.
However, these priors are often handcrafted, and the results
are usually unrealistic. Learning-based methods [11], [12],
[13], [24], [25], [26], [27], [28], [29], [30], [31] have been
proposed to solve the problem of single image reflection
removal. Zhang et al. [8] designed several loss functions
utilizing the characteristic of reflections to guide the network
training. Watanabe and Hasegawa [24] used auto-encode and
U-net to remove eyeglass reflections, but only evaluated the
algorithm on limited images. Dong et al. [28] used multi-scale
Laplace kernel parameters to enhance the reflection boundary
information. Liu et al. [29] employed object semantic cue as
the guidance. Wu et al. [10] proposed a residual network based
on channel attention, so that the network can learn global
information on different channels. However, these methods can
only eliminate weak reflection and have poor ability to reason
about and complete the contents in strong reflection regions.
Moreover, although there are several datasets for natural image
reflection removal, e.g., Zhang et al. [8], Nature [6], SIR2 [9]
and SIR2+ [32], there is no publicly available dataset tailored
for eyeglass reflection removal.

B. Multiple-Image-based Reflection Removal

Since the location and intensity of the reflection varies with
the photographic perspective, it is possible to reason about the
contents in the reflection regions using multiple images under
varying illumination [15], [16], [33], [34], [35], [36], [37],
[38], [39], [40], [41]. Some existing methods used the motion
cues to separate and remove the reflections. Agrawal et al.
[33] used two flash images with and without a printed
checkerboard for reflection removal, while Fu et al. [34]
took a single hyperspectral image for component separation.
Schechner et al. [16] employed different focus lengths to
capture multiple images and removed the interpenetration of
the reflective layer. Kong et al. [15] used multiple polarized
images captured by the polarization camera to solve the
problem, since the polarization of reflection and transmission
are usually different, which makes it easy to distinguish the
reflection. Wan et al. [40] proposed the first facial images
reflection removal method, which constructs a guided removal
framework using two similar facial images to restore important
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facial features. Although multiple image methods make a great
achievement in reflection removal, the difficulty of capturing
multiple images hinders the application of these kind of
methods.

C. Eye Inpainting

Considering that it is difficult to reproduce the eye details
perfectly with universal completion methods, many methods
try to introduce the eye’s prior knowledge or reference image
for eye inpainting. Agarwala et al. [42] used example photos
to generate final results with a mixture of patch matching
and blending. However, it is not robust to lighting conditions.
GAN-based methods [43] are also used in eye inpainting,
and the results tend to be highly realistic but low in fidelity.
Yan et al. [44] further introduced the eye aesthetic assess-
ment and face semantic parsing for restoration of eyes, and
Dolhansky and Ferrer [7] utilized exemplar information to
produce high-fidelity results that are largely dependent on the
quality of the reference image. In contrast, we complete the
eye information by leveraging the symmetric information of
the other eye and the prototypical features recorded in the
memory block.

D. Memory Augmentation-Based Methods

Memory augmentation-based methods [45], [46], [47], [48],
[49] have shown promising results in various deep learn-
ing tasks, including image inpainting [50], [51], anomaly
detection [52], [53], and semantic segmentation [54].
Sukhbaatar et al. [45] proposed an end-to-end training memory
network for natural language processing tasks, which solves
the limitations of traditional neural networks in processing
long-sequence data. Feng et al. [50] restored the content of
corrupted regions based on known regions and the learned
semantic distribution using a Style-GAN based generative
memory, which is difficult to train. Xu et al. [51] designed
a texture memory that records patch samples extracted from
unmasked regions as a guide to generate the inpainted image.
Inspired by these methods, we exploit the memory module
to record the prototypical features of eyes and inpaint the
contents in strong reflection regions.

E. Multi-Task Network

Multi-task learning is a learning framework to enforce
shared representation and mutual influence between multiple
tasks for improving generalization ability, which has been
successfully used in various layer separation tasks, such as
image draining [11], specular highlight removal [55]. How-
ever, these methods use the hard parameter sharing scheme
which can not avoid the negative transfer between unrelated
or even conflicting tasks. Addressing this issue, in this paper,
we design different modules, i.e., the memory module for
content inpainting and the residual block for reflection elim-
ination, for different task branches to learn the task-specific
information.

Fig. 2. Construction overview and samples of ReyeR. (a) The studio
we constructed and each component for collecting the samples in ReyeR.
(b) Data collecting process with different background. (c) Light sources used:
round light, mobile phone panel light, strip light, normal desk lamp and flat
light. (d) Five different light angles. (e) 24 kinds of eye glasses with different
materials and five different participant angles. (f) Sample pairs of eyeglass
images in our dataset with reflection (the first row) and without reflection
(the second row).

III. REYER DATASET

There are a few datasets for natural image reflection
removal [6], [8], [9], however, they are not suitable for
eyeglass reflection removal. To our knowledge, there is no pub-
licly available dataset for eyeglass reflection removal. To train
the learning-based models, we construct the first real-world
eyeglass reflection image restoration dataset (ReyeR) with
reflection- and reflection-free image pairs.1

To simulate the realistic eyeglass reflections and guarantee
the strict alignment between the reflection image and the
corresponding reflection-free image, we built a studio with
controlled lighting conditions and different backgrounds for
photography (as shown in Fig. 2 (a) and (b)). As shown in
Fig. 2 (c), we use five different light sources to produce differ-
ent shapes of reflections, each of which produces reflections in
five different directions, as shown in Fig. 2 (d). Then we adjust
the position of the participant to produce different distributions
of reflections at different locations on the eyeglass. We use
24 kinds of eyeglass with different materials to obtain images
with different reflection intensities, as shown in Fig. 2 (e).
After that, we turn off the reflection light source and take the
reflection-free image as the corresponding ground-truth image,
the sample pairs can be seen in Fig. 2 (f).

Due to slight portrait jitters, uncontrolled blinks and changes
of lighting conditions may result in pixel offsets between the
reflection image and the corresponding ground-truth image.

1All the privacy data have been permitted for research purpose only.
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Fig. 3. Two image pairs and their corresponding difference maps. We filter
out the image pairs with large pixel offset (the upper sample) and only keep
the image pairs with small pixel offset (the lower sample).

Fig. 4. We follow [56] to transfer the color characteristics of the input image
to the captured GT image to obtain the color transferred GT.

Thus, we filter out the image pairs with high jitter by defining
a threshold on the average value of the difference map (see
the left part of Fig. 3) and retain high-quality image pairs
without large offset (see the right part of Fig. 3). In addition,
to further reduce the inevitable pixel tone deviation caused
by the change of the lighting condition, we perform color
correction followed by Reinhard et al. [56], which transfers
the color characteristic from the input reflection image to the
captured ground-truth image. Fig. 4 shows the input reflection
image, the captured ground-truth image and the color trans-
ferred ground-truth image. It can be seen that there involves
a certain degree of illumination error even after applying the
illumination correction algorithm. To measure the difference,
we calculate the MSE value between the input image and the
color transferred ground-truth image by masking the reflection
regions. For the images in the dataset, the MSE value is
0.54 with a standard deviation of 0.24, which indicates that
the illumination error can be of little impact on the reflection
removal algorithm and can be neglected.

Finally, we collect 13,610 high-quality image pairs, which
are divided into the training set, testing set and validation set
according to the ratio of 8:1:1. Table I shows some details
about our ReyeR dataset. We have called for 356 individuals
to capture portrait images covering different professionals,

TABLE I
DETAILS OF OUR REYER DATASET. P.R., L.R., A.R., C.R., F.R.

ARE POINT REFLECTION, LINE REFLECTION, AREA REFLECTION,
CIRCULAR REFLECTION, AND FLAT REFLECTION, RESPECTIVELY

gender and age groups, and we make sure that the same
person only appears in one of the training/testing/validation
sets. Our ReyeR dataset covers different reflection intensity,
and we do not clearly distinguish the strong reflection image
from the weak reflection image, since it is common for varying
reflection existing in the same image.

IV. PROPOSED METHOD

A. Overall Framework of ER2Net

Fig. 5 shows the overview of our ER2Net, which contains
a multi-task network (MTNet) and a result fusion module
(RFM). MTNet is a three-branches network, including a
Detection Branch, an Inpainting Branch and an Elimination
Branch, to predict the reflection detection result D, the content
inpainting result Ii and the reflection elimination result Ie,
respectively. Since the elimination branch is only effective
for the weak reflection regions and the inpainting branch can
restore the contents in the strong reflection regions, we design
the RFM to fuse Ie and Ii according to the reflection intensity
of each pixel to produce the final fine-grained result Iout .

MTNet consists of a shared encoder and three decoders
for each branch. Specifically, the detection branch is a
plain encoder-decoder structure. The elimination branch is an
encoder-decoder network followed by a residual block, which
consists of gated convolution [57], dilated convolution, and
channel attention layer [10]. To improve the content reasoning
ability of the inpainting branch, we insert a memory module
between the encoder and decoder in the inpainting branch
to record the prototypical contextual features cross images.
Our inspiration is that similar features in the reflection-free
regions in other images may provide contextual information
for restoration, which comes from the existing multiple-image-
based reflection removal methods. Furthermore, to avoid visual
artifacts, we propose the eye symmetry loss ℓeye using the
prior information of the human eye to optimize the final
result. The whole network can be trained end-to-end with the
reconstruction loss ℓrec, the perception loss ℓp, the detection
loss ℓFocal , the weight loss ℓweight and our proposed eye
symmetry loss ℓeye.

B. Memory Module

Due to the lack of effective information in strong reflec-
tion regions, it is difficult to reason about the true contents
in these regions. Existing multiple-image-based reflection
removal methods try to exploit the similar texture information
cross multiple images to restore the content information in
reflection regions. Inspired by this, we design a memory
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Fig. 5. Overview of our ER2Net. ER2Net consists of a multi-task network (MTNet) and a result fusion module (RFM). MTNet is a three-branches network,
including a Detection Branch, an Inpainting Branch and an Elimination Branch, to predict the detection result D, the content inpainting result Ii and the
reflection elimination result Ie , respectively. In RFM, Ii and Ie are adaptively fused according to D to produce the final fine-grained result Iout .

Fig. 6. Illustration of reading and updating operations in the memory module.
For reading operation, we compute the correlation value in Eq. (1) between
the query ei and each item (m j ), and leverage all the items to reason about
the contextual feature êi in Eq. (2). For updating operation, we retrieve the
most relevant queries eki between memory item m j and each query (ei ) by
Eq. (3), and update the memory items m j based on all the queries eki in Eq.
(4). 1⃝, 2⃝, 3⃝, 4⃝ are the equations of Eqs. (1)-(4), respectively.

module to record the prototypical contents cross images as
the auxiliary information for content restoration.

Given the input image Iin , we multiply the feature map
generated by the encoder with the detection result D to obtain
the new feature map E ∈ RH×W×C in the reflection regions.
Fig. 6 shows the read and update operations in the memory
module. Specifically, we initialize the memory block M as
a matrix with C × M elements, where M is the number
of the items in the memory. The memory block performs
reading to reason about the contextual content of the reflection
regions. It is also updated following the network training to
learn to record the important contextual features across images.

Specifically, let m j ∈ R1×1×C be the j th item of M, and the
i th feature vector ei ∈ R1×1×C in E can be seen as a query.
We first calculate the correlation value between each query ei
and each item m j as:

wi, j =
exp(mT

j ei )∑M
j ′=1 exp(mT

j ′ei )
. (1)

Then, for each query ei , the memory block performs reading
to leverage all the items in M to reason about the contextual
feature êi as follows:

êi =

M∑
j=1

wi, j m j . (2)

We apply the reading operator to all the queries and obtain a
transformed feature map Ê. We then concatenate it with the
original feature map E along the channel dimension and feed
them to the decoder.

To make the memory learning to record the most similar
contextual contents cross images, we only choose the queries
having the maximum correlation values with the items for
updating. To do that, we retrieve the most relevant queries
eki between memory item m j and each query ei by

ki = arg max
i

wi, j . (3)

Then, we update the memory items m j based on all the queries
that are most relevant with m j :

m j ← f (m j +

N∑
i=1

1(ki = j)wi, j ei ), (4)

where f (·) is the ℓ2 norm, 1(·) is the indicator function, and
N = H ×W is the number of feature vectors in E.

Unlike other memory modules [50], [51], we update the
memory items to record prototypical features in both the
training and the testing phase to improve generalization ability,
as the contextual patterns in the training and test sets may be
different.
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Fig. 7. Quantitative results of reflective intensity threshold under different
proportional coefficient.

C. Result Fusion Module (RFM)

Given the elimination result Ie, the inpainting result Ii , and
the reflection mask D, the RFM module is designed as shown
in Fig. 5. Taking Ie, Ii and D as input, the RFM generates a
weight map M via three 1×1 convolution layers followed by a
Sigmoid function. With such weight map, the model is aware
of distinguishing strong and weak reflection regions. To this
end, we design a weight loss according to a heuristic rule: in
the strong reflection areas, we tend to trust the result of Ii ,
and the corresponding weights should be approximately 0 in
such areas. For areas of weak reflection and background, Ie
provides a more accurate result, and the weight values should
approximate to 1. Then, the weight loss can be expressed as

ℓweight = ∥M[R > t]∥22 + ∥M[R < t] − 1∥22, (5)

where R = Iin − Igt is the difference of gray values between
the input image and ground-truth image, and t is a threshold
to distinguish the pixels with strong reflection from that
with weak reflection, which is set adaptively proportional to
the difference between the input and its ground truth. The
sensitivity study on the proportional coefficient is presented
in Fig.7, from which we can see that t = 0.5 max(Iin − Igt )

is the optimal threshold.
As stated before, we design a fusion weight loss for learning

to generate a weight map according to the reflection intensity.
For areas with weak reflection and background, the weight
values approximate to 1, and we tend to trust the elimination
result, so the reliable result can be expressed as Ie⊙M, where
“⊙” is the element-wise product operator. While for the areas
with strong reflection, the weight values approximate to 0, and
we tend to trust the inpainting result. So the reliable result
can be expressed as Ii ⊙ (D − M). Then, we concatenate
these two reliable results Icat = [Ie ⊙ M, Ii ⊙ (D − M)].
Since the weight map M is also updated with the training
of the network, to better use the weight map, we exploit the
partial convolution [58], which is firstly used in the image
inpainting problem. By using the result fusion module, our
network can learn to update the weight map and fuse the two
results simultaneously. The result fusion can be formulated as:

Iout =

 (W ∗ Icat )×
1

M̃3×3
+ b, if M̃3×3 > 0

0, otherwise
(6)

where “∗” is the convolution operator, W and b are the
learnable parameters of the partial convolution, and Iout is
the output of RFM. M̃3×3 is the average value of M in
a neighborhood region of 3 × 3, which can be efficiently
calculated by a 3× 3 average pooling operation.

Fig. 8. Overview of the eye symmetry loss ℓeye .

D. Eye Symmetry Loss

We exploit the symmetry property of human eyes for the
restoration of eye details to avoid artifacts. However, it is
difficult to capture the matching relationship between the key
points in two eyes in the portrait images. Inspired by the
optical flow for estimating the matching relationship of a
pixel in two neighbouring frames, we propose to estimate the
flow field between an eye image and its flipped version to
model the matching relationship between the key points of
two eyes. Then, with the predicted flow field we propose the
eye symmetry loss as the symmetry prior for the restoration
of eye details, and the overview of which is shown in Fig. 8.

Specifically, we first design an eyeFlowNet with a simple
encoder-decoder structure to estimate the flow vector. The
eyeFlowNet takes the eye image Ieye and its flipped image
I′eye as inputs, and predicts a flow vector field � = (�x , �y).
For a pixel (i, j) in Ieye, (i + �x

i, j , j + �
y
i, j ) indicates the

position of its matching pixel in I′eye. Since I′eye is the flipped
image of Ieye, Ieye(i, j) and I′eye(i +�x

i, j , j +�
y
i, j ) are a pair

of matching points from the left and right eyes. Then, our eye
symmetry loss is defined to enforce a pixel of the predicted eye
image, i.e., I(i, j), to be the same as that of the matching point
in the flipped ground-truth image, i.e., I′gt (i +�x

i, j , j +�
y
i, j ):

ℓeye =
∑

I

∑
i, j

∥I(i, j)− I′gt (i

+�x
i, j , j +�

y
i, j )∥

2
2 ⊙Meye(i, j), (7)

where Meye is the mask of eye areas, and this loss can be
imposed on the three predicted results, so I ∈ {Ie, Ii , Iout }.
In Fig. 8, we give the detail procedure of exploring the eye-
FlowNet for calculating the eye symmetry loss. ℓeye ensures
that our network can learn to fit the ground-truth image
and the information about the symmetrical structure of the
eyes simultaneously, to avoid visual defects with obvious
inconsistency in the structure of the left and right eyes.

To train the eyeFlowNet, we detect the 68 facial key-
points [59] on the ground truth image Igt and the flipped
image I′gt , respectively. We then select the 22 keypoints
related to the eyes from the 68 keypoints as the matching eye
landmarks {(xg

i , yg
i )|22

i=1} and {(xg′
i , yg′

i )|22
i=1} in Ieye and I′eye,

respectively. Following [60], we use the landmark matching
loss to constrain the eyeFlowNet:

ℓlm =

22∑
i=1

∥�x
xg′

i ,yg′
i

− xg
i ∥

2
2 + ∥�

y

xg′
i ,yg′

i

− yg
i ∥

2
2. (8)
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Besides, due to the keypoints are sparse, we follow [60] to
use the TV loss to ensure the smoothness of flow field:

ℓT V = ∥1x�
x
∥

2
2 + ∥1y�

x
∥

2
2 + ∥1x�

y
∥

2
2 + ∥1y�

y
∥

2
2, (9)

where 1x and 1y are the gradient operators along x and y
directions, respectively.

By combining the above two terms, the loss function for
constraining the eyeFlowNet becomes:

ℓ f low = λlmℓlm + λT V ℓT V , (10)

where λlm = 10 and λT V = 1 according to [60].

E. Training Loss

In addition to the weight loss mentioned above in Eq. (5)
and the eye symmetry loss in Eq. (7), we also use three
additional loss functions to train our ER2Net.

1) Reconstruction Loss: We use ℓ2 loss to minimize the
difference between the result image and the corresponding
ground-truth image Igt on the reflection elimination result Ie,
the content inpainting result Ii , and the final output result Iout :

ℓrec(I, Igt ) =
∑

I∈{Ie,Ii ,Iout }

∥I− Igt∥
2
2. (11)

2) Perception Loss: We use a pre-trained VGG-19 [61]
model φ to improve the similarity between Ie, Ii , Iout and
Igt :

ℓp(I, Igt ) =
∑

I∈{Ie,Ii ,Iout }

∑
l

λl · ∥φl(I)− φl(Igt )∥1, (12)

where φl is the output of l-th layer in VGG-19 model, and λl
is the weight factor.

3) Focal Loss: We use the focal loss [62] to constrain
the detection result D in the reflection area, which performs
well on tasks with foreground-background class imbalance
problems:

ℓFocal(Di , Ti ) =

{
−α(1− Di )

γ log Di , Ti = 1
−(1− α)Dγ

i log (1− Di ), Ti = 0

(13)

where T = (Iin − Igt ) > 0.7 max(Iin − Igt ) is the reflection
segmentation image, Iin is the input reflective image and the
threshold 0.7 is empirically set according to [10], i is the
element index in D and T, and we empirically set α =

0.25 and γ = 2 according to [62].
4) Total Loss: The learning objective for training our net-

work can be formulated as:

ℓtotal = λ1ℓrec + λ2ℓp + λ3ℓFocal + λ4ℓweight

+ λ5ℓ f low + λ6ℓeye, (14)

where we experimentally set λ1 = 1.0, λ2 = 0.01, λ3 = 1.0,
λ4 = 10.0, λ5 = 1.0 and λ6 = 1.0.

TABLE II
QUANTITATIVE COMPARISON RESULTS ON OUR REYER DATASET.

THE BEST RESULTS ARE IN BOLD

V. EXPERIMENTS

A. Implementation Details

Our network is implemented in PyTorch on a NVIDIA
GeForce 2080Ti card. We use the Adam [63] optimizer to
optimize our model with β1 = 0.9, β2 = 0.999, and set the
initial learning rate to 10−4 to decrease with an attenuation
coefficient of 0.4 every 5 epochs until 10−5. We train our
model on the ReyeR dataset for 80 epochs. In the first
40 epochs, we train the eyeFlowNet to learn the eye sym-
metry prior, which is used to constrain the final result in the
symmetry loss in the last 40 epochs. Besides, we collected
700 portrait images with glasses from the Internet, and added
masks to the eyes for pre-training our inpainting branch.

B. Comparison Results on ReyeR

Since there are rare learning-based methods that focus on
eyeglass reflection removal, we compare our method with only
one eyeglass reflection removal method, i.e., Watanabe and
Hasegawa [24], four state-of-the-art image reflection removal,
i.e., Zhang et al. [8], IBCLN [6], SpecularityNet [10], and
SGR2N [29], an eye completion method, i.e., ExGANs [7],
as well as a diffusion model-based method [64]. Since the
method [64] is originally proposed for shadow removal task,
we modify the method by removing the mask generation
condition. We train these networks on our ReyeR dataset with
the optimal settings in the original published paper.

1) Metrics: For the labeled ReyeR, we calculate PSNR,
SSIM and LPIPS [65] on the RGB space for evaluation, and
for unlabeled images in the wild, qualitative comparisons are
provided through visual observation.

The quantitative comparison results are reported in Table II.
As we can see, our method performs the best on all the
three metrics. Fig. 9 shows the qualitative comparison results
on ReyeR. As can be seen, the results of Watanabe and
Hasegawa [24], Zhang et al. [8], IBCLN [6], SpecularityNet
[10] and SGR2N [29] still contain some residual reflection
on the glasses, and these methods can only remove weak
reflection. ExGANs [7] slightly change the original eye, due to
the neglect of the texture information in the reflection regions.
While our method can combine the removal and inpainting
results to produce realistic and fine-grained reflection-free
results, and the lighting conditions, e.g., shadows, in the
result images are more consistent with the ground-truth images
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Fig. 9. Qualitative comparison with other methods on ReyeR. (a) Input image; (b) Watanabe and Hasegawa [24]; (c) Zhang et al. [8]; (d) IBCLN [6];
(e) SpecularityNet [10]; (f) SGR2N [29]; (g) ExGANs [7]; (h) Diffusion-based method [64]; (i) Ours; (j) GT. Watanabe and Hasegawa [24], Zhang et al. [8],
IBCLN [6], SpecularityNet [10] and SGR2N [29] still have residual reflection on the glasses, ExGANs [7] slightly changes the original eye, our method can
produce realistic and fine-grained reflection-free results.
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Fig. 10. Visualization results of qualitative comparisons on images in the wild with complex background. (a) Input image; (b) Watanabe and Hasegawa [24];
(c) Zhang et al. [8]; (d) IBCLN [6]; (e) SpecularityNet [10]; (f) SGR2N [29]; (g) ExGANs [7]; (h) Ours. Results of Watanabe and Hasegawa [24], Zhang et al. [8],
IBCLN [6], SpecularityNet [10] and SGR2N [29] contain residual reflection and color distortion, ExGANs [7] has obvious visual artifacts. Our method can
effectively remove the reflection and restore accurate details.

compared with the diffusion-based method. All the qualitative
and quantitative results can demonstrate the effectiveness of
our method.

C. Comparison on Images in the Wild With Complex
Backgrounds

Fig. 10 shows the evaluation results on the images in the
outdoor (the 1st sample) and indoor (the 2nd

− 7th samples)
situations with complex backgrounds to demonstrate the gener-
alization ability of our model. All the test images are captured
with a camera and have different reflection intensities. It can
be seen that the competitive methods do not clearly remove
the reflection or do not recover the original eye information
accurately, while our method can generalize to the images
in the wild. The main reason is that our method employs
the memory module for improving the generalization ability,
and can restore the fine-grained eye images by leveraging
the symmetry prior information. Furthermore, although the
background for our dataset collection is relatively monotonous,
our method can deal with the reflections in the indoor and
outdoor situations very well. The main reason is that our

method can detect the reflection regions more accurately, and
thus can remove the reflection but not affected by the complex
background.

D. Comparison on Images With Strong and Large Area
Reflection

We also conduct evaluations on some images with strong
reflection and large area reflection to verify the robustness
of the proposed method. Fig. 11 presents several examples
with strong reflection, and the 2nd and the 3nd rows show the
examples with large area reflection. It can be seen that the
competitive methods fail to accurately recover the content due
to the complete information missing underneath the reflection
and the large area reflection. In contrast, our method not only
removes reflections, but also accurately restores the texture
information as well as ensuring image quality, making the
restored image more realistic. We also make a statistic analysis
of the impact of reflection area in Table III, in which the large
area is defined as T a > 0.15% (T a is the proportion of the
reflection pixels in the whole image). We can see that the our
method is not sensitive to the reflection area. All the results
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Fig. 11. Visualization results of qualitative comparisons on images with strong reflection. (a) Input image; (b) Watanabe et al. [24]; (c) Zhang et al. [8];
(d) IBCLN [6]; (e) SpecularityNet [10]; (f) SGR2N [29]; (g) ExGANs [7]; (h) Ours. Results of Watanabe et al. [24], Zhang et al. [8], IBCLN [6], SpecularityNet
[10] and SGR2N [29] have some residual reflection and have obvious color distortion, ExGANs [7] has obvious visual artifacts. In comparison, our method
can effectively remove the strong reflection and accurately restore the missing details.

TABLE III
STATISTIC ANALYSIS OF THE IMPACT OF REFLECTION AREA

show that our method can generalize to strong and large area
reflection.

E. Comparison on Other Natural Image Reflection Datasets

To further validate the effectiveness of our method,
we retrain our method (without the ℓeye) on the natural
reflection removal datasets, including the Zhang et al. [8] and
SIR2 [9], and then compare with the state-of-the-art image
reflection removal methods. Table IV shows that our method
can achieve comparable results to other methods on other
datasets even without the ℓeye loss.

TABLE IV
QUANTITATIVE COMPARISON RESULTS ON OTHER NATURAL

IMAGE REFLECTION DATASET. THE BEST
RESULTS ARE IN BOLD

F. Ablation Study

To further verify the effectiveness of each module in our
method, we design seven variants, that are:
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Fig. 12. Visualization of ablation study results. (a) Input image; (b) w/o Detection; (c) only Elimination; (d) only Inpainting; (e) RFM→PF; (f) w/o ResBlk;
(g) w/o MM; (h) w/o ℓeye; (i) Our ER2Net.

TABLE V
QUANTITATIVE COMPARISON RESULTS OF ABLATION STUDY.

THE BEST RESULTS ARE MARKED IN BOLD

(1) w/o Detection: MTNet without Detection Branch;
(2) only Elimination: MTNet only using Elimination Branch
for reflection removal;
(3) only Inpainting: MTNet only using Inpainting Branch for
content inpainting;
(4) RFM→PF: using a Plain Fusion layer (concat+conv)
instead of RFM;
(5) w/o ResBlk: Elimination Branch without residual block;
(6) w/o MM: Inpainting Branch without memory module;
(7) w/o ℓeye: ER2Net without the eye symmetry loss;

We train and evaluate above seven variants on our ReyeR
dataset. The results are summarized in Table V, from which
we can observe that all modules could improve the reflection
removal performance of our method, which suggests the
effectiveness of our designs.

Fig. 12 provides the visual comparisons of ablated variants.
From the results in Fig. 12 (b), we can observe that the
detection branch can affect the final results. Moreover, without
the detection branch, the memory module needs to vectorize
the whole image, which will take a lot of training time and
calculation.

Fig. 12 (c) illustrates that the elimination branch can
effectively remove the weak reflection, but still has residual
reflection or black artifacts for strong reflection. Fig. 12 (d)
shows that although the inpainting branch can also remove the
reflection, the restored eyes are unnatural. Fig. 12 (e) further
proves that RFM is important to fusing reflection elimina-
tion and content inpainting results to generate reflection-free
images. Fig. 12 (f) shows that without residual block the
results exhibits more residual reflection, and Fig. 12 (g)
shows that without the memory module, the results exhibits
obvious eye artifacts, which demonstrate that our residual
block is effective for weak reflection removal and memory

TABLE VI
SENSITIVITY STUDY ON PARAMS OF OUR FOCAL LOSS AND

WEIGHT LOSS. THE BEST RESULTS
ARE MARKED IN BOLD

TABLE VII
SENSITIVITY STUDY ON PARAMS OF OUR FLOW LOSS AND

EYE SYMMETRY LOSS. THE BEST RESULT
IS MARKED IN BOLD

module works well for eye restoration. From the results in
Fig. 12 (h), we can see obvious visual artifacts, while our
ER2Net can remove the visual artifacts and restore the eye
details effectively. It demonstrates the effectiveness of eye
symmetry loss on avoiding visual artifacts and restoring the
eye details.

G. Sensitivity Study

Since there are several losses in Eq. (14), we conduct
sensitivity studies to better understand the necessity of loss
functions. We first consider the sensitivity study on the
parameters λ3 and λ4 of focal loss and weight loss. Then,
we perform the sensitivity study on parameters λ5 and λ6 of
flow loss and eye symmetry loss. Table VI and Table VII
report the quantitative results on different parameters of our
loss functions.
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Fig. 13. Visualization of three intermediate results in MTNet and final
fine-grained result. (a) Input image; (b) detection result; (c) eliminating result;
(d) inpainting result; (e) final result.

H. Discussions

1) Adverse Effect of Eyeglass Reflection on Downstream
Tasks: We conduct the facial landmark detection following [4]
on the portrait images with eyeglass reflections to empirically
assess whether these reflections indeed pose a significant
problem. We also implement the algorithm on the ground-truth
images without reflections in the ReyeR dataset for compari-
son. The normalized mean error (NME) between these two
results is 8.28, which demonstrates that the reflection has
adverse impact on the facial landmark detection task.

2) Visualization Results of Intermediate Outputs: Our
MTNet produces three intermediate outputs, the reflection
detection result D, the content inpainting result Ii and the
reflection eliminating result Ie, respectively. We show the three
intermediate results and our final result in Fig. 13, including
a weak reflection image (the 1st row) and a strong reflection
image (the 2nd row). From the results we can see: (1) the
detection branch can detect both the weak and strong reflection
regions accurately; (2) the eliminating results are relatively
more satisfactory in the weak reflection regions than that in
the strong reflection regions, and there are still many residual
reflections in strong reflection regions (see the yellow rectangle
in Fig. 13 (c)); (3) the inpainting result is more effective
in the regions with smooth backgrounds, but it introduces
visual artifacts in the regions with texture details (see the red
rectangle in Fig. 13 (d)); (4) our RFM can fully fuse the two
results and bridge the disadvantages of the two methods, and
generate the final fine-grained reflection-free results.

3) Discussion on the Memory Module: The mechanism
of our memory module for enhancing the inpainting result
is that, it records the prototypical features cross images for
content reasoning by calculating the correlation between query
features and memory items. In the writing process, we find
the most similar item mi for each query (as in Eq. (3)), and
then use the queries found for updating mi (as in Eq. (4)).
During the reading process, the correlation values between the
query features and the learned memory items are visualized
in Eq. (1) in Fig. 14, which show that the missing eye
contents are highly correlated with the memory items. We also
analyze the effect of the size of the memory block to better
understand the performance. Specifically, we try 5 different
value of the memory size (s), and the performance of our
method is presented in Table VIII. We choose s = 512 for the
trade-off between the space complexity and the performance.

Fig. 14. Visualization of the correlation value between the input image and
memory items in the reading process. The redder the color, the higher the
correlation.

TABLE VIII
SENSITIVITY STUDY ON SIZE OF THE MEMORY BLOCK

TABLE IX
ANALYSIS ON DETECTION ACCURACY AND ITS IMPACT

ON THE FINAL REMOVAL RESULT

4) Effects of the Detection Accuracy: We calculate the BER
(Balance Error Rate) value on the reflection regions (denoted
as RBER), non-reflection regions (denoted as NBER), and the
whole image (denoted as BER), and compare them with that
of a plain U-Net to evaluate the performance of our reflection
detection branch. The results are presented in the upper part
of Table IX. We can see that although our detection branch is
a simple encoder-decoder network, it performs much better
than that of U-Net. The main reason is that the learning
procedure of the multi-task network promotes the training
of the detection branch. We further evaluate the effects of
the reflection detection accuracy on the final removal results.
To this end, we first remove the detection branch in the MTNet,
and replace the detection result with the result of the U-
Net, which is denoted as ER2Net w. U-Net. The results are
presented in the lower part of Table IX. It can be seen that the
detection result is of great importance to the final result, and
our ER2Net achieves much better performance on reflection
removal due to the better performance on reflection detection.

5) Discussion on the Replacement Approach of the Eye
Symmetry Loss: We use the adversarial loss following [66]
instead of ℓeye, which is denoted as ℓeye → ℓadv , to understand
the effectiveness of ℓeye for avoiding visual effects, and the
results are presented in Table X. It can be seen that our eye
symmetry loss can achieve better performance compared with
the adversarial loss.

6) Complexity Analysis: Our ER2Net consists of the MTNet
and the RFM. The RFM produces the final result requiring
the result of the three results produced by MTNet. So the
computational complexity of our method is defined as the
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TABLE X
COMPARATIVE ANALYSIS OF THE EYE SYMMETRY LOSS

AND ITS REPLACEMENT APPROACH

TABLE XI
COMPARISON RESULTS ON COMPUTING COMPLEXITY

Fig. 15. Performance on colorful reflections, 1st row: the input images, 2nd

row: the result images.

summation of all the three branches in MTNet and RFM.
We make comparisons with SOTA methods on params count,
FLOPs and inference time in Table XI. Although Watanabe
and Hasegawa [24] and Zhang et al. [8] adopt a simple U-net
architecture to remove reflection with lower parameters and
FLOPs, it performs much poorer compared with the other
methods. On the contrary, our method can not only effectively
remove reflection and produce a fine-grain result, but also has
a relatively lower computing complexity.

7) Discussion on the Dataset: (a) About the colorful light
source. The images in ReyeR are mainly collected under white
light sources, with a small amount of images captured using
yellow light sources. Due to the different materials of the
lenses and the different materials of the coating film on the
lenses, different glasses display different colors for reflection,
including purple, blue, green, and etc. Our algorithm can
effectively remove reflections with different colors (shown
in Fig. 15). (b) Our method is not effective enough to the
reflection caused by the sunlight, and this limitation is indeed
caused the dataset where the images are collected in the
artificial lighting environments. Since the sunlight is difficult
to control, we cannot simulate this complex lighting condition
in the lab.

I. Advantage Scenarios and Limitations

1) Advantage Scenarios: Our method can deal with both
indoor and partial outdoor eyeglass image reflection removal
(see Fig. 9, Table II, and Fig. 10), including reflec-
tion of various colors (see Fig. 15), various areas (see

Fig. 16. A failure case of our method.

Fig. 11 and Table III), various intensity (see Fig. 11). It also
performs well on natural image reflection removal (see
Table IV) compared with other SOTA methods.

2) Limitations: Our method does not perform well on the
outdoor complex reflections caused by the sunshine and other
complex refracted light sources. As shown in Fig. 16, the
problem of residual reflection is serious. The main reason is
that our dataset is mainly collected in the lab with artificial
light sources under controllable lighting conditions. However,
even in this case, our method still achieves better results than
other methods. Addressing complex reflections is left as our
future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have constructed a real-world eyeglass
reflection dataset (ReyeR) and presented the ER2Net for
eyeglass reflection removal. Our key idea for dealing with both
weak and strong reflection is to learn the reflection elimination
and content inpainting jointly, and then fuse the results of
both branches adaptively. The eye symmetry loss is introduced
for avoiding visual artifacts. Extensive experimental results in
our ReyeR data set demonstrate that our ER2Net is effective
to deal with previous challenging eyeglass reflections, and
generalizes well on in-the-wild images.

FUTURE WORK

In future work, we will further capture the real eyeglass
reflection dataset in outdoor scenes to simulate a more realistic
reflection distribution and enhance the generalization ability of
our method.
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