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Learning Motion-Guided Multi-Scale Memory
Features for Video Shadow Detection
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and Lei Zhu , Member, IEEE

Abstract— Natural images often contain multiple shadow
regions, and existing video shadow detection methods tend to fail
in fully identifying all shadow regions, since they mainly learned
temporal features at single-scale and single memory. In this
work, we develop a novel convolutional neural network (CNN)
to learn motion-guided multi-scale memory features to obtain
multi-scale temporal information based on multiple network
memories for boosting video shadow detection. To do so, our
network first constructs three memories (i.e., a global memory,
a local memory, and a motion memory) to combine spatial context
and object motion for detecting shadows. Based on these three
memories, we then devise a multi-scale motion-guided long-short
transformer (MMLT) module to learn multi-scale temporal and
motion memory features for predicting a shadow detection map of
the input video frame. Our MMLT module includes a dense-scale
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long transformer (DLT), a dense-scale short transformer (DST),
and a dense-scale motion transformer (DMT) to read three
memories for learning multi-scale transformer features. Our
DLT, DST, and DMT consist of a set of memory-read pooling
attention (MPA) blocks and densely connect these output fea-
tures of multiple MPA blocks to learn multi-scale transformer
features since the scales of these output features are varied.
By doing so, we can more accurately identify multiple shadow
regions with different sizes from the input video. Moreover,
we devise a self-supervised pretext task to pre-training the feature
encoder for enhancing the downstream video shadow detection.
Experimental results on three benchmark datasets show that our
video shadow detection network quantitatively and qualitatively
outperforms 26 state-of-the-art methods.

Index Terms— Neural networks, video shadow detection.

I. INTRODUCTION

SHADOWS are a ubiquitous feature in natural images,
offering valuable cues for extracting scene geometry [1],

[2], [3], [4], [5], estimating light directions, and determining
camera locations and parameters [2]. Additionally, shadows
have the potential to enhance a diverse range of image
understanding tasks, including image segmentation [6], object
detection [7], image editing [8], and object tracking [9]. The
last decade has witnessed a growing interest in image shadow
detection. Early methods addressed the shadow detection
task in still single image by examining color and illumina-
tion priors [10], by developing data-driven approaches with
hand-crafted features [11], [12], [13], or by learning deep dis-
criminative features via diverse convolutional neural networks
(CNNs) [14], [15], [16], [17], [18], [19], [20]. While image-
based shadow detectors can be applied frame by frame to
detect shadow pixels, their performance is often unsatisfactory
due to the lack of consideration for temporal information from
neighboring video frames.

Owing to an annotated video shadow detection dataset (i.e.,
ViSha [8]), much research attention [8], [21], [22], [23], [24],
[25] on shadow detection has recently been shifted from
single static images to dynamic videos. Hence, a common
strategy to detect shadows from video data is to learn temporal
features from adjacent video frames [8], [21], [22], [23], [24].
Chen et al. [8] annotated the first VSD dataset and presented
a baseline network equipped with a dual gated co-attention
module mechanism for enhancing correlations between video
frames and a T-module for learning inter-video and intra-video
features. Since then, researchers [21], [22], [23], [24] have
noticed that temporal consistency is the central obstruction
for accurately detecting shadows from video and usually
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Fig. 1. Visual comparisons of shadow detection results produced by our
method and two state-of-the-art methods in terms of video frames with
multiple or tiny shadow regions. Apparently, our method can identify more
shadow regions or more accurately detect tiny shadow regions than SC-Cor
and STICT. GT denotes the ground truth of shadow detection on input video
frames.

brings inconsistent predictions. Ding et al. [22] computed
shadow-consistent correspondence to enhance pixel-wise sim-
ilarity of the specific shadow regions across adjacent video
frames and improve shadow detection performance. Although
capturing the shadow objects in most scenarios, these methods
tend to fail in detecting tiny shadow objects or handling video
frames with multiple shadow objects. As shown in Figure 1,
SC-Cor [22] tends to identify shadow regions with different
region sizes, and their performance on detecting tiny shadow
objects is degraded.

In this work, our objective is to address the challenge of
identifying all shadow pixels of each video frame. Exist-
ing video shadow detection methods tend to fail in fully
identifying all shadow regions, since they mainly learned tem-
poral features at single-scale and single memory. Therefore,
we develop a novel convolutional neural network (CNN) to
learn motion-guided multi-scale memory features to obtain
multi-scale temporal information based on multiple network
memories for boosting video shadow detection. As illustrated
in Fig. 1, we present visual comparisons of shadow detection
results generated by our video shadow detection network and
two leading and state-of-the-art methods, focusing on video
frames with multiple or tiny shadow regions. It is evident that
our method can identify a greater number of shadow regions or
more precisely detect tiny shadow regions compared to SC-Cor
and STICT.

Specifically, we devise a multi-scale motion-guided long-
short transformer module (MMLT) to learn multi-scale
temporal features and multi-scale motion features to detect
shadows of the input video frame. In our MMLT module,
we develop three dense-scale transformer blocks to learn
multi-scale long-term features, multi-scale short-term features,
and multi-scale motion features, and then integrate them to
obtain a multi-scale transformer feature map, which is then
passed into a decoder for shadow detection of the input video
frame.

Moreover, we devise a self-supervised learning to predict
an optical flow map from the input video frame for training
the feature extraction encoder, the DST block and DLT block
to compute multi-scale features.

Overall, our contributions are summarized as follows:
• We develop a novel convolutional neural network to learn

motion-guided multi-scale temporal features for boosting

video shadow detection by devising multi-scale motion-
guided long-term transformer (MMLT) modules.

• In our MMLT module, we develop three dense-scale
transformer blocks to learn a multi-scale long-term fea-
ture map, a multi-scale short-term feature map, and a
multi-scale motion feature map, respectively. Our dense-
scale transformer block contains a set of memory-read
pooling attention (MPA) blocks and utilizes dense con-
nections to integrate output features (with different scales)
of MPA blocks to generate multi-scale output features.

• We devise a self-supervised task to predict the optical
flow map from the input video frame for training the
feature extraction encoder, the DST block, and DLT block
for the subsequent multi-scale feature learning.

• Experimental results on three benchmark datasets show
that our video shadow detection network clearly outper-
forms 26 state-of-the-art methods.

II. RELATED WORK

A. Image Shadow Detection

Early works [10], [11], [12], [13], [26] mainly focused
on exploring illumination models and color information, but
these methods only worked well on high-quality images. Later,
a number of shadow detectors [14], [15], [16], [17], [18],
[19], [20], [26], [27], [28], [29] based on convolutional neural
networks (CNNs) have been proposed to automatically identify
shadow pixels of the input single image. Although these CNNs
have achieved superior performance over classical shadow
detectors, it is still not satisfactory to directly extend these
CNNs trained on single images for video shadow detection
due to a lack of learning temporal information among video
frames.

B. Video Shadow Detection

Unlike single-image shadow detection, video shadow detec-
tion (VSD) aims to detect the shadow regions of each
video frame. Early works [9], [30], [31] focus on utiliz-
ing hand-crafted features to detect the shadow regions of
input videos. Recently, Chen et al. [8] collected a large-scale
annotated video shadow detection dataset (ViSha) and pre-
sented a network with a dual gated co-attention module
and a T-module to learn intra-video and inter-video fea-
tures for video shadow detection. Afterward, Hu et al. [21]
devised a warping module to align and combine features
of neighboring video frames, while Lu et al. [23] presented
an image-to-video shadow detection by utilizing the unla-
beled video frames and labeled images. More recently,
Ding et al. [22] learned shadow-consistent correspondence to
enhance pixel-wise similarity of shadow regions across frames,
Chen et al. [24] utilized existing labeled image dataset to
produce pseudo-labels for semi-supervised video shadow
detection. Liu et al. [32] highlight the importance of consider-
ing shadow deformation in video shadow detection methods.
They propose two novel approaches: SODA, a self-attention
module designed to handle large shadow deformations, and
SCOTCH, a shadow contrastive learning mechanism that facil-
itates the learning of a unified shadow representation from
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Fig. 2. The schematic illustration of our proposed MMLT-Net. Subfigure (a) illustrates the self-supervised pretraining process of our video shadow detection
network. Specifically, it first passes the current video frame I t and its adjacent frame I t−1 into an encoder identical to the video shadow detection encoder.
Then, the encoder outputs are then feed into DLT and DST blocks to generate a feature map, which then passed into a RAFT decoder to predict an optical flow
map P(M t ). Subfigure (b) illustrates the training process for our video shadow detection model. We first pass I t and M t into two feature extraction encoders
(denoted as Et ) to obtain two feature maps (denoted as F t

c and F t
m ). Then, we pass F t

c and F t
m into a MMLT module to obtain a multi-scale transformer

features map F t
o , which is then fed into a decoder Et for predicting a shadow detection result of the input video frame. Note that the MMLT module denotes

a motion-guided multi-scale long-short transformer module, and it consists of a dense-scale long transformer (DLT), dense-scale short transformer (DST), and
dense-scale motion transformer (DMT); see Figure 3.

positive shadow pairs across multiple videos. Although these
CNNs work well for many shadow videos, they fail to identify
tiny shadows or multiple shadow regions due to limited
temporal information learned from only several neighboring
video frames.

C. Video Object Segmentation

Video object segmentation (VOS) automatically separates
primary foreground objects from the background of each
video frame [33], [34], [35], [36], [37]. Oh et al. [38] and
its following works (e.g., EGMN [39] and Seong et al. [40])
leveraged a memory network to embed past-frame predic-
tions into memory and applied a self-attention mechanism
to read memory to decode the segmentation of the current
frame. Duke et al. [41] utilized transformer blocks to extract
pixel-level affinity maps and spatial-temporal features for
video object segmentation. Yang et al. [42] addressed video
object segmentation by associating objects with transformers.

D. Vision Transformers

Owing to their dominated performance for diverse natural
language processing (NLP) tasks [43], [44], [45], many trans-
former networks were introduced to address many computer
vision tasks, such as image classification [46], [47], [48],
object detection [49], object segmentation [50], tracking [51],
low-light video enhancement [52], and image generation [53],
and these works also have shown promising performance over
classical CNN-based methods. Liu et al. [48] introduced a
shifted windowing scheme to limit self-attention computation
to non-overlapping local windows and considered the cross-
window interaction, while Carion et al. [49] first applied

transformers into the object detection field to achieve end-
to-end object detection manner. In this work, we leverage
the transformer mechanism to learn multi-scale spatial-context
features and multi-scale motion features to improve the VSD
accuracy of detecting multiple shadow regions.

III. PROPOSED METHOD

A. Overview

Figure 2 shows the schematic illustration of our video
shadow detection network. The intuition behind our network
is to devise a motion-guided multi-scale long-term transformer
(MMLT) module to learn multi-scale color-memory features
and multi-scale motion-memory features for predicting the
shadow mask of each video frame. To achieve this, we first
construct a global color memory, a local color memory, and a
motion memory from the first video frame, its corresponding
motion map, and its shadow detection mask, and then iter-
atively update three memories by using intermediate feature
maps (see pt and q t of Figure 3) of the MMLT module and
the predicted shadow detection masks. Then, for the current
video frame I t , we compute its optical flow map M t from I t

and I t−1 using RAFT [54], and then pass I t and M t into two
feature extraction encoders (Et ) to obtain two feature maps
(denoted as F t

c and F t
m). Then, we pass F t

c and F t
m into a

MMLT module to learn a multi-scale feature map F t
o , which

is then passed into a decoder Dt for predicting the shadow
mask (Rt ) of the input video frame I t . Moreover, we devise a
self-supervised task to learn an optical flow map P(M t ) from
the input I t for pre-training the feature extraction encoder Et

in order to boost the downstream video shadow detection.
We utilize a FPN-like structure [55] to design our decoder.

Specifically, we utilize skip connections to fuse highly
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semantic features representing global attributes of shadow
regions and low-level but subtly delicate features. Then we
apply a 3 × 3 convolutional layer and a 1 × 1 convolutional
layer to predict the final shadow detection result Rt of the
input video frame I t .

B. Self-Supervised Optical Flow Prediction

Self-supervised learning has been utilized for many vision
tasks by formulating diverse pre-text tasks, including predict-
ing context [56] or image rotation [57]. The reason behind
this is that the intermediate layers of convolutional neural
networks (CNNs) trained for solving these pre-text tasks
encode high-level semantic visual representations, which are
capable of helping to address the downstream tasks of interest.
Motivated by this, we devise a new self-supervised task, which
predicts an optical flow map from the input video frame.
By doing so, we can pre-train the feature extraction encoder,
the DST block, and the DLT block for the downstream shadow
detection of the current video frame.

As shown in Figure 2, we first pass the input video frame
I t and its adjacent video frame I t−1 into an encoder, which
has the same structure as the encoder of the subsequent video
shadow detection. Then we pass two output features of the
encoder to a DLT block and a DST block to obtain a new
feature map, which is then fed into a decoder of RAFT [54] for
predicting an optical flow map P(M t ). Here, we empirically
remove the motion branch of the MMLT module since there is
no motion map as the input for this self-supervised learning.

C. Multi-Scale Motion-Guided Long-Short Transformer
(MMLT) Module

In the past few years, by storing and reading features of
a number of video frames, memory networks have achieved
superior performance on diverse applications, such as video
object segmentation [38], [39], [42]. However, existing mem-
ory networks store and read features at a single scale, thereby
degrading the performance of detecting multiple shadow
regions in dynamic videos. To alleviate this issue, we develop
a video shadow detection network to construct three memo-
ries and then devise a multi-scale motion-guided long-short
transformer (MMLT) module to learn multi-scale transformer
features from three memories for detecting shadows from the
input video frame. Compared to existing memory networks,
our method has two advantages: (1) Instead of only relying
on spatial contexts, our method has three memories, which
are a global memory from long-term video frames, a local
memory from nearby short-term frames, and a motion memory
from its motion map, to leverage object motion information
for video shadow detection. (2) Our MMLT module has three
dense-scale transformer modules to read features of three
memories to learn three kinds of multi-scale memory features,
and they are a multi-scale long-term feature, a multi-scale
short-term feature, and a multi-scale motion feature. By doing
so, our network can better identify multiple shadow regions.

1) Three Memory Construction and Updating: The classical
STM [38] explores the idea of reading memory features to
refine features of the current video frame for video object

Fig. 3. The schematic illustration of our motion-guided multi-scale long-short
transformer (MMLT) module, which consists of a dense-scale long trans-
former (DLT), dense-scale short transformer (DST), and dense-scale motion
transformer (DMT).

detection, and the memory features are often built from
long-term memory frames. Later on, Yang et al. [42] explores
two kinds of memory-based attention mechanisms for video
object segmentation. They are a long-term attention from long-
term memory frames and a short-term attention from nearby
short-term frames. However, existing long-term memories and
short-term memories are from only RGB video frame. In this
work, we argue that the motion information provides a factor
to detect video shadows, which tend to be dynamic in the input
video. Motivated by this, we devise three memories to leverage
color and motion information for reading memory features to
refine features of the current video frame. Three memories
include a global memory for storing features of long-term
video frames, a local memory for storing features of short-term
video frames, and a motion memory to store motion features.

Specifically, the local memory at t-th video frame has two
features (denoted as local t

k and local t
v) and the global memory

also contains two features (denoted as global t
k and global t

v),
which are computed as:

local t
k = CatH (LT (q t−δ+1), . . . , LT (q t−1), LT (q t )),

local t
v = CatH (LT (q t−δ+1), . . . , LT (q t−1) + LT (q t )

+ Conv(Rt−1)),

global t
k = CatH (local1

k , local1+φ
k , local1+2φ

k ,

. . . , local
(1+⌊

t
φ
⌋φ)

k ),

global t
v = CatH (local1

v , local1+φ
v , local1+2φ

v ,

. . . , local
(1+⌊

t
φ
⌋φ)

v ), (1)

where LT (·) denotes a linear transformation layer (i.e.,
nn.Linear in Pytorch), and the parameters of different layers
are not shared. CatH (·) denotes the feature concatenation
operation along the horizontal direction of the 3D feature
maps. Rt−1 represents the shadow detection result of the
(t − 1)-th video frame. For the first frame, we empirically
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utilize a single shadow detection method (i.e., BDRAR [18])
to predict a shadow detection mask as Rt−1. Conv(·) is a
3×3 convolutional layer. ⌊.⌋ denotes an integer floor function.
δ represents the number of previous video frames stored in the
local memory of our method. φ denotes the intervals between
video frames for updating the global memory in our method.
Note that we update a global memory after each φ frames,
while the local memory has previous δ video frames of the
current video frame. And the motion memory has two features
(denoted as motiont

k and motiont
v) at t-th video frame is

updated as:

motiont
k = LT (pt ),

motiont
v = FC(pt ) + Conv(Rt−1), (2)

where LT (·) denotes a linear transformation layer and two
linear transformation layers in motiont

k and motiont
v do not

share the learning parameters. Rt−1 represents the shadow
detection result of the (t − 1)-th video frame; see Eq. (1).

2) MMLT Module: With these three memories, we devise
a multi-scale motion-guided long-short transformer (MMLT)
module to learn motion-guided multi-scale features for shadow
detection of I t from F t

c and F t
m , which are two features

obtained by passing the input video frame I t and its optical
flow map M t into the encoder.

Fig. 3 shows the schematic illustration of our MMLT
module. Specifically, our MMLT module first passes the
color feature F t

c into a self-attention module [58] to obtain
a new feature map, which is then element-wisely added
with F t

c . We then apply a layer optimization to produce a
feature map q t . Then, we pass the motion feature F t

m into
a multi-scale transformer (named multi-scale motion trans-
former) with the motion memory and then pass the output
feature into a U pConv(·) operation to obtain a feature map pt .
The U pConv(·) operation contains an upsampling operation
and a 3 × 3 convolutional layer. The upsampling operation is
used to rescale the feature map size to the same size as the
input feature map (i.e., F t

c or F t
m) of the MMLT module, while

the 3 × 3 convolutional layer is to ease the effect of feature
aliasing due to the upsampling operation.

After that, we pass q t into a multi-scale short-term trans-
former with the local memory, and a multi-scale long-term
transformer with the global memory to obtain two features.
We then pass the two obtained features into two U pConv(·)

operations to obtain a new feature map, which is then
element-wisely added with pt to generate the output feature
F t

o of our MMLT module. Mathematically, the output F t
o of

our MMLT module at the t-th video frame can be computed
by:

F t
o = U pConv(DLT (pt )) + U pConv(DST (pt )) + pt ,

pt
= U pConv(DMT (F t

m)) + q t ,

q t
= Sel f Attn(F t

c ) + F t
c . (3)

where Sel f Attn(·) denotes a self-attention module; see [58]
for details. “DLT”, “DST”, and “DMT” represent the multi-
scale long-term transformer, multi-scale short-term trans-
former, and multi-scale motion transformer, respectively.

Fig. 4. The schematic illustration of our dense-scale transformer block, which
is to build DST, DLT, and DMT of our MMLT module. MPA block denotes
the memory-read pooling attention block.

Three U pConv(·) operations do not share the same
parameters.

3) Dense-Scale Transformer: Note that our MMLT module
in Figure 3 has three dense multi-scale transformers, includ-
ing a dense-scale motion transformer (DMT), dense-scale
short transformer (DST), and dense-scale long transformer
(DLT). These three transformers are based on our dense-
scale transformer, but they have different input feature maps
and different memory features. Unlike the original multi-scale
vision transformers [59], our dense-scale transformer block
densely connects the output features of our memory-read
pooling attention (MPA) block at different stages to pro-
mote feature integration for learning multi-scale transformer
features. By doing so, we can better detect shadows with
different region sizes, thereby boosting video shadow detection
of our method. Figure 4 shows the schematic illustration of
our dense-scale transformer. Apparently, our dense-scale trans-
former has four stages, and each stage contains a memory-read
pooling attention (MPA) block. The output feature map of the
MPA block at different stages has specific spatial and channel
dimensions. Specifically, the output features (denoted as S1,
S2, S3, and S4) of all four MPA blocks are computed by:

S1 = M P A(X, K , V )),

S2 = M P A(Conv(Cat (X, S1)), K , V ))),

S3 = M P A(Conv(Cat (X, S1, S2)), K , V ))),

S4 = M P A(Conv(Cat (X, S1, S2, S3)), K , V ))), (4)

where M P A denotes the memory-read pooling attention
(MPA) block, which takes three features as the inputs, and
outputs a fused feature map. Conv(·) represents a 1×1 con-
volutional layer. Cat (·) is the feature concatenation operation
along the feature channel direction. After that, the output
feature (denoted as Y ) of our dense-scale transformer block is
computed by:

Y = Conv(Cat (X, S1, S2, S3, S4)). (5)

4) Memory-Read Pooling Attention (MPA) Block: Note
that the channel dimension and the spatial resolution in
self-attention blocks are often fixed for the output feature
map. To change the spatial resolution, multi-head pooling
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attention [59] has been developed to refine an input feature
map by adding a pooling attention mechanism into a self-
attention block. Motivated by the superior performance of
the multi-head pooling attention, we devise a memory-read
pooling attention (MPA) block to read the memory features
to refine features of the current video frame to enhance video
shadow detection performance. Figure 4 shows the schematic
illustration of our MPA block. It reads two memory features
(denoted as K and V ) from the memory to refine the input
feature (denoted as Q). For the current t-th video frame,
we compute two memory features (denoted as K and V ) by
concatenating the memory features from the first video frame
to the (t − 1)-th video frame.:

K = Cat (LT (α1), LT (α2), . . . , LT (αi ), . . . , αt−1),

V = Cat (LT (α1), LT (α2), . . . , LT (αi ), . . . , αt−1)),

(6)

where Cat (·) denotes the feature concatenation operation
along the feature channel direction, while LT (·) represents
the linear transformation layer. αi is q t at Eq. 1 for the MPA
block in the dense-scale short transformer or dense-scale long
transformer, while αi is pt at Eq. 2 for the MPA block in the
dense-scale motion transformer. Moreover, the input feature
maps (denoted as Q1, Q2, Q3, and Q4) Q at the four stages
are computed by:

Q1 = X,

Q2 = Cat (X, S1),

Q3 = Cat (X, S1, S2),

Q4 = Cat (X, S1, S2, S3), (7)

where S1, S2, S3, S4 denote the output feature map of our
M P A block at the four stages.

Once obtaining three feature maps (Q, K , V ), our M P A
block first reshapes them into 2D matrices, and then applies
three pooling operations to them to reduce the spatial resolu-
tion by half. After that, we follow the classical self-attention
mechanism to multiply the reshaped matrices on Q and K
to compute a similarity matrix, which is then passed into a
Sof tmax(·) to normalize the similarity matrix. Then, we mul-
tiply the normalized similarity matrix with the reshaped V
and add the multiplication result with the reshaped Q to
produce the output feature (S) of our MPA. Mathematically,
the definition of S is given by:

S = P(Q; θ) + Sof tmax
(
P(Q; θ)P(K ; θ)T )

)
P(V ; θ),

(8)

where P(:; θ) denote a pooling operation on a feature map
along three dimensions with a kernel θ = (θk, θs, θp). θk =

(θh
k , θw

k ), θs = (θh
s , θw

s ), and θp = (θh
p , θw

p ) represent the
kernel, stride, and padding of the pooling operation. In MPA
blocks of all stages, θk , θs , and θp are empirically set as θk =

(3, 3), θs = (2, 2), and θp = (1, 1) in our experiments.
5) Three Dense-Scale Transformer Modules (DMT, DLT,

DST): As shown in Figure 4, the dense-scale transformer
blocks have three inputs, and they are the input feature X ,
and two memory features (see K and V of Figure 4). And we

utilize this dense-scale transformer block to build DMT, DLT,
and DST of our MMLT module, and the differences of DMT,
DLT, and DST are summarized as follows:

• Dense-scale motion transformer (DMT). DMT exploits
the video motion information to emphasize potential
shadow regions of the current video frame. It leverages
the motion memory features to refine the motion feature
map from the current video frame for shadow detection.
Hence, three input features of DMT include the motion
feature map (F t

m) and two motion memory features
(motionk and motionv).

• Dense-scale long transformer (DLT). DLT aggregates
shadow information from the long-term RGB memory
to refine features of the current video frame for shadow
detection. Hence, the three input features of DLT include
the RGB feature map (F t

c ) and two long-term memory
features (globalk and globalv).

• Dense-scale short transformer (DST). learns a temporal
information from nearby short-term video frames for
detecting shadows from the current video frame. Hence,
the three input features of DLT include the RGB feature
map (F t

c ) and two local memory features (localk and
localv).

D. Loss Function

Our network has two training stages. The first stage is to
predict an optical flow map P(M t ) from the input video frame
I t , and we utilize a L1 loss to compute the optical flow
prediction error:

Loptical = �L1(Mp, Mgt ) (9)

where �L1 is the L1 loss function. Mp (see P(M t ) of
Figure 2) and Mgt denote the predicted optical flow map and
the ground truth of the optical flow, respectively.

In the second training stage, we predict a shadow detection
map Rt of the input video frame I t . Then, we compute a
shadow detection error Lseg by using a binary cross-entropy
(BCE) loss and an IoU [17] loss:

Lseg = λ1�BC E (Rp, Rgt ) + λ2�I oU (Rp, Rgt ) (10)

where Rp and Rgt denote the predicted shadow detection map
and the underlying ground truth. �BC E and �I oU are the
binary cross-entropy (BCE) loss and an IoU loss, respectively.
λ1 and λ2 are to balance the BCE loss and the IoU loss, and we
empirically set them as λ1 = 0.5, λ2 = 0.5 in our experiments.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We evaluate the effectiveness of the proposed video shadow
detection (VSD) method on three challenging benchmark
datasets (i.e., ViSha [8], VISAD-DS [23] and VISAD-
MOS [23]). ViSha [8] is a significant milestone as it is the
first large-scale dataset for video shadow detection. It com-
prises 120 videos with 11,685 image frames. Moreover,
VISAD-DS [23] and VISAD-MOS [23] are two subparts
of VISAD [23], each containing Driving Scenes (DS) and
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TABLE I
QUANTITATIVE COMPARISONS BETWEEN OUR VIDEO SHADOW
DETECTION NETWORK AND THE STATE-OF-THE-ART METHODS

IN TERMS OF MAE, Fβ , IOU, AND BER ON VISHA DATASET

Moving Object Scenes (MOS), respectively. To quantitatively
compare different VSD methods, we employ four evaluation
metrics, namely, Mean Absolute Error (MAE), F-measure
(Fβ ), Intersection over Union (IoU), and Balanced Error
Rate (BER). MAE measures the average pixel-level relative
error between the ground truth and the predicted result by
calculating the mean of the absolute value of their differences.
Fβ provides a comprehensive assessment of both precision
and recall, resulting in a weighted harmonic mean given by:
Fβ = (1+β2) P∗R

β2 P+R , where β2 is set to 0.3 to emphasize the
precision score. IoU describes the extent of overlap between
the predicted results and the ground-truth map. BER is the
average of errors for each class, calculated as follows: B E R =

(1 −
1
2 ( T P

Np
+

T N
Nn

)) × 100, where TP and TN denote the
true positives and the true negatives, respectively. Np and Nn
represent the number of shadow pixels and the non-shadow
pixels, respectively. In general, a better video shadow detector
often has smaller BER and MAE scores as well as larger Fβ

and IoU scores.

B. Implementation Details

We implement our MMLT-Net using PyTorch, and train it
by using an Adam optimizer on four NVIDIA GTX 2080Ti.
We initialize the feature extraction backbone via a MobileNet-
V2 [70] pre-trained using our self-supervised task of predicting
an optical flow map, while other parameters are trained from
scratch. The model needs to take about 20 hours to converge.
We resize the input RGB image and its optical flow image
to 448 × 448 and adopt three data augmentation operations,
including random flipping, rotating, and border clipping. The
weight decay, batch size, and iteration number are empirically
set as 0.0005, 4, and 20000, respectively. We set the initial
learning rate as 0.0004 for scratch layers and 0.00005 for
pre-trained layers and then used a cosine decay with a
warm-up period to adjust the learning rate. During the testing

stage, each video frame and its optical flow map are resized to
448 × 448 and then fed into our network to predict a shadow
detection map of the input video frame. Finally, a bilinear
interpolation is applied to up-sample the prediction map to
the original size of the input video frame to achieve its final
shadow detection.

C. Performance Comparison

1) Compared Methods: We compare our method against
26 state-of-the-art VSD methods, including BDRAR [18],
DSD [20], MTMT [27], FPN [55], PSPNet [60], DSS [61],
R3Net [62], PDBM [63], COSNet [33], MGA [64], STM [38],
FEELVOS [65], DSC [17], ECANet [66], FSDNet [28], Mag-
Net [67], SANet [23], GRF [21], NS [68], RCRNet [69],
TVSD-Net [8], Hu et al. [21], STICI [23], SC-Cor [22],
MPLNet [24], as well as SCOTCH and SODA [32].

2) Quantitative Comparisons: Table I and Table II summa-
rize the quantitative results of our method and state-of-the-art
video shadow detection methods in terms of all four metrics,
including MAE, Fβ , IoU, and BER on three benchmark
datasets. From the quantitative results on the ViSha dataset,
we can find that TVSD-Net [8] has the smallest MAE score
of 0.033; SC-Cor [22] has the largest Fβ score of 0.762 and
the largest IoU score of 0.615; while MPLNet [24] has the
smallest BER score of 8.69 among all compared methods.
(Note that MPLNet [24] does not release their MAE, Fβ ,
and IoU scores). Compared to these best-performing existing
methods, our network obtains a MAE improvement of 42.4%,
a Fβ improvement of 7.2%, an IoU improvement of 20.5%,
and a BER improvement of 17.1%, respectively. Specifically,
the MAE, Fβ , IoU, and BER scores of our network are 0.019,
0.817, 0.741, and 7.2.

Regarding VIDAD-DS and VISAD-MOS, our network has
better metric results than compared methods for all four
metrics. Specifically, our method has a MAE score of 0.027,
a Fβ score of 0.732, a IoU score of 0.533, and a BER score
of 9.23 for the VISAD-DS dataset. And the MAE, Fβ , IoU,
and BER scores of our method on the VISAD-MOS dataset
are 0.051, 0.639, 0.441, and 15.32, respectively.

3) Visual Comparisons: Figure 5 visually compares video
shadow detection results of our network and state-of-the-
art methods for input video frames, which contain multiple
shadow regions. From the visual results, we can find that
compared methods tend to miss parts of shadow regions or
wrongly identify non-shadow regions as target ones, especially
for small shadow regions. On the contrary, our method (see 3rd
column of Figure 5) can more accurately identify all shadow
regions of input video frames.

D. Ablation Study

1) Baseline Design: We construct seven baselines to
evaluate the effectiveness of three dense-scale transformer
blocks, including the dense-scale short transformer (DST),
the dense-scale long transformer (DLT), and the dense-scale
motion transformer (DMT). The first baseline network
(denoted as “basic”) is reconstructed by removing the motion
branch and the self-supervised task from our network, and
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TABLE II
QUANTITATIVE COMPARISONS BETWEEN OUR VIDEO SHADOW DETECTION NETWORK AND THE STATE-OF-THE-ART

METHODS IN TERMS OF MAE, Fβ , IOU, AND BER ON VISAD-DS AND VISAD-MOS DATASETS

Fig. 5. Visual comparisons of video shadow detection results produced by our network (3rd column; denotes as “Ours”) and state-of-the-art methods (4th
to 11-th columns) against ground truths (2nd column). Apparently, our network can more accurately identify shadow regions than all compared methods.

then utilizing the original long-term attention and short-term
attention of [42] to replace DLT and DST of our network.
The second baseline network (denoted as“basic+DST”) is
to replace the original short-term attention [42] by using
DST of our framework. Similarly, we can obtain the third
(denoted as “basic+DLT”) and the fourth (denoted as
“basic+DMT”) baseline networks by using DLT or DMT
within our framework. The fifth baseline network (denoted
as “basic+DST+DLT”) is built by replacing the original
long-term attention of “basic+DST” by using our DLT. The
sixth baseline network (denoted as “basic+DLT+DMT”) is
created by adding our DMT to “basic+DLT”. The eighth
baseline network (denoted as “basic+DST+DLT+DMT”)
is to add our DMT into “basic+DST+DLT”. Apparently,
“basic+DST+DLT+DMT” includes all three dense-scale
transformer blocks (i.e., DST, DLT, and DMT). It is equal
to removing the self-supervised task of predicting the optical
flow from our network. And the last baseline network (denoted
as “basic+Conv”) is constructed by replacing these three
modules with many convolutional layers, which have the same
number of parameters as these three modules.

2) Quantitative Comparisons: Table III reports the quan-
titative results of our method and four baseline networks
in terms of MAE, Fβ , IoU, and BER. Apparently, we can
find that “basic+DST”,“basic+DLT”, and “basic+DMT”
outperforms “basic” for all four metrics, which demon-
strates that incorporating the DST, DLT, or DMT modules
can enhance video shadow detection performance. Then,
“basic+DST+DLT” has smaller MAE and BER scores
as well as larger Fβ and IoU scores than “basic+DST”.
It indicates that the dense-scale long-term transformer (DLT)
enables our network to better identify shadows from video
frames. Similarly, “basic+DLT+DMT” has a superior perfor-
mance over “basic+DLT” and “basic+DMT”. It demonstrates
that combining the DLT and the DMT together can fur-
ther improve our video shadow detection performance.
Moreover, “basic+DST+DLT+DMT” has a superior met-
ric performance over “basic+DST+DLT”. It means that the
motion information from our dense-scale motion transformer
(DMT) can help our network to better detect shadow pix-
els of video frames. The better metric results our method
over “basic+DST+DLT+DMT” demonstrates that utilizing
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TABLE III
QUANTITATIVE RESULTS OF OUR METHOD AND CONSTRUCTED BASELINE NETWORKS OF OUR METHOD IN TERMS OF MAE, Fβ , IOU, AND BER.

DMT, DLT, AND DST DENOTE THE DENSE-SCALE MOTION TRANSFORMER, THE DENSE-SCALE LONG TRANSFORMER, THE DENSE-SCALE
SHORT TRANSFORMER, RESPECTIVELY. AND “SS” DENOTES THAT WE UTILIZE AN OPTICAL FLOW

PREDICTION AS A SELF-SUPERVISED PRE-TRAINING TASK

TABLE IV
ABLATION ANALYSIS RESULTS OF OUR METHOD WITH AND WITHOUT DENSE CONNECTION IN MMLT

Fig. 6. Visual comparisons of video shadow detection results produced by our method and constructed baseline networks of our ablation studies.

the self-supervised task of an optical flow prediction to
pre-training the feature extraction encoder can boost the
downstream video shadow detection of our network. Note that
Table III also summarizes the computation time and numbers
of parameters (denotes as #Param.) of baseline networks of our
ablation study to evaluate the speed and size of our three main
modules. Apparently, the DST reduces the FPS from 25 to 22;
DLT can further reduce the speed from 22 FPS to 20 FPS, and
DMT reduces the FPS from 20 to 18. Since the difference
between our method and “basic+DST+DLT+DMT” is the
self-supervised learning, and the inference stage does not
involve the self-supervised task, our method has the same FPS
and the numbers of parameters as “basic+DST+DLT+DMT”.
To further verify whether our network performance comes
from our three modules (i.e., DLT, DST, and DMT) or the
increase of network parameters, we build another baseline
network (denoted as “basic+Conv”) by replacing these three
modules with many convolutional layers, which have the same
number of parameters as these three modules. By comparing

TABLE V
ABLATION ANALYSIS OF THE SELF-SUPERVISED LEARNING MODULE

“basic+Conv” and our network, we can find that our net-
work has a better video shadow detection performance than
“basic+Conv”. It indicates that our network performance
comes from the effectiveness of our three modules (DLT, DST,
and DMT).

3) Visual Comparisons: In Figure 6, we present a visual
comparison of detection results. It is evident that our network
excels in accurately identifying shadow pixels in video frames
compared to all five baseline networks. This observation
further underscores the effectiveness of the three transformer
blocks and the self-supervised task incorporated into our
network.
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TABLE VI
ABLATION ANALYSIS RESULTS OF OUR METHOD WITH DIFFERENT

NUMBER OF PREVIOUS VIDEO FRAMES IN THE LOCAL
MEMORY OF OUR METHOD

4) Module for Self-Supervised Learning: We investigated
the impact of self-supervised learning on various modules.
We constructed and compared a baseline called ‘ours-ss-
before-MMLT’, where self-supervised learning was applied
only to the encoder. As shown in Tab. V our network out-
performs ‘ours-ss-before-MMLT’ for all the four quantitative
metrics. It indicates that the self-supervised learning after the
MMLT in our work can more accurately detect shadows than
that before the MMLT. Hence, the pre-training DST and DLT
blocks via the self-supervised learning enable our network to
produce more accurate shadow detection results.

5) The Effectiveness of Dense Connection in MMLT:
Table IV summarizes MAE, Fβ , IoU, and BER scores of our
method and that (denoted as “ours-w/o-DC”) without dense
connection in MMLT. Obviously, our method has better MAE,
Fβ , IoU, and BER results than “ours-w/o-DC” and the other
two SOTA methods. The reason behind is that the dense con-
nection can fuse highly semantic features representing global
attributes of shadow regions and low-level but subtly delicate
features. Note that incorporating dense connections within
our method would increase the complexity in terms of both
time and space. Our approach results in a reduction of FPS
from 22 to 18, while also increasing FLOPs(G) from 144 to
163 and the number of parameters in the model from 47 to 82.
We also compare the complexity and inference speed between
our network and two SOTA methods. Apparently, our FLOPs
and the number of parameters are larger than TVSD-Net, but
smaller than the more recent method “SCOTCH and SODA”.
However, our method is faster than TVSD-Net (12 FPS) and
“SCOTCH and SODA” (9 FPS) due to our larger FPS score
(18). Moreover, our network outperforms these two methods
in terms of video shadow detection performance.

6) The Number of Previous Video Frames of the Local
Memory: We utilize the features of previous video frames
to compute the local memory in our approach. As a result,
we conduct an ablation study experiment to compare the
results of our method using different numbers of previous
video frames for updating the local memory. Table VI presents
a summary of the MAE, Fβ , IoU, and BER scores of our
method when using 1, 2, and 3 previous video frames in
the local memory. Evidently, our method, which involves
taking only the last video frame to update the local memory,
demonstrates the best metric performance. Introducing more
previous video frames would result in increased feature mis-
alignment among video frames during the updating process of
the local memory, thereby leading to a degradation in VSD
performance.

7) The Number of Video Frame Intervals in Our Global
Memory: Note that the global memory stores the feature maps

TABLE VII
ABLATION ANALYSIS RESULTS OF OUR METHOD WITH DIFFERENT

VIDEO FRAME INTERVALS OF UPDATING THE GLOBAL
MEMORY OF OUR METHOD

Fig. 7. Comparison of visual failure cases analysis.

TABLE VIII
ANALYSIS OF TEMPORAL CONSISTENCY FOR OUR METHOD

AND OTHER STATE-OF-THE-ART METHODS

of previous video frames with a fixed interval. Here, we con-
duct an ablation study experiment to study the performance
with different video frame intervals. Table VII shows the VSD
results of our method with the video frame interval of 3, 5,
7, and 9. Apparently, our method with 5-frame interval for
updating the global memory has the best performance of MAE,
Fβ , IoU, and BER. Hence, our method empirically sets the
video frame interval of 5 to update the global memory for
video shadow detection.

E. Failure Cases

Our model struggles to detect shadow regions with relatively
low-contrast boundaries. Fig. 7 shows some failure cases
of our method. As depicted in the first row of the figure
below, like state-of-the-art methods, our network also fails in
identifying weak shadows on kangaroos’ bodies and human
legs.

F. Temporal Consistency

Here, we introduce a widely-used flow warping error
(Ewar p) [71] to measure the temporal consistency of different
video shadow detection results. Specifically, following [54],
we follow [71] to utilize RAFT [54] to obtain the optical
flow maps for computing Ewar p. Table VIII reports Ewar p
scores video shadow detection results of our network and three
state-of-the-art (SOTA) methods. Apparently, our network has
the smallest Ewar p score among all methods. It indicates
that the shadow detection outcomes produced by our network
demonstrate a superior temporal stability over all compared
SOTA methods.

V. CONCLUSION

This paper presents a novel network for boosting
video shadow detection (VSD) by learning motion-guided
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multi-scale memory features. The main idea of our network
is to devise three dense-scale transformer blocks to learn
multi-scale spatial context and memory features from three
memory, thereby improving VSD performance on detecting
multiple shadow regions. Moreover, the dense-scale trans-
former leverages a set of memory-read pooling attention
(MPA) blocks to read memories for refining features and
utilize dense connections to fuse output features of MPA
with different scales. Experimental results on three benchmark
datasets show that our network quantitatively and qualitatively
outperforms state-of-the-art methods.

VI. FUTURE WORK AND SOCIAL IMPACT

In our forthcoming research, we aim to enhance the model’s
ability to detect shadows in low light conditions, which
often display distinct characteristics including soft edges,
low visibility, and low contrast. To this end, we intend to
compile a comprehensive shadow detection dataset under such
conditions and develop a novel model that surpasses the
performance of current state-of-the-art techniques. Regarding
the potential social impacts of our research, we envision that
improved shadow detection can have broad applications across
various domains, including autonomous driving, AR/VR, data
annotation, interactive image editing, etc. In the context of
autonomous driving, shadows are sometimes erroneously rec-
ognized as tangible objects, resulting in flawed decisions.
These misjudgements, under certain circumstances, could sig-
nificantly endanger driver safety. Thus, enhancing autonomous
driving technologies to accurately differentiate between shad-
ows and real objects is essential for boosting driving safety.
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