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Depth-Aware Motion Deblurring Using
Loopy Belief Propagation

Bin Sheng™, Ping Li

Abstract— Most motion-blurred images captured in the real
world have spatially-varying point-spread functions, and some
are caused by different positions and depth values, which cannot
be handled by most state-of-the-art deblurring methods based
on deconvolution. To overcome this problem, we propose a
depth-aware motion blur model that treats a blurred image as
an integration of a sequence of clear images. To restore the clear
latent image, we extend the Richardson-Lucy method to incorpo-
rate our blur model with a given depth image. The empty holes in
the depth image, caused by occlusion or device limitations, are
fixed by PatchMatch-based depth filling. We regard the depth
image as a Markov random field and select candidate labels by
using belief propagation to set and smooth depth values for empty
areas. Deblurring and depth filling are performed iteratively to
refine the results. Our method can also be applied to real-world
images with the assistance of motion estimation. The deblurring
process is shown to be convergent; moreover, the number of
iterations and the level of noise amplification are acceptable. The
experimental results show that our method can not only handle
depth-variant motion blur but also refine depth images.

Index Terms— Deblur, depth-variant, Richardson-Lucy.

I. INTRODUCTION

OTION blur is a common problem in images captured
by hand-held cameras. Blurring occurs when relative
motion exists between the camera and the objects being
recorded during exposure. Information in images may be
lost due to motion blur. Thus, restoring clear latent image
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Fig. 1. Depth-aware motion deblurring. (a) Input blur image with spatially-
varying motion blur. (b) Our depth-aware motion deblurring result.

from a blurred input is critical. A simple assumption about
motion blur is to regard a blurred image as the convolution
result of a clear image and a point-spread function (PSF).
The deconvolution problem can be solved by optimization or
inverse Fourier transformation. However, the assumption of
convolution with PSF simplifies motion blur into a spatially
invariant problem, which is nearly impossible in real cases
for two reasons. One is that motions such as zoom-in (zoom-
out) or rotation will lead to different pixels having different
motion paths. The other is that PSF varies with the depth
values of objects, objects close to the camera suffer from more
severe blurring than those far away. Some methods [1]-[4]
attempt to segment an image into several regions and set a
constant PSF for each region. However, these segments should
be small enough to ensure that all regions have similar PSFs,
which is neither suitable for complicated scenes nor conducive
to pixel-wise deblurring. Although optimization methods can
solve such problems by setting a different PSF for each
pixel, the large number of pixels leads to time-consuming
computation.

We propose a depth-aware motion blur model based on [5].
Our blur model treats a blurred image as an integration of
a sequence of clear images. Each frame of the sequence
is obtained by applying a transformation to the initial clear
frame, which is from the transformation in 3D space. From
the viewpoint of each pixel, it is implemented by multiplying
the pixel’s coordinate with a transformation matrix. One
assumption in our method is that the depth map obtained is at
least less blurred compared to the color image, which could
provide additional useful information in deblurring. With the
assistance of the depth, the motion of each pixel is considered
in three dimensions to simulate spatially variant PSFs, and
the deblurring quality could be enhanced (see Fig. 1). As the
transformation is applied to each pixel, spatially-varying PSFs
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Fig. 2. Our deblurring result. (a) Input blur image with spatially-varying motion blur for objects with different depths. (b) Our result with depth refinement
after every 10 iterations of intermediate image updating. (¢) Ground-truth image. (d) Close-up view of the three images, with related depths on the right.

are perfectly obtained. We extend the Richardson-Lucy (RL)
method [6] and make it applicable to spatially variant motion
blur in 3D space. One problem in considering the depth is that
most depth images captured by current devices contain empty
holes. In our deblurring model, each frame of the latent clear
image sequence should have its corresponding depth map,
which is obtained by applying the same transformation to the
initial clear depth map. We use a PatchMatch-based method
to fill these holes. Then, belief propagation is used to smooth
the edges and reduce the noise in the intermediate results.

We separate the entire framework into two subproblems.

In the depth filling, the latent clear image is set to be constant
and is obtained from the intermediate results of certain deblur-
ring iterations. In the deblurring, the depth image is given by
the filling result. Deblurring and depth filling are performed
iteratively to refine the clear images as well as the depth
map. Fig. 2 shows the deblurring results of our approach for
spatially variant blur with varying depth for the “dolls” scene.
Our work makes the following three main contributions:

o We propose a motion blur model that takes depth into
consideration and synthesizes blurred images with spa-
tially variant blur caused by three-dimensional motion.

o« We propose a new method to fill the empty holes in
a depth image during blur synthesis, which can predict
sharp and accurate edges in the depth image.

o We present a deblurring method for our blur model. Our
deblurring can restore images suffering from pixel-level
spatially variant blur. Moreover, it is robust against noise.

II. RELATED WORK

Depending on whether the PSF is given, image deblurring
is categorized into two main types: blind deblurring (without
PSF) and non-blind deblurring (with PSF). As the PSFs can be
uniform or non-uniform, deblurring can be further categorized
into spatially invariant or spatially variant problems. Most
previous studies have focused on blur models with spatially
invariant PSFs. Non-blind deblurring methods can restore
latent images given the blurred images and the corresponding
PSFs. In such cases, the blurred images can be synthesized
with the ground-truth blur kernel. Traditional methods, such as
the Wiener filter [7] and Richardson-Lucy algorithm [6] have
attempted to minimize the difference between the convolution
results of latent and blurred images. These methods suffer from
ringing artefacts due to the loss of high-frequency details.
The noise will also be amplified in the optimization and

deconvolution. To overcome these problems, regulation terms
are used to constrain the restored image. Chan and Wong [8]
proposed the use of the L1 norm of the image gradient as
the regularization term. Levin et al. [9] extended this method
such that the regularization term can be any power of the
image gradient as the Hyper-Laplacian term. In [10], threads
were set and different terms were applied for different gradient
values.

Compared to blind deblurring, non-blind deblurring involves
the estimation of the blur kernel directly. Reference [8]
employed the Laplacian regularization term for estimating
the PSFE. In [11], pit has been shown that the forementioned
method may yield a deblurring result that is the same as the
source blurred image, and the PSF is a single point with a
central value of 1. Thus, in [12], an approach for estimating
the PSF according to the transparency of the blurred object
edges was proposed. Recent methods, such as [10] and [13],
combined deblurring and kernel estimation, and performed
the two processes iteratively to obtain the final latent image.
Fourier transformation [14] or Iteratively Re-weighted Least
Squares (IRLS) [15] can be used to solve these optimization
problems. However, these methods cannot handle images with
spatially-variant PSFs.

The forementioned methods use blurred image as the only
image reference, and the deblurring quality varies. To obtain
additional details about the latent image, a highly noisy clear
image captured with a short exposure time was used to
guide the deblurring [16]. In [4], two images with different
resolutions were captured, and a low-resolution high-frequency
image was used to guide the restoration of the high-resolution
blurred images. In [17], three different camera models were
used to improve the image quality. However, these methods
require complicated devices. In [18], a method for sharp
image estimation based on the depth-involved motion-blurred
images is proposed. However, their method works on esti-
mating the PSF for each pixel, they hence calculate a PSF
shape for the whole image. Our approach focuses on restor-
ing clear latent images by extending the Richardson-Lucy
method to incorporate our blur model with a given depth
image. Since depth maps may contain hole-regions caused
by occlusion or device limitations, we propose hole-filling
techniques via PatchMatch and loopy belief propagation
with joint-bilateral filtering (JBF) for depth refinement to
obtain smooth depth values for our depth-aware motion
deblurring.
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Recently, a method for estimating a spatially variant kernel
was proposed [19]. In [1], image segmentation was used to set
different PSFs for different layers. Tai ef al. [20] used a hybrid
camera framework and estimated one PSF per pixel, but this
approach requires an auxiliary video camera. Machine learning
was used in [21] and [22] to perform deblurring. However,
the learning methods require the training and testing sets to
have similar blur kernels; otherwise, the deblurring result is
invalid. We propose a depth-aware motion blur model based
on [5] in order to obtain pixel-level spatially variant PSFs.
The depth values play an important role in improving the
deblurring results, which makes it possible to simulate the
motion path in three dimensions in the real world. Unlike [23],
which uses depth to segment the image into layers, our method
directly applies the depth value of each pixel to deblur that
pixel. We also propose a new inpainting method for depth
images based on PatchMatch and Markov random field (MRF)
belief propagation to solve the problem of empty holes in real
captured depth images. Although our method is a non-blind
deblurring based on the RL algorithm [6], it can be extended
to real cases with kernel estimation under user assistance.

III. APPROACH OVERVIEW

Motion blur in real captured images is due to the relative
motion between the objects being captured and the camera
during the exposure time. The information for each pixel is
the integration of the light incident on it during this period.
The final image can be expressed as the integration of the light
intensity with respect to time:

T
1:/ 1(t)dt (1)
0

where, [ is the final image and /() is the light information
at time 7. Note that /() may be infinite in real cases, which
is not suitable for image processing. Hence, we represent it in
discrete form as the sum of n image frames:

l <
1==3"10) 6)

i=1
where, all the light information in Eq. (1) is split into n parts.
Each image frame is light integration result in a short period:

iT/n
1(i) :/
i—DT/n

When the objects captured by the camera are static during
exposure period, blurring occurs only because of the motion of
the camera itself. With this assumption, the image information
I1(i) for each i can be regarded as the transformation result
of the initial image information 7(0). To be more general,
1(0) is a three-dimensional image with depth information.
Then, we can perform transformation from the 3D space to its
projective space assuming perspective projection using a trans-
formation matrix P [24], and further apply a homography H;
for the transformation of the projective space. Thus, we have
our transformation matrix M; = H; P, where H; = ]_[lj:] hj.
Here, h; is a homography defined by a 3 x 3 nonsingular
matrix up to a scalar, and we use a homography for its ability

I(t)dt 3)
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Fig. 3. Comparison between traditional convolutional model and our matrix-
based motion blur model. The traditional model generates blurred image using
convolution result of clear image and the blur kernel. Our model sums up
several intermediate frames of clear images by transformation matrices using
3D space and slice motion. Thus, the blurriness of each pixel in our model
is affected by the transformation matrices, pixel positions, and depth values.

to model all planar transformations [5]. Therefore, M; is the
transformation using the 3D space and slice motion. Based
on transformation matrix M;, each pixel in I (i) can get its
corresponding position in initial image 7(0):

I(p,i) =1(M;p,0) “)

In this equation, p is the coordinate of pixels in /(i) and M;
is the matrix that transforms 7 (0) into I (i) from the 3D space
to the projective space. Through this representation, the blur
image I can be obtained using only initial clear image 7(0)
and n transformation matrix M, to M, as follows:

1 n
I(p) =~ > 1(Mip,0) (5)
i=1

Fig. 3 compares our matrix-based blur model with the
convolutional model. Our model generates the transformation
matrices from the blur kernel. In this case, the deblurring
problem becomes the problem of estimating the clear result
1(0) given the blurred image I, and all matrices M. We will
now show the advantage of our matrix-based blur model over
the kernel-based model. The commonly used convolution form
for image blur synthesis can be expressed as:

I,=19K (6)

where, K is the blur kernel, which is also called the point-
spread function (PSF). This model assumes that all pixels
pass through the same path during the exposure time, which
is nearly impossible because of camera jitter. For example,
it cannot synthesize camera rotation, in which case the center
pixel remains static and the pixels in the four corners of the
image move considerably. However, by using the matrix form
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I Deblurring Model

Approach framework for our deblurring method. Our approach takes the initial depth image and motion-blurred image as inputs. In each iteration,

we use the current estimated latent image I” as the clear image to fill the empty areas in the initial depth image. Then, we compute a synthetic blurred
image according to I7, filled depth image, and transformation matrices. The error image is then estimated using the synthesized blurred image and the initial
motion-blurred image. Using the estimated error, the latent image is updated to image / 41 Then I'*+! is used to process the next iteration.

shown in Eq. (5), we can achieve translation, rotation, and
scaling at the same time by using different matrices M.

Using matrix-based motion blur model, we propose our
corresponding deblurring framework, as shown in Fig. 4.
The input part includes depth image, blurred image, and
blur kernel. Our model decomposes the blur kernel into sev-
eral transformation matrices to synthesize the blurred image,
as shown in kernel decomposition. To solve the problem of
information loss in depth images, we use the depth image and
blurred image as inputs to predict depth values of the empty
holes in the initial depth map, as described in Section IV (See
the MRF depth filling part in Fig. 4). In the depth refinement
part, we use the intermediate deblurring result to refine the
depth map, as described in Section IV-C. The deblurring part
shows how we update the deblurring result iteratively. First,
we synthesize the blurred image using the transformation
matrix obtained from the input, as described in Section V-B.
Then, we perform deblurring with the assistance of the depth
image. The details of the deblurring model are given in
Section V.

1V. MRF DEPTH FILLING

In general, we cannot obtain perfect depth image that pro-
vides depth values for each pixel. Some empty holes usually
exist because of occlusion or limitations of depth cameras. Our
method assumes the depth filling problem as an optimization
problem that aims to minimize the following energy:

Evoral = ) E(p, D(p)) (7
p

where, E(p, D(p)) is the energy for pixel p with depth value
D(p). For an 8-bit depth image, depth value D(p) can have
255 choices. There are numerous pixels in an image, whose
energies can affect one another. It is impossible to obtain an

Hidden node values

Fig. 5. Markov Random Field for a 3 x 3 image. The observable node
variables in our case correspond to the initial blurred image and the depth
image with empty holes. The hidden node variables constitute the required
ground-truth depth image. Each pixel node can only affect and be affected
by other nodes connected to it, which share the same edges as shown in this
figure.

accurate solution for Eq. (7). Instead, to obtain the global
minimum, we assume that each pixel is related only to its
neighbor pixels and regard the image as a Markov random
field (MRF). A MRF is an undirected graphical model that
can encode spatial dependencies. Each pixel is represented as
one node in this undirected graph and is connected to its four
immediate neighbors, namely, up, down, right, and left (See
Fig. 5). Under this assumption, the optimization problem for
minimizing Eq. (7) can be solved by loopy belief propagation
(LBP), which will be described later.

A. MRF Formulation

The energy of each pixel, E(p, D(p)) in Eq. (7) is defined
to penalize the depth choice D(p). It is affected by the
difference between D(p) and the refined depth value avail-
able in each iteration, which will be defined as data cost.
In addition, the depth values in a small region are usually
similar to one another; hence, we need to avoid a large depth
difference between two neighbor pixels; this penalty is defined
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Fig. 6. Comparisons of depth filling results using our PatchMatch-based
loopy belief propagation. (a) Input image with empty holes. (b) Filling result
using depth values as labels directly. (c) Filling result using relative depth
values as labels. (d) Color image reference. The scanline will be referred
in Fig. 9.

as smooth cost. Thus, Eq. (7) can be defined as:

E(p, D(p)) = dataCost(p, D(p))
+ A« smoothCost(p, D(p)) (8)

In order to get the data cost and smooth cost for pixel
p with label D(p) in Eq. (8), we need to define label
D(p) first. To make the optimization problem sufficiently
efficient, our approach allows each node to have at most
eight labels (candidates). The candidates are selected by
PatchMatch approach. For each node p with unknown depth
value D(p), we let P(p) be its corresponding patch with
radius r in the intermediate deblurred result. Then, based on
the implementation of [25] according to the authors’ website
at (http://www.ee.iisc.ac.in/labs/cvl/research/imdenoising), the
N-nearest patches for P(p) are obtained in the same color
image. The depth label for patch P(p) can be obtain in two
ways. The first way is to use the evaluated depth value in
the N-nearest patches as the label for P(p). Depth evaluation
for a candidate patch is performed by the sum-and-average
approach as follows:

2 qer(p) @)
2 gep(p)isValid(q)

where, P’(p) is a candidate patch from the N-nearest patches
for P(p), D(q) is the depth value of pixel g, and isValid(q)
is set to 1 if D(g) is not equal to zero and set to O otherwise.

The disadvantage of the above method is that the evaluated
depth of candidate patch P’(p) directly used as labels for
the missing depth values of P(p) may cause inconsistency of
depth intensities with neighbor depth values in depth map as
shown in Fig. 6(b). This is because two patches with similar
color information in the color image may be in two different
depth layers of the depth map. We assume that the pixels in the
same patch usually have similar depths, thus, we can use the
relativity of depth information between two patches to adjust
the evaluated depth by Eq. (9) as relative depth to be used
as labels for missing depth of P(p) in the depth image, and
generate a depth label with a candidate patch P’(p) as follows:

Depth(P'(p)) =

©)

D(q)
quP(p),q’eP’(p) D(q")

Label(p, P'(p)) =
abel(p, P'(p)) > ser(p isValid(q)

x Depth(P'(p))

(10)

where, ¢’ is the corresponding pixel that maps ¢ from patch
P(p) to a candidate patch P’(p). The result using relative

/ﬁessage
o——@ o
_— —

@

message,

' propagation

Propagation to right

a
8
N

Fig. 7. Massage passing between pixel nodes. When passing a message
from x; to xp, we need to receive the message from the other three neighbor
nodes B, C and D. Also, we need to get the data cost for node x| with label A.

depth is shown in Fig. 6(c), and empty holes are now filled
with more smooth depth values for depth filling effects. And
through applying the PatchMatch method, we can obtain eight
nearest patches and generate eight labels as required. For
each label from a candidate patch P’(p), we use the data
cost function to assign label Label(p, P'(p)) to node p as a
penalty. The sum of absolute distances is used as the image
distance in our approach. Thus, the data cost can be defined as:

> @ —-I@) A

qgeP(p).q'eP'(p)

dataCost(p, D(p)) =

If we want to use color distance, then image / in Eq. (11) will
be the intermediate deblur result. To use the depth distance,
the refined depth image in each iteration is used instead.
Experiments have shown that using the depth distance as
the cost function can slightly improve the filling image in
some regions; hence, it is used as the cost function in our
approach.

In addition to the data cost, we use the smooth cost
function to enforce local smoothing across adjacent nodes.
Because we use MRF to solve the optimization problem,
the smooth cost function for node p is only affected by its
four immediate neighbor nodes, which we can defined as set
6(p). Thus, the smooth function can be defined by the depth
difference as:

smoothCost(p, D(p)) = > |Label(p, P'(p)) = D(q)I|
q€0(p)
(12)

Next, we will show how to use loopy belief propagation
to minimize the energy function by data cost and smooth
cost.

B. Loopy Belief Propagation

Using PatchMatch to get the candidates, each node can
have at most eight labels. Although eight candidates can
improve the performance considerably compared to searching
through all 255 choices for depths, minimizing Eq. (7) to
get the exact solution remains a time-consuming task. Loopy
belief propagation (LBP) is an efficient dynamic programming
approach, which is commonly applied as energy minimization
solution for Markov random fields [26]. We utilize LBP [27]
to rapidly obtain an approximate solution. LBP is performed
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Algorithm 1 Belief Propagation
1: BP(mrf, p, dir)
2: for valid depth labels i do

3:  for valid depth labels j do

4: cost = dataCost(p, j) + smoothCost(i, j);
5: for each direction sDir except dir do

6: cost + = msg{px, py}.(sDir, j);

7: end for

8: minCost = the minimum cost for all j;

9: end for

10: newMsg(px, py,i) = minCost;

11: end for

12: update mrf with newMsg;

iteratively to converge to the final solution. In each iteration,
a message is passed to adjacent nodes when all incoming
messages have been received. In our method, there are four
directions in total; hence, each pixel will receive a message
from the other three directions before each propagation (See
Fig. 7). We use a belief value array mrf to record message
for each pixel, which is a four-dimensional matrix. Suppose
we have a pixel p = (px, py), the term mrf{py, py}.(dir,d)
denotes the belief value for pixel at position (p,, py) with
depth value d to its neighbor pixel in direction dir. Here,
dir has four choices (up, down, right, and left), and the
choices for d is equal to the maximum number of depth label
candidates for each pixel. The belief propagation function
BP(mrf, p,dir) is called when we propagate the message
of pixel p to the direction dir.

Algorithm 1 shows the details of this propagation function.
Pixel p need to receive the message form the other three
directions except dir. Pixels with different depth values will
get different propagation messages. We use the minimum
cost with neighbor pixels in the other three directions as the
propagation message newMsg(px, py,d) for pixel p with
depth value d. The cost is obtained by the data cost, smooth
cost, and belief values in the previous iteration, as shown in
Algorithm 1. Then, the belief value array is updated with the
new message. For example, if we propagate toward the right,
then mrf{px + 1, py}.(left,d) = newMsg(px, py, d). After
propagation, the best candidate for each pixel is updated in
function M AP (mrf), which is done using Eq. (13). After all
iterations, the best choice of depth value will be used to fill
the empty areas:

best(px, py) = arg min > mrf{ps, py).i.d)  (13)

We compared our initial depth filling results with the results
of two other methods. The first method fills the empty areas
using the nearest valid depth value on the same horizontal
line. This method is fast and does not need any reference
image. However, the filled result does not seem reasonable
(See Fig. 8(b)). The other method performs depth filling
by joint-bilateral filtering with the assistance of intermediate
deblurred color images. The predicted depth value can be

(@ ()

Fig. 8. Deblurring regarding depth hole filling. (a) Initial depth map with
holes. (b) Depth map obtained by horizontal depth information. (c) Depth map
filled by joint-bilateral filtering. (d) Our filled depth map using LBP-based
initialization. (e) Input blurred image. (f) Deblurring using depth input (b).
(g) Deblurring using depth input (c). (h) Deblurring result using depth input
(d), and our depth filling results in high-quality deblurring. Note that improper
depth filling will cause obvious ringing artifacts in the final deblurring results,
especially in hole regions. Simple joint-bilateral filtering may address small
hole (blue square in (c) and (g)), but it still causes problems in large hole
regions (red square in (c) and (g)). The scanline will be referred in Fig. 9.

obtained by:

1
Dyin(p) =~ > Gulllp —qIDG U (P)—1(@)IND(g)
q€Q(q)
(14)

where, G is the spatial kernel, G, is the range kernel, (q) is
the color intensity of pixel ¢, D(g) is the depth value, Q(p)
is the neighbor set of pixel p with valid depth values, and W),
is the normalizing weight term that is defined as:

Wy = > Glllp—4aIDG (1 (p) = 1@

q€Q(q)

Joint-bilateral filtering (JBF) can restore empty areas con-
sistently. However, for large empty holes, this method cannot
predict the edges well (See Fig. 8(c)). Our filling result
is shown in Fig. 8(d). Fig. 8(f)-(h) shows the deblurrling
effects regarding hole fillings. It can be clearly seen from
Fig. 8(f) that improper filling will cause deblurring artefacts,
especially in hole regions. Fig. 8(g) shows that simply applying
joint-bilateral filtering may address small hole, however, for
relatively-large empty holes, this method cannot predict the
edges well and may still cause problems in large hole regions
for deblurring. Fig. 8(h) shows the deblurring method using
our depth filling by LBP-based initialization, and our approach
results in high-quality deblurring effects. Compared with
Fig. 8(g), the improvement in deblurring for Fig. 8(h) is more
pronounced in the whole neighboring region than just in the
hole-region with depth filling by the LBP-based initialization.
The reduction of the local errors in depth estimates will help
improve the deblurring quality in each iteration, and the extent
of the effects would improve on the deblurring in the whole
neighboring region and globally (See the RMS error reduction
for the “cones” scene in Table I).

We have also performed quantitative evaluations for the final
deblurring results with different depth hole filling schemes.
Table I shows the Root Mean Square (RMS) error comparison
for deblurring results regarding different depth hole filling.

5)
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TABLE I

RMS ERROR COMPARISON FOR DEBLURRING
REGARDING DEPTH FILLING

Method art books bowling cones dolls moebius
Initial Depth with Holes | 11.6873 | 16.8564 6.7951 11.6458 | 23.7642 12.3513
Horizontal Depth Filling | 10.2673 | 14.6952 6.3512 8.8962 21.3281 11.5383
JBF Depth Filling 9.7895 11.7134 5.9768 8.3529 12.6743 9.3372
LBP Depth Refinement 6.0058 5.3406 2.5775 6.7452 5.3989 3.9616
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Fig. 9. Visualization of the 1D depth profiles. (a) The 1D depth profiles for
the scanline in Fig. 6. (b) The 1D depth profiles for the scanline in Fig. 8.

We could see clearly from Table I that our LBP-based depth
refinement is able to produce better deblurring results with the
lowest RMS errors compared with other depth filling methods.
Fig. 9(a) plots and visually compares the 1D depth profiles for
the scanline in Fig. 6, and the 1D depth profile in Fig. 6(c)
using relative depth values as labels shows best performance.
Fig. 9(b) visually compares the 1D depth profiles for the
scanline in Fig. 8, and the 1D depth profile in Fig. 8(d) shows
best performance. The 1D depth profile in Fig. 8(c) is improper
for the region of interest. Although the visualized 1D depth
profile in Fig. 8(b) seems proper for the region of interest
horizontally, yet it can be clearly seen from Fig. 8(b) that the
depth values filled are obviously inconsistent vertically.

C. Depth Refinement

The LBP depth filling method described above is used to
obtain the initial depth map with the blurred input as a refer-
ence. Because the intermediate deblurring results will improve
as the number of deblurring iterations increases, our method
uses intermediate results as references to refine the depth map.
Our refining method is based on joint/cross bilateral filtering,
the basic idea is shown in Eq. (14). The filtering is only
implemented in areas that are empty in initial depth map. The
two reference images used in joint/cross bilateral filtering are
the intermediate result as the color reference and the LBP
filling result as the depth reference. Our results indicate that
the image quality of the depth map will improve with the
quality enhancing of the color reference, as shown in Fig. 10.

o

W~—

Fig. 10.  Improvement by our depth refinement. (a) Clear color image.
(b) Initial depth map by LBP depth filling. (c) Refined result using blurred
image as color reference. (d) Refined result using intermediate deblurred
results after 50 iterations as color reference. (e) Refined result using clear
image as reference.

V. DEBLURRING MODEL

In this section, we illustrate our proposed depth-aware
motion deblurring used in the deblurring process. We first
introduce the Richardson-Lucy (RL) deconvolution method [6]
and then show how to apply it to our model. The remainder
of this section will describe the implementation details of
our approach, including blurred image synthesis, regularization
settings, and an extension for real captured images.

A. Proposed Deblurring Approach

Image blur occurs when an ideal point source does not
appear as a point but spreads out into what we called a
point-spread function (PSF). The information for each pixel
is the sum of many individual point sources. Using PSF and
the latent image, we can express pixel p in the blurred image
using a convolution process as:

I(p) =c(p) = D_ Kpgl(9)

qgek

(16)

where, I, is the observed blur image and [ is the latent
clear image. p and ¢ represent the pixel positions. c(p) is
a convolution process for a pixel located at p. K is the point
spread function and K ,, represents the contribution of pixel
q in the latent image to pixel p in the observed blurred image.
Shepp and Vardi [28] have shown that we could use the like-
lihood probability for the Poisson distribution P(Ip, K|I) =
[ges %{;‘;_c@ to model the Richardson-Lucy method as
a maximum likelihood solution, and c¢(g) is a convolution
process for a pixel located at g. As the matrix of the second
derivatives of P(lp, K|I) is negative semidefinite, it is a
concave function [28]. For the optimization of P (I, K|I),
we follow [29, Th. 2.19(e)], and the Karush-Kuhn-Tucker
conditions are the sufficient conditions for / to be a maximizer.
For all ¢ € I, we deduce the iterative update rule for the
Richardson-Lucy method as:

8 c(g)r@e—cla) B
"oz =g =0

1(q) Z % (1y(@)in(c(g)) — c(q) — In(y(g)D)) = 0

= 01(q)
Iy(g) 0 —
I(q)qze:c()él—()()_ (Q)Zal—() c(q) =
1()2 b(p) q—I(CI)ZquZO

PEK pek
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Deblurring aims to calculate the most likely I given
I, and K. Since >, ¢ Kpg = 1, by adding the iteration
index ¢ and using Eq. (16), we could then obtain Eq. (17) and
iteratively determine the pixel value for 7(q) as:

1@ =1 Y Dk

t P4
pek Ib(p)

a7)

where,

Ih(p) = D Kpgl'(q)

qek

(18)

If we assume that the point-spread functions are the same
for all the pixels, then Eq. (16) can be expressed in convolution
form as shown in Eq. (6). Using convolution representation,
we can transform Eq. (17) into Eq. (19) for the Richard-Lucy
deconvolution as:

Ip
I'®K

To achieve pixel-level spatially variant blur, our motion blur
model uses the matrix form for the blurred image, as shown
in Eq. (5). Because the convolution form and the matrix form
attempt to represent the same blurred image 1, given the clear
image I, we hence have:

Il‘+1:Il‘XK®

19)

1 n
I'p)® K ==>"I'(Mp) (20)
s
where, I'(p) ® K denotes the pixel value at position p for the
convolution form. Now, we use another image, i.e., the error
image I} to show the error between the convolution result

I" ® K and the blurred image I,. We set I, as:
g _ Iy
COIeK LY I(M)
Then, Eq. (19) can be applied for matrix form deblurring:

21

n
'M=rxkel =1'x %ZM;II; (22)
i=1

Now we have transform convolution Richardson-Lucy
method Eq. (19) into the matrix form Eq. (22). Hence, convo-
lution is no longer needed. We also note that transformation
matrix M; is used only for matrix multiplication in the entire
process. If we use a two-dimensional coordinate (py, py) for
the pixel position, then M will be a 3 x 3 matrix. Now, when
we add the depth value D(py, py) to make the pixel position a
three-dimensional vector (py, py, p;), where p, = D(px, py),
the deblurring process given by Eq. (22) is also valid once we
use 4 x 4 transformation matrices M instead.

B. Blurring Synthesis and Deblurring

Given the clear image and its corresponding depth image,
we can set the coordinate for each pixel as (px, py, pz),
where p, and p, are the pixel position in the clear image
and p. is the depth value in depth image. Then, we prepare
several transformation matrices M, of which 16 are sufficient
to translate the initial image into several frames. By summing
and averaging each frame, we can obtain the synthesis results,

(@) (b)

Fig. 11. Interpolation for blurred image synthesis. (a) Result synthesized
directly from depth image. (b) Result of blur synthesis after interpolation.
The empty areas (black areas) in (a) are fixed in (b).

r
(a) (b)

Fig. 12. Our depth filling (b) for real captured depth map after UV map (a).

which suffer from the problem of information loss as shown
in Fig. 11(a). We can see from Fig. 11(a) that there are
some black holes in the image, which means that there is
no corresponding information for these areas. This is because
we only have the depth value for the pixels in each frame.
We cannot determine all the scene details in the entire 3D
space. We can fill the empty holes using interpolation:

ZqEQ(p) w(g)1(q)
qug(p) w(q)

I(p) = (23)
where, Q(p) is the set for valid pixels in the neighbor region of
pixel p, and w(q) is the weight for pixel ¢, I (p) and I(g) are
their intensity values. The filling result is shown in Fig. 11(b).
With the synthesis result and the transformation matrices M,
we can now apply Eq. (22) to carry out the deblurring.

C. Regularization and Depth Updating

Noise is inevitable in real captured photos. To smooth out
the noise in the blurred images, we use the total variation
(TV) regularization term introduced in [5], [8], and [30] in
order to suppress the image noise when performing deblurring.
We define P(I) as the prior probability of the recovered
image I. Therefore, we have the optimization function as:

argmlax P|Ip, K) = argmlax Py, K|I)P(I)
= argmlin —In(P(Ip, K|I)) — In(P(1))

= argmin > (c(q) — Ip(q)In(c(q))

qel
+ AR(I(q))) (24)
where, R(I) = —%ln(P(I)) is the regularization term used,

and 4 is the weight for the regularization. We calculate the
first derivative for Eq. (24) according to 7(g) and let it equal

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:48:04 UTC from IEEE Xplore. Restrictions apply.



SHENG et al.: DEPTH-AWARE MOTION DEBLURRING USING LOOPY BELIEF PROPAGATION 963

After 10 iterations, RMS: 11.061

Input blur image, RMS: 13.574
(@)

After 50iterations, RMS: 8.247

After 100 iterations, RMS: 7.3945
() @

Fig. 13. Decrease in RMS errors with increase in number of iterations. (a) Input blurred image. (b)—(d) Deblurring results after different numbers of iterations.

to 0, we hence have the following equation as:

Ir(p)
s % i Kpa =1-2VR((q)))
pek 2 gek Kpgl'(q)

where, VR(I(g)) is the first derivative of R(1(g)). Ast — oo,
we want to make the Richardson-Lucy method get conver-
gence, I't1/I" should equal to 1. Thus, using Eq. (25),
the regularized Richardson-Lucy method could be expressed
as:

(25)

1'(q) Ip(p)
I''(g) = Kpy  (26)
1 —AVR(I'(q)) fort 2 gek Kpgl'(q) pq
with its convolution representation as:
I Iy
e KR — 27
—vra) " ®Tek @7

Similarly, as shown in Section V-A, we could obtain the
new regularized form using Eq. (26) as:

1+1 I I < 1t
1 = X — M1
1= VRN~ n§4 i e
The total variation (TV) regularization in [5], [8], and [30]
is then applied for suppress noise during the deblurring.
By replacing the regularization term VR(I") in Eq. (28) with
VRry(1"), we could obtain Eq. (29) as following:

It

(28)

1 n
e — x> M7l 29
l—lVRTV(I’)Xn; i e 29)
where,
VRry(I") = VWI (30)
TV = |VIt|

The solution introduced in [5] initializes 4 as 1.0, and
decreases it after every 100 iterations. However, in our exper-
iments, we will restart the iterative procedure each time we
update the depth image. Hence, we set 4 to a small fixed value
between 0.0001 to 0.001 (with image intensity varying from
0 to 1.0). In the depth filling process, the quality of the refer-
ence color image will affect the filled results. Hence, starting
with the blurred image, we update the reference color image
after a fixed number of iterations each time. In most cases,
the iteration number will be set to 10. We do not update the
reference image after each deblurring iteration because there
is only a slight difference between two neighbor intermediate
results. Frequent updating will be a time-consuming task.

— cones
art
dolls
bowling | -

RMS errors

0 L L 4 L . L L s L
0 50 100 150 200 250 300 350 400 450 500

Number of iterations

Fig. 14. Convergence of RMS errors with the increasing of iteration numbers
for four different images: “cones”, “art”, “dolls” and “bowling”.

D. Real Case Deblurring

In blurring synthesis, we decompose the blur kernel into
several motion trajectories. Since the blur kernels in the
real-life cases may have inconstant values, the decomposed
trajectories might have different weights accordingly. How-
ever, in this paper, for problem simplicity, we utilize uniform
motion assumption, which means the trajectories in this paper
have the same weight. We have our transformation matrix
M; = H;P, where H; = Hlj=l hj. With the uniform motion
assumption, all the trajectories in the paper will have the same
weight, namely, hy = hp = --- = h;. Thus, h; = JH; 1 <
J < 1. Therefore, we can obtain /; through calculating the ith
matrix root of H; [31], and estimation for the series of 4; is
reduced to the estimation of H;. Although our approach is a
non-blind deblurring method, it can be extended to images
captured by 3D cameras. The additional task required for
real case deblurring is motion estimation, which is essential
for transformation matrix construction. In this study, motion
estimation is performed with user assistance, which gives the
positions of pixel pairs before and after motion. Suppose that
the position set for pixels before motion is defined as B and
that for pixels after motion is defined as A. Obviously, A is
the result of B multiplied by the transformation matrix M.
Hence, we can obtain the transformation matrix M by:

M=B"'A (31)
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Fig. 15.

Comparison of deblurring results of our method with those of two other methods. The first column is the input blurred image. The second column

shows the results of [S]. The third column shows the results of [13]. The final column shows our results.

The total motion will then be divided into n sub-motions
represented by n transformation matrices. In our approach,
we divided the motion into n parts. These n sub-matrices are
then used to perform the deblurring as shown in Eq. (22).
Because some empty holes remain in the depth map, the depth
filling and depth refinement phases in our framework are
still necessary. Fig. 12 shows the improvement achieved
after our depth filling approach is applied to a real captured
depth map.

VI. EXPERIMENTAL RESULTS

This section presents our experimental results, and the
images we used are all obtained from the Middlebury
stereo datasets (http://vision.middlebury.edu/stereo). RMS
error analysis showed that our method would converge as
the number of iterations increases. Comparisons between our
method and other methods proved that our method could han-
dle scenes with large depth differences. Moreover, we tested
our method with noisy blurred images to demonstrate its
robustness.

A. Convergence Analysis

Both the RL algorithm and the method introduced in [5]
have been shown to be convergent. We tested our method
in the same way to observe the changes in the RMS errors
after each iteration. Because the number of iterations was

large in the experiment, we updated the filled depth image
every 10 iterations only over the first 100 iterations. Sub-
sequently, this updating procedure would be repeated after
every 100 iterations (instead of 10). The parameter 1 was
set to 0.0005 (color intensity varying from O to 1.0) for
the regularization term in this example for all the iterations.
Fig. 13(b)—(d) shows the deblurring results after different
numbers of iterations. We defined the updating rate according
to the similarity between two neighbor intermediate results.
Fig. 14 shows the convergence of the RMS errors for four
images with different levels of blur. We can see that the
RMS decreases rapidly in the first 50 iterations. Most cases
converge within 500 iterations according to our experiments.
Moreover, the difference in the deblurring results is negligible
after 100 iterations for images that are not blurred severely.
We have performed the convergence analysis on an Intel®
Core™ 4.00GHz CPU with 8GB memory over an image at
the resolution of 1390 x 1110 from the Middlebury datasets.
We have performed our depth-aware deblurring for 1000 times
to obtain the more meaningful average convergence time for
stable purpose. Table II shows the running time of our conver-
gence analysis. According to Table II, the whole convergence
process costs about 36.04 seconds. Other operations including
pre-processing and post-processing only take 0.23 seconds.
Therefore, our method takes 36.27 seconds in total to obtain
the final deblurring, which achieves high-quality deblurring at
favorable speed.
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TABLE 11
RUNNING TIME OF OUR CONVERGENCE ANALYSIS

Ist 10 iters | 2nd 10 iters | 3rd 10 iters | 4th 10 iters 5th 10 iters
Depth Map 5.89s 4.71s 3.23s 2.78s 2.16s
Deblurring 4.32s 3.88s 2.18s 2.13s 1.18s
Total 10.21s 8.59s 5.41s 491s 3.34s
6th 10 iters | 7th 10 iters | 8th 10 iters | 9th 10 iters | 10th 10 iters
Depth Map 0.94s 0.54s 0.38s 0.15s 0.07s
Deblurring 0.85s 0.34s 0.21s 0.06s 0.04s
Total 1.79s 0.88s 0.59s 0.21s 0.11s

B. Comparison With State-of-the-Art Methods

In this section, we will illustrate the difference between our
approach and other deblurring methods. First, we compare our
approach with the methods introduced in [5] and [13]. The
former employs a deblurring model that is nearly the same
as ours. Hence, transformation matrices are also used in their
method, except the data for depth. We set the depth to 0.5
(with maximum depth value equal to 1.0) to simulate their
results. Further, we used the total variant regularization term
with 4 set to 0.0005 for both methods. The work of [13] is
a blind deblurring method. Hence, we used our synthesized
blurred image as the input, and the deblurring results were
obtained using the software provided on their website with
the default setting in CPU mode.

Fig. 15 shows the deblurring results of the three methods,
with enlarged details for comparison. The first row is for
the scene “bowling” scene, which suffers from large depth
difference. While in the second row, i.e. the “cones” scene, the
depth range is rather small. Finally, in the third row, i.e. the
“art” scene, image blur is caused by rotation around the top-
left corner. Compared to the blurring input in the first column,
the results of [5] (second column) and the results of [13] (the
third column) indicate better performance at the center of the
scene. However, the background of the scene is over-deblurred
for these two methods, resulting in some “white” pixels and
areas in the background. In addition, the foreground regions
lack deblurring, leading to obvious ringing artefacts. This is
because the method introduced in [13] cannot handle spatially
variant blurring. Hence, the entire image is deblurred with the
same kernel estimated from the blurred image. Although the
method introduced in [5] can handle spatially variant PSFs
without considering depth information, it can only deal with
this problem in two-dimensional image spaces. Thus, the inner
and outer parts of the image will be deblurred in different
ways. However, objects near to and far away from camera
will not produce different results in the case of this method [5].
Our results are shown in the last column, and they indicate that
both near and far areas in the scene are deblurred with higher
visual quality, with fewer ringing artefacts in foreground and
a clear, accurate background.

Fig. 16 shows the RMS errors of these methods in the
three scenes: “cones”, “bowling” and “art”. The results of the
method introduced in [13] indicate failure for the “bowling”
and “art” scenes, with RMS errors greater than the input
image. The results of the method introduced in [5] indicate
failure for the “bowling” scene. The depth range in the
“bowling” scene is large; hence, without depth information,
these two methods [5], [13] cannot process the foreground and

RMS errors comparisons
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Fig. 16. RMS errors comparison of our results with the results of Tai er al. [5]
and Xu et al. [13]. The images used are “bowling”, “cones”, and “art”.

Fig. 17. Nine kernels estimated from blur images synthesized by our
blur model (rotation around the top-left corner). We selected nine different
positions in the image and generate point spread functions for these pixels.
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Fig. 18. RMS error comparison between our approach and three other spatial-
invariant deblurring methods: RL deconvolution [6], Shan et al. [10] and Xu
and Jia [32]. The nine PSFs used for the three methods are shown in Fig. 17.

background differently and effectively. The blurriness in the
“art” scene is caused by rotation, which is difficult for the
method introduced in [13] to handle. However, our approach
avoids such problems by considering the depth information
and refining the depth maps during the deblurring processes.

We further compare our approach with three other kernel-
based spatially invariant non-blind deblurring methods, namely
RL deconvolution [6], the method of Shan et al. [10], and the
method of Xu and Jia [32], in order to show the advantages
of our motion blur model. Since our model is matrix-based,
we need to generate a blur kernel from our transformation
matrices. Fig. 17 shows the kernel estimated details. We select
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® ®

Fig. 19.

(@ (M)

Noisy images deblurring. The top row shows the noisy input blurred images. The second row shows our deblurred results. Gaussian noise is used

with # set to 0 and ¢ set to 0.0002, 0.0004, 0.001, and 0.002 from left to right. RMS errors with the ground-truth clear images are given below each image.

nine positions in the image (left part of Fig. 17), and use
the blur kernels of these nine pixels (right part of Fig. 17)
as the kernel candidates. Then, we tested all nine kernels
using the three spatially invariant deblurring methods. Fig. 18
shows the RMS errors of the three methods with the nine
kernels given for the “art” scene under rotational motion (rota-
tion around the top-left corner). Our approach is a spatially
variant version that uses matrix transformation with a unique
RMS error given on the right. The results show that our
method produces a much lower RMS error than the three
methods [6], [10], [32].

C. Noisy and Over-Blurred Images

We estimated the robustness of our approach by testing it
on noisy images. We use the imnoise function in Matlab to
add noise to our synthesized blurred images before deblurring.
Gaussian noise was used in our experiment with a mean value
of 0. The first row in Fig. 19 shows the noisy blur images
with ¢ set to 0.0002, 0.0004, 0.001, and 0.002 respectively.
Our deblurring results are shown in the second row. From the
RMS errors, we can see that our method can handle low noise
levels well and produces results with lower RMS errors than
input noisy image. For noise with large o, our method does not
amplify noise significantly, and the deblurring results remain
reasonable. We also tested our approach with over-blurred
image. However, for largely over-blurred cases as shown
in Fig. 20(a), where the blur information is too complicated,
our approach may not be able to fully recover a perfect
deblurring and results in a failure case as shown in Fig. 20(b).
But to some extent, the deblurred result Fig. 20(b) is still
more visually pleasing than the original blurred image, which
also means our depth-aware motion deblurring requires further
development and more future work for further enhancement.

D. Real Examples

We use Intel® RealSense™ 3D Camera F200 to capture
both the color and the depth image for real case deblurring.
The RealSense™ Camera F200 is a stand-alone camera that
can be attached to a computer, and can be applied for nat-
ural gesture interaction, face recognition, 3D scanning, etc.
It contains mainly three key components, namely, a conven-
tional camera, an infrared laser projector, and an infrared
camera [33]. The infrared projector projects a grid onto the
scene, and the infrared camera captures it to obtain depth
maps. The RealSense™ Camera F200 has an effective range
between 0.2m and 1.2m; the color camera supports resolution
up to 1080p at 30FPS and 720p at 60FPS; the depth (infrared)
camera supports depth resolution up to 480p at 60FPS and
HVGA quality at 110FPS, and supports infrared resolution
up to 480p at 300FPS [33]. Therefore, there is no need for
capturing the depth maps separately using a tripod or other
methods. The depth map capturing speed by RealSense™
Camera F200 is much faster than the capturing speed for the
corresponding color image. In this way, utilizing a at least less
blurred depth map as supplemental information for helping
deblurring the more blurred color image is meaningful and
would help promote the deblurring quality. Also, our work
mainly focuses on depth-aware motion deblurring using loopy
belief propagation, while the motion-blurred color images and
the related clear depth maps are obtained using RealSense™
Camera F200. We used the UV maps provided in the SDK to
map the depth map to the coordinates of the color image.

Real examples usually have complicated motions such as
zoom-in (zoom-out) or rotation. Motion estimation for real
captured images was performed with pixels pairs provided
by users as shown in Fig. 21(a). Based on uniform motion
assumption, easiest way to handle such uniform motion is
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TABLE III

RMS ERROR COMPARISON FOR DEBLURRING RESULTS WITH RESPECT
TO THE NUMBER OF PIXEL PAIRS FOR USER-ASSISTED MARKUPS

Markups art books bowling cones dolls moebius

Blur Image | 12.9739 | 17.5476 | 6.3319 | 13.5744 | 26.3987 | 13.3389
2 Pairs 12.1456 | 16.9376 | 6.1532 | 12.7369 | 24.4268 | 12.8394
4 Pairs 10.3528 | 13.3572 | 5.8527 10.3418 | 18.3712 | 10.6315
6 Pairs 8.7214 9.8693 4.8672 8.1385 | 11.7364 8.3571
8 Pairs 6.8972 6.0617 2.5875 7.1273 6.3247 4.4361
10 Pairs 6.3214 5.1131 2.4952 6.8317 5.6247 4.2136

Fig. 20. Failure case from too over-blurred image. (a) Largely over-blurred
image. (b) Failure case from our approach. Although the deblurring result is
visually better than the over-blurred input, yet we still need to perform more
further researches on our approach to provide better deblurring effects.

Fig. 21.  Comparison of results for real captured images. (a) Input blurred
image with user-assisted markups of pixel pairs for motion estimation.
(b) Result by [5]. (c) Result by [13]. (d) Our result.

presented by Shan et al. [34]. Their method relies on user
to provide image correspondences to build the transformation
in deblurring. Dai and Wu [35] also presented an effec-
tive method to estimate H; by blurred objects alpha matte.
We utilize the method in [34] for real example experiments.
Li et al. [36] further introduced sharp panoramas generation
from motion-blurred videos, the method for estimating a global
homography could also be applied as motion path estimation
in this paper. In Fig. 21, transformation matrix M; is obtained
by fitting the transformation matrix with user-assisted markups

of pixel pairs. Each h; is calculated under uniform motion
assumption. We compared our result (Fig. 21(d)) with [5]
(Fig. 21(b)) and [13] (Fig. 21(c)). As can be seen from the
results, without depth consideration, background was over-
deblurred in Fig. 21(b). Our approach worked well for both
the near and far areas. We note that our real example is not as
perfect and significant as synthetic examples, which is mainly
caused by estimation errors for /2 ;. Besides, motions in our real
example are also not as huge as in synthesized blurred images.
To evaluate the accuracy relation between user interaction and
final deblurring results, we have performed quantitative eval-
uations on the synthetic examples with user-assisted markups
of pixel pairs. Table III shows the Root Mean Square (RMS)
error comparison for deblurring results with respect to the
number of pixel pairs for user-assisted markups. It can be
seen clearly from Table III that, by increasing the number of
user-assisted pixel pairs, the RMS error reduces accordingly,
and more than eight pairs of correspondence points could
produce high-quality deblurring results.

VII. CONCLUSION AND FUTURE WORK

It is difficult to restore a spatially variant blurred image,
especially when each pixel has an individual point-spread
function. Moreover, existing studies have not paid sufficient
attentions to the differences in blurriness caused by varying
depth values. To address such issues, this paper proposes a
matrix-based motion blur model to synthesize a blurred image
with pixel-level spatially variant blur by using a depth image.
We applied several transformation matrices using the 3D space
and slice motion to produce intermediate frames and summed
them up to form the blurred image. The problems of empty
holes that occur in most depth images are fixed through our
depth filling approach. We also propose an iterative approach
to restore latent clear images using our blur model. The exper-
imental results showed that our model can simulate image blur
caused by three-dimensional motion, and the deblurring results
are robust in different depth layers.

In the future, based on the model in this research, we will
further work on image/video deblurring with nonuniform
motion velocity assumption [37], [38]. We will further study
and work on jointly optimizing the depth map [39]-[41] and
clear image for the benefits of blur kernel estimation [37], [42]
to propose a more general solution to handle blind image
deconvolution. We also plan to improve depth filling quality
for objects’ edges in order to make them sharper and more
consistent with color reference images. Motion animation for
real captured images is another important task, which would be
fully automated and hence more effective than user assistance.
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