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Video Colorization Using Parallel
Optimization in Feature Space

Bin Sheng, Member, IEEE, Hanqiu Sun, Member, IEEE, Marcus Magnor, Member, IEEE, and Ping Li

Abstract—We present a new scheme for video colorization
using optimization in rotation-aware Gabor feature space. Most
current methods of video colorization incur temporal artifacts
and prohibitive processing costs, while this approach is designed
in a spatiotemporal manner to preserve temporal coherence.
The parallel implementation on graphics hardware is also facil-
itated to achieve realtime performance of color optimization. By
adaptively clustering video frames and extending Gabor filtering
to optical flow computation, we can achieve real-time color
propagation within and between frames. Temporal coherence
is further refined through user scribbles in video frames. The
experimental results demonstrate that our proposed approach is
efficient in producing high-quality colorized videos.

Index Terms—Gabor feature space, parallel optimization, user
strokes, video colorization.

I. Introduction

MODERN SYSTEMS for digital video editing allow
nonprofessional multimedia producers to restore or

adjust the color of original monochromatic images [1].
Although substantial effort has been devoted to color prop-
agation within a single image, comparatively little research
has focused on videos. This is probably because of the in-
creasing complexity of video colorization, which must balance
the constraints between spatio-temporal color coherence and
processing costs [1], [2]. Optimization over an entire video
will be very slow because video data appear in a 3-D space
(2-D frames arranged in linear time). The existing video
colorization methods [1], [3] make the color propagation from
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keyframes to subsequent frames easier by relying on optical
flow. However, optical flow will cause artifacts in certain
frames, which are usually reflected in the colorization results.
Such errors cannot be easily eliminated through user input or
postprocessing approaches [1] because the optimization used
by most of these methods is based on a one-pass linear system
solver.

In this paper, a more efficient video colorization optimiza-
tion method under parallel color propagation is proposed. Our
key observation is that, since color propagation assigns similar
pixels with similar colors, video colorization constitutes a
smooth function in a higher-dimensional pixel feature space
rather than in a video space. This function is approximated
with spatio-temporal pixel subgraphs in the feature space.
Thus, unlike previous methods that solve color optimization in
a very large linear system, this method iteratively propagates
the colors among the pixels in the graphs, which results in
greater refinement and parallel acceleration. It was observed
that this approximation maintains the visual fidelity of pre-
vious optimization methods while achieving a high level of
parallel color propagation.

Special attention should be paid to the temporal coherence
when static image colorization methods are applied to moving
images. Colors may shift erratically or show no consistency
between frames, causing visual fatigue for viewers. To solve
these problems, we propose to leverage user scribbles through
a new feature space formed by rotation-aware Gabor filtering.
In this feature space, color similarity is established and Gabor
flow is then used to compute the temporal connectivity of the
pixel graphs. By optimizing colors on a per-pixel basis, color
mismatch even between disjoint regions with similar textures
is minimized. In comparison with previous work on stroke-
based colorization, two notable contributions are made in this
paper:

1) a method for maintaining temporal color coherence
using optimized Gabor flow;

2) a parallelized strategy for fully solving the optimization
of video colorization.

This paper is organized as follows. Previous work related to
our approach is briefly reviewed in Section II and the Gabor
feature space is presented in Section III, including rotation-
aware Gabor filtering and feature graph generation. Color
propagation over the video space and parallel optimization
of this process are described in Section IV, a variety of
experimental colorization results are presented in Section V,
and concluding remarks are provided in Section VI.
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Fig. 1. Colorization results of the River-Bank video using parallel optimization in the Gabor feature space.

Fig. 2. Pipeline for our video colorization approach. (a) Given a set of source video frames, we set up rotation-aware Gabor filtering for texture discrimination
and resolution detection. (b) Feature space generated by Gabor filtering is then adaptively partitioned into K-D tree subgraphs. (c) Gabor flow is constructed
to represent temporal correspondence among different subgraphs. (d) We then propagate the colors directly to the pixels of these subgraphs in parallel.

II. Related Work

For image colorization techniques, colorization is usually
achieved on the basis of the color scribbles input by users onto
target grayscale images. In the technique in [1], the colors
of all remaining image pixels are optimized by using these
scribbles as constraints, while in other colorization approaches,
learning techniques and grayscale intensities are utilized [2],
[4], [5]. The relation between a grayscale image and its colored
version is learned by the examples in [5] and [6], while a
grayscale image is colorized on the basis of single and multiple
images in [7] and [8], respectively. Color scribbles drawn by
the user over a given image are utilized in other colorization
techniques [3], [9]–[11]. The colors of these scribbles are
then distributed algorithmically across the whole image. For
example, a weighted average of scribble colors is used to
colorize pixels [3], where a weight is in proportion to the
geodesic distance between a pixel and its scribble. Bayesian
texture classification for colorization of grayscale aerial and
space imagery, and prototype matching can be used [12] to
overcome some of the shortcomings mentioned in [4].

Recently, an image colorization technique based on the
Gabor feature space was proposed, but only suitable for the
single-image domain [13]. Since the pixels are still in the
2-D image space, color distribution can be optimized across
the entire image. But this strategy does not scale well to
video data and will induce cross-frame flickering artifacts.
The key to handling these problems is color propagation in
temporal video space, not merely in the 2-D space of unrelated
frame images. A neural network when used to complete this
temporal propagation [14] also increases computational costs
and hinders parallelization.

Optical flow algorithms [15]–[22] are some of the most
efficient methods for calculating the inconsistency of stereo

imaging and motion in video sequences. However, these algo-
rithms are faced with severe challenges that are caused by the
occlusions resulting from scene structure and/or object motion
and will lead to undependable intensity matching and optical
flow smoothing across object boundaries (near the occlusion
area). In lack of clearly detecting occlusions, some methods
are put forward to handle oversmoothing, such as anisotropic
diffusion with image or flow adaptiveness [20], [23]–[25],
and isotropic diffusion with nonquadratic regularization [19],
[21]. These methods can constitute vector fields that preserve
discontinuity but not account for occlusions. A further step was
taken by calculating both forward and backward optical-flow
fields with flow-field regularization [26], [27]. The resulting
flow diffusion in [26] is isotropic but adaptive to the differ-
ence between forward and backward optical-flow calculations
(a large difference indicates occlusion), while the flow dif-
fusion in [27] is anisotropic and dependent on image gra-
dients. In the recent VideoSnapCut [28] high-quality results
are obtained by using a series of local classifiers combined
with a matting method, while reserving the capability for local
refinement. Another recent technique, SIFT [29], is based on
image registration through tracking cross-frame robust feature
descriptors.

III. Approach Overview

The essential task of video colorization is to assign colors
to pixels based on the intuition that pixels with high similarity
should have similar colors. The key to our approach is to
establish pixel similarity in the video’s grayscale channel. To
accomplish this, a novel pipeline is introduced that measures
pixel similarity across video frames and allows parallel color
optimization among pixels. Fig. 2 provides an overview of
our approach. First, a rotation-aware feature space is set
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Fig. 3. Rotation-aware Gabor filter responses. Three sample pixels from the filtered video frame on the left. On the right, the 48 outputs of Gabor filter
banks are drawn sequentially (the filter banks for the three samples are marked in red, green, and blue, respectively), demonstrating that the rotation-aware
Gabor filters track textures more accurately than conventional Gabor filters.

up through fast Gabor filtering (Section III-A). Then, the
pixels in this feature space are adaptively clustered to form
subgraphs for local color optimization (Section III-B). Gabor
flow is also used to establish dense temporal correspondences
between subgraphs (Section III-C). Finally, the color opti-
mization problem is approximated through per-pixel linear
iteration in the feature space, thereby satisfying the user-
specified color indications (Section IV). The general idea is
to avoid unnecessary computations by constructing the Gabor
flow to represent most pixel correspondences, and then by
propagating colors directly to corresponding pixels, without
color refinement. Fig. 1 illustrates this use of Gabor flow in
color propagation for an example video.

A. Rotation-Aware Gabor Features

Pixel similarity is expressed in the feature space by Gabor
filters. The outputted bank of 24 Gabor filters (four scales, six
orientations) on a k × k neighborhood around a pixel is used
to produce feature vectors. These filters locally represent the
scale and orientation of a texture. The Gabor functions are
mathematically characterized in [10] and [30].

The Gabor filters are built according to [30], and the individ-
ual feature components are normalized to balance their effects
throughout the feature space [10], [30]. This normalization
was performed pair-wise together with the calculation of
feature distance between two pixels [30]. Fig. 3 shows the
normalized effects of three pixels on the feature components
in a test image. The mean μm,n and SDsσm,n are equivalently
normalized to measure texture similarity.

This approach measuring pixel similarity works well some-
times, but quite poorly for rotated textures or objects because
all filter banks are orientated in the same way. Therefore,
two pixels lying within objects or textures with different
orientations may be measured to be very different even they
are in the same neighborhood, as it often occurs in natural
images. To build feature vectors with invariant rotation, a
function R(x, y) = θtexi

representing the texture direction
of pixel i in position (x, y) is determined, so the feature
distance calculation is matched in terms of orientation. Then,
a set of rotation-aware Gabor filters for pixel i is generated
by adjusting each filter’s orientation θn according to texture
direction θi

θn = (nπ + θtexi
)/R. (1)

By substituting (1) into the Gabor filter formulations, the
rotation-aware Gabor filters are constructed for generation of
feature vectors based on Fourier transformation. Due to the ori-
entation of slope θ in a video frame, energy will be primarily
distributed along θ ±π/2 in the complex frequency plane, and
based on this, an orientation-sensitive Fourier measurement for
pixel i is performed to build the local direction

tV (xi,yi,ti)(θ) =
∫

|Fourier(V (xi, yi, ti))ρ,θ|2dρ. (2)

Fourier(V (xi, yi, ti))ρ,θ is the Fourier transformation.
Fourier(V (xi, yi, ti)) in polar coordinates, on the k × k sam-
pling window surrounding the video pixel V (xi, yi, ti) so that
the direction of pixel V (xi, yi, ti) is defined as the θ when
tV (xi,yi,ti)(θ) is maximized.

B. Feature Space Clustering

It is supposed that in a higher-dimensional space where
pixels in a video are represented as points, the points rep-
resenting pixels with high similarity are located close to each
one. This space is called a Gabor feature space. If color is
to be propagated throughout the neighborhood in the whole
feature space, the connectivity of neighboring pixels should be
determined. The concept of neighboring pixels in the feature
space relies on the selection of similarity measure. In this
paper, the similarity measure given in [13] is adopted. Based
on this, we can define the Gabor feature space by simply
expressing each pixel with its Gabor feature vector, because for
the highly similar pixels, the Euclidean distance between their
feature vectors is smaller. However, computation of neighbors
in this feature space is rather expensive. In response, the
clustering approaches from [31] and [32] were used, hoping
to find a more efficient method for neighbor computation in
the Gabor feature space.

To build connectivity and neighborhood for the pixels, the
feature space is further subdivided by a k-d tree at higher
dimensions. The tree was built in a top-down way, which
hierarchically reflects the pixel similarity. It is supposed that
D is a set of all the pixels of the input video, and cell Ci is
related to its k-d tree partition. All that is needed is a predicate
κ, with which, the pixel set Pi in Cell Ci can be considered a
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Fig. 4. Our video colorization (from left to right): the input scribbles of frame 1; the colorization result in Gabor space, in which the colors are transferred
over the disjoint regions shown in the marked boxes; and the colorization propagation on frame 19.

cluster of pixels that neighbor each other in the feature space.
κ(Ci) is considered true when

|Pi| < εa ∨ max
k

(dist(Cicenter, Cicornerk
)) < εb (3)

where εa represents the threshold of pixel number in the
subgraph, and εb represents the threshold of the subgraph’s
range in the feature space. The parameters are experimentally
used by setting εa = 10 and εa = 0.4.

With the assistance of the predicate κ(Ci), the subdivision
becomes easy. The root cell D is tried first, which is the
strongest bounding cube of points denoting all pixels in the
Gabor feature space. If κ(D) is false, then D is split into
two cells and the splitting algorithm is performed again on
each of the cells. Once this iterative clustering is finished, the
resulting clusters will be highly similar to each other and well
approximate the pixel neighborhood. The generated feature
space is then transformed into a set of connected subgraphs.

C. Temporal Coherence With Gabor Flow

The connected subgraphs enable color propagation across
the entire feature space. Compared with [1] and [7], to propa-
gate color across all the pixels in the inherently interconnected
image space, the pixels form the connected subgraphs as
isolated islands in the feature space. If the feature space is not
fully connected, additional user input is needed to ensure there
is at least one color assignment per subgraph. In order to avoid
complex user editing and to maintain temporal coherence, the
temporal connectivity among the pixels in different subgraphs
is preferred so that the color can automatically spread over
the whole feature space. In a sense, temporal connectivity in-
dicates to what degree our colonization is temporally coherent
and therefore resistant to flickering artifacts.

A new flow field called Gabor flow is introduced to check
pixel similarity over time. Based on the rotation-aware Gabor
filters, a discrete parallel match algorithm is used to iden-
tify pixel color correspondences. The rotation-aware Gabor
features make it possible to robust-match across texture/color
appearances at different parts of the scene. The basic task is to
find robust color correspondences among unconnected clusters
in the Gabor feature space. A pixel’s filter banks consist of p

elements, Fk, k = 1, . . . , p, each posing a local constraint on
pixel movement, which is used to define Gabor flow energy
as

EGF (u, v) =
p∑

k=1

((Fk)xu + (Fk)yv + (Fk)t)
2 (4)

Fig. 5. Comparison of color propagation in 2-D image space with that in the
Gabor feature space. (a) Color propagation in image spatial space. (b) Color
propagation in our feature space.
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where u and v are the x and y components of the gabor
flow. The task is reduced to replacing the system entries in
(5) with the components of vector-valued Gabor features. The
resulting linear system can be solved by estimating Gabor
flow with the least mean square method. Specifically, Gabor
flow is defined in a rotation-aware manner by formulating the
temporal connectivity of the pixels among subgraphs in the
feature space.

As discussed earlier, our energy optimization can propagate
colors to neighboring pixels regardless of spatial connectivity,
as shown in Fig. 4. Fig. 5 shows the comparison of color
propagation in 2-D image space and Gabor feature space.

IV. Efficient Color Propagation

In this section, we show how cluster-based pixel neighbor-
hoods support efficient color propagation in the Gabor feature
space. There are many energy formulations for color propaga-
tion [1], [2], [8], [10]. For the formulation in this paper, the
energy minimization that determines the neighborhood in the
Gabor feature space must be considered, in comparison with
the well-known eight-neighbor area in the image space. For
pixel i, its neighbors in the Gabor feature space, its neighbors
(NF (i)) within one subgraph, and its temporal correspondences
determined by Gabor flow are found out.

After this neighborhood is formulated and as the intensity
value Y and color hints scribbled by the user are known,
the values of components U and V (in space YUV ) should
be estimated. As the methods to estimate V and U are
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Fig. 6. Color propagation for a sample video. (a) Grayscale video frame at time t. (b) Masking map for this video frame, in which black pixels indicate regions
of high accuracy in color propagation. (c) Further refinement is applied to the pixels which are marked in white in the masking map. (d) Final coloring result.

similar, only the calculation of U is described, referring to
the notation in [1] for simplicity. We aim to minimize the
difference between the weighted average of the colors at
feature-neighboring pixels and the color component U(i) at
pixel i

E(U) =
∑

i

(U(i) −
∑

k∈NF (i)

WkiU(k))2

Wki ∝ e−dist(k,i)/2σ2
F (i), k ∈ NF (i) (6)

Wki = 0, otherwise

where Wki is a weighting function that sums to 1, and it is
larger when its feature vector is identical to that of pixel i,
σF (i) is the variance of all feature distances between pixel i

and its neighbors. The notation k ∈ NF (i) indicates that k

and i are neighboring pixels in the feature space. Then, the
weighting functions are computed on the basis of the feature
distances between pixel i and its neighbors.

Given a set of locations iuser with user-specified colors
u(iuser) = uscribble; v(iuser) = vscribble, E(U) and E(V ) sub-
jected to the specified color constraints are minimized. With
the quadratic cost functions and the linear constraints, this
optimization problem brings up a large set of linear equations,
which can be solved by standard methods such as generalized
minimal residual algorithm (GMRES) [33]. However, the con-
struction of coefficients in the linear system is still very time-
consuming because all pair-wise terms have to be enumerated.

A. Parallel Color Propagation

One way to utilize our Gabor feature clustering in this
optimization is to express the variable U(i) in (6) as a linear
combination of its neighbors NF (i) in the Gabor feature space,
which will result in highly parallelized iterations with fewer
variables to solve. The user-specified color Uuser is propagated
to feature neighbors by using

U0(i) =

{
Uuser, if i ∈ strokeuser

U(i), otherwise
(7)

Ul+1(i) =
∑

k∈NF (i)

WkiU
l(k) (8)

where strokeuser is the color of the user-input scribbles. No-
ticeably, the propagation can be significantly accelerated by
assigning it to a GPU and/or multicore processor. Interestingly,
for pixels with coloration artifacts, (8) makes it possible for
the user to edit colorized video frames continuously, and thus
simplifies their colorization (as shown in Fig. 6).

Fig. 7. Color propagation comparisons (a) using optical flow [21] and
(b) using Gabor feature space. Note that the high-error region (indicated by
white pixels) produced using optical flow is much larger than that produced
using Gabor feature space.

B. Analysis

Video colorization can be optimized by establishing that
linear iterations on per-pixel basis, so numerical analysis was
performed. The reason is that color preparation indicated
by (8) is, in fact, an alternative solver of (6), in which
the linear system is sparse but unnecessarily symmetrical.
Mathematically, we need to obtain the least-squares solution
of AU = 0, where A = E − (Wkj)n×n, E is the identity matrix.
Since the pixel’s neighborhood in Gabor feature space might
be nonsymmetrical (there are instances when a pixel j ∈ NF (i)
but the pixel i /∈ NF (j)), A might be a nonsymmetrical matrix.
Therefore, we cannot use the conjugate gradient solver, and
GMRES is time consuming for video data.

Fortunately, our linear system AU = 0 is also particular,
since it can be rewritten as U = F ′U (F ′ = E − A). F ′U is
therefore proved to be a contraction mapping [34]. It is known
that a contraction mapping has at most one fixed point, and
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TABLE I

Timing Statistics of Our Video Colorization in Gabor Feature Space

Fig. 8. Comparison of colorization results using the methods by Liu et al. [8] and Irony et al. [7]. (a) Ground-truth image of St. Basil’s Cathedral for
comparison. (b) Target grayscale image with user’s strokes. (c) Irony et al.’s colorization result. (d) Liu et al.’s colorization result [29]. (e) Our colorization
result. The insets in the top left corner of (c), (d) and (e) provide details of the different colorizations of the blue and white pinnacle. Our method shows a
more realistic result.

Fig. 9. Colorization comparison of the sample video (33 frames). (a) and (c) Colorization by Irony et al. [7]. (b) and (d) Results by our approach. (e) Input
color scribbles.

we can use the iterated function Un+1 = F ′Un to converge
to the fixed point. We have derived (8) so as to provide a
parallel, iterated function for solving (6). Therefore, parallel
propagation is an approximation of solving the optimization in
the Gabor space of the input video. Our proposed technique,
when used for color propagation among video frames, yields
equivalent optimization effects without the time-consuming
calculations of optimization.

V. Results and Discussion

Several experiments were performed on an Intel(R) Core
TM(2) 2.3 GHz PC with nVidia GeForce 8800 GPU and 3 GB
RAM. The resolution of our target videos range from 400×300
to 800 × 600. Preliminary tests show that only three to five
keyframes of a 300-frame video are needed to achieve high-
quality colorization.

Color propagation was GPU-accelerated using nVidia
CUDA language for parallel computation, where the Gabor

feature space [30] is extended to the k-d clusters of video
pixels. In general, full propagation for each video frame
was achieved within 3000 iterations, which equated to real-
time performance in our environment. Table I shows the
processing times for colorization of the test videos. In contrast
to previous video colorization methods that relied on the
spatial connectivity of image pixels [1], our Gabor feature-
based colorization was able to handle most of the rotated
and disjoint textures commonly seen in videos of natural
settings.

Fig. 7 shows the comparison of the coloration of various
videos (of Jellyfish, Mountain Climbing, and Ocean Cruising)
using optical flow and Gabor feature space. Noticeably, the
Gabor feature space is able to detect texture regions more
accurately, leading to fewer errors in region matching. The
k-d tree clustering of the Gabor feature space appears to
be particularly well suited for propagating color for opti-
mization. Because it is designed to measure pixel similarity,
parallel iteration can optimize colors in both the feature space
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Fig. 10. Colorization using Gabor filters (b) without and (c) with rotation-aware properties, and the (a) colorization of another keyframe.

Fig. 11. Visual comparison of the per-frame colorization and our approach.

Fig. 12. Colorization using optimization in feature space. (a) Input strokes.
(b) Colorization result. Please note that the input colors only existing in the
right eye are propagated to the left side.

and the temporal pixel neighborhood of target video frames.
Fig. 8 shows that though the reference images are unclear,
our method works well given an adequate set of user-input
color scribbles. Such input is crucial when reference images

Fig. 13. Colorizing texture with multiple colors. (a) Input scribbles. (b) Our
colorization result. Note that the red boxes indicate where colors have been
improperly blended in texture-similar regions.

are scarce or no coherent color/illuminance match can be
found.

Compared to the colorization methods in [7] and [8], our
approach takes advantage of parallel color propagation in Ga-
bor feature space to approximate the optimization in the video
domain. As we know that the scribble-based colorization for
video sequence may cause some flicking artifacts especially
for occluded pixels, discontinuous motion boundaries, and
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Fig. 14. Keyframe selection based on Gabor flow (from left to right): the keyframes selected from a Climbing video of 682 frames; the interframe accuracy
error evaluated by Gabor flow; and the keyframe selection based on thresholding the accumulated accuracy error.

Fig. 15. Colorization results of the Fish video (ten frames). (a) User inputs on the grayscale frame 1. (b) Colorized result of the frame 1. (c) Colorized
frame 10.

Fig. 16. Colorization results of the Sailing video (145 frames). (a) Colorized frame 1. (b) Frame 16. (c) Frame 44. (d) Color scribbles.

textureless regions. Inspired by the color-segmentation-based
approaches, we apply temporally coherent color propagation
based on the Gabor flow, and the flicking artifacts over video
frames are suppressed, as shown in Fig. 11. Fig. 9 com-
pares our colorization results with [7] given only four input
color scribbles. Note that the Gabor feature-based colorization
achieves comparable quality, and accurately handles rotated
and disjoint regions. Fig. 12 demonstrates our colorization
propagation based on the texture similarity. Fig. 10 shows
the difference using Gabor filters without [Fig. 10(b)] and
with [Fig. 10(c)] rotation-aware properties. Note that coherent
colorization may require refinement of colors in some detailed
regions of the video frames.

Figs. 15–20 show our video colorization results for various
video sequences: Fishes at Sea (ten frames), Sailing (145
frames), Ocean Cruising (300 frames), Mountain Climbing
(682 frames), Skiing (153 frames), Tiger (548 frames), and
Dolphin (832 frames) videos. Note that in all these examples,
colors are accurately assigned based on a small number of
input color scribbles.

A. Video Length

In most cases, the colorization distortion of video data
increases with time. We solve this problem by using Gabor

flow to extract regular keyframes for user color scribbling. The
test described in [35] is adopted to determine the accuracy
of Gabor flow, based on forward/backward error maps. The
keyframes at which the accumulated error reached a pre-
set threshold were selected. Fig. 14 shows the selection of
keyframes for Climbing (5), with interframe accuracy error
and accumulated error.

B. User Scribbles

Scribble-based colorization was first introduced for static
images [1], [10]. With these algorithms, colors are specified
by users at several sparse positions in an image by plotting
colored strokes, based on which colors are spread to the rest
of the image. The basic principle of these methods is that
spatially close regions with identical appearances should be
assigned with similar colors. When an entire video is to be
colorized, at least one color should be provided for each
subgraph. Since the number of user scribbles is also decided by
the user’s expectation of video content in practice, it is not the
main reason for selecting user inputs. The reason behind the
input scribbles is to allow users to show the needed coloring
effects by using scribbles. With the color specified at each
scribble position, Gabor flow can propagate color to regions
with similar appearances.
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Fig. 17. Colorization results of the Cruising video (300 frames). (a) Color strokes on the grayscale frame 1. (b) Colorized result of frame 1. (c) Color
propagated result of frame 35.

Fig. 18. Colorization results of the Climbing (682 frames) and Skiing (153 frames) videos. (a) and (d) Color strokes on the grayscale frames. (b) and
(e) Colorized results of the corresponding frames. (c) and (f) Color propagated results of other video frames.

Fig. 19. Colorization results of the Tiger video. (a) Input user strokes for frame 1. (b) Colorized result of frame 1. (c) and (d) Color propagation results of
other frames.
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Fig. 20. Colorization results of the Dolphin video. (a) and (b) Input grayscale video frame and its colorized result. (c) and (d) Another input grayscale video
frame and its colorized result.

C. Performance

The key to our improved colorization performance is the use
of GPU-based parallelization of per-pixel color propagation.
The time required for CPU-based or GPU-based colorization
of test videos is provided in Table I. Performance varies
with the number of color scribbles and the frame resolution.
For a 550 × 416 video frame, the total time required for
CPU-based implementation was 75 s on average, whereas
that for our GPU-based implementation was about 50 ms.
Colorization qualities were roughly the same for the two
methods.

D. Limitation

Although our colorization approach worked well for most
video examples, there were cases in which it failed to properly
colorize within scribbles. This occurred when pixels with
high texture similarity did not have similar colors. The plum
blossom example shown in Fig. 13 is such a case: regions that
share numerically similar features but are semantically distinct
were not properly colorized. This limit is due to an inherent
restriction of Gabor filters, resulting in overpropagation during
optimization. Trusting to measured feature similarity as we
do, certain spatial features (e.g., lines/boundaries) may be
blurred by color propagation across object boundaries. A
possible solution to this problem would be to compute a larger
feature space by combining texture features and image spatial
positions. Spatially proximal regions of similar appearance
would then receive similar colors. Nonetheless, introducing
the spatial relation into the pixel similarity seems to face the
challenges of noise-removing and edge-preserving for a wide
range of videos.

VI. Conclusion

The core challenge of colorization is to assign similar
colors to texture-similar regions. In this paper, a novel
approach to video colorization is presented, which uses
the Gabor feature space to achieve good matching results,
despite significant differences in appearance and spatial
layout of video frames. This method is highly parallelizable.
It is applicable to various video data, especially the videos
of natural scenes. In the future, we will explore the use
of more sophisticated monochrome texture descriptors in
video sequences, and further improve the color propagation
capabilities of this approach.
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