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S2P-Matching: Self-Supervised Patch-Based
Matching Using Transformer for Capsule
Endoscopic Images Stitching
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Abstract—The Magnetically Controlled Capsule En-
doscopy (MCCE) has a limited shooting range, resulting
in capturing numerous fragmented images and an inabil-
ity to precisely locate and examine the region of interest
(ROI) as traditional endoscopy can. Addressing this issue,
image stitching around the ROl can be employed to aid
in the diagnosis of gastrointestinal (Gl) tract conditions.
However, MCCE images possess unique characteristics,
such as weak texture, close-up shooting, and large angle
rotation, presenting challenges to current image-matching
methods. In this context, a method named S2P-Matching
is proposed for self-supervised patch-based matching in
MCCE image stitching. The method involves augmenting
the raw data by simulating the capsule endoscopic cam-
era’s behavior around the Gl tract’s ROIl. Subsequently, an
improved contrast learning encoder is utilized to extract lo-
cal features, represented as deep feature descriptors. This
encoder comprises two branches that extract distinct scale
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features, which are combined over the channel without
manual labeling. The data-driven descriptors are then input
into a Transformer model to obtain patch-level matches
by learning the globally consented matching priors in the
pseudo-ground-truth match pairs. Finally, the patch-level
matching is refined and filtered to the pixel-level. The ex-
perimental results on real-world MCCE images demonstrate
that S2P-Matching provides enhanced accuracy in address-
ing challenging issues in the GI tract environment with
image parallax. The performance improvement can reach
up to 203 and 55.8% in terms of NCM (Number of Correct
Matches) and SR (Success Rate), respectively. This ap-
proach is expected to facilitate the wide adoption of MCCE-
based gastrointestinal screening.

Index Terms—Capsule endoscopy, image stitching,
multi-view simulation, patch-level matching, self-
supervised contrastive learning, transformer.

[. INTRODUCTION

HE non-invasive, painless, and non-cross infection cap-
T sule endoscopic equipment, such as Wireless Capsule En-
doscopy (WCE) [1], [2] and Magnetically Controlled Capsule
Endoscopy (MCCE) [3], has exhibited the potential to replace
traditional endoscopy in clinical applications, including gas-
trointestinal (GI) ulcers and bleeding, inflammation, and cancers
early detection. Unfortunately, the capsule endoscopy’s move-
ment is primarily dependent on GI peristalsis due to hardware
limitations [4], [5], [6]. The limitations in controlling the lens
during endoscopic procedures restrict the surgeon’s ability to
accurately investigate the region of interest (ROI) [7]. Instead,
they typically capture continuously taken, fragmented, and area-
overlapping endoscopic image frames [8], as depicted in Fig. 1.
Forinstance, in MCCE, physicians commonly capture redundant
and fragmented image frames while maneuvering around the
ROL. Using artificial intelligence, these fragmented images can
be seamlessly stitched together, enabling doctors to observe
the candidate lesion area within a broader field of view and
facilitating more accurate lesion detection.

Stitching capsule endoscopic images together is complex
and presents several obstacles. One significant challenge is that
each image captures only a limited area, typically ranging from
20 mm ~ 60 mm with the MCCE lens, resulting in fragmented
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Fig. 1. Capsule endoscopic image stitching. (a) The capsule endo-
scopic moving in the 3D Gl environment captures images. (b) The
fragmented images captured by the floating camera are tiny, weakly
textured, and rotation and transformation caused by close-up shooting.
(c) Aninstance illustrates that our self-supervised patch-based matching
is capable of producing a reliable match when subjected to a range
of transformations, including multi-view camera position and rotation
transformations.

images. Moreover, these images often contain repeated weak
texture regions that are difficult to distinguish using existing
feature descriptor-based methods [9], [10], [11], which focus
on designing suitable handcrafted local feature descriptors like
SIFT and ORB. As a result, these methods struggle to detect a
sufficient number of reliable matching points in environments
with sparse features. Additionally, they are not specifically opti-
mized to address challenges encountered in capsule endoscopy,
such as changes in camera perspective. Therefore, their effec-
tiveness in handling the stitching of capsule endoscopy images
with weak textures and complex scenes is limited.

An effective strategy to solve the problem of stitching images
with insignificant discrimination is the patch-based matching
method [12], [13]. It uses patch descriptors based on deep
learning to reflect patch similarity and generalize well against
indistinctive regions with low-textures, motion blur, or repetitive
patterns. Similar to Sun et al. [13] used the Transformer model
to find correspondences in the indistinctive regions based on the
local neighborhood and a global context to identify the fuzzy
patches. We also use the Transformer model to find the matching
patches with minor discrimination in the capsule endoscopic
images after expanding the receptive field of features. They are
more likely to be distinguished by their location and relation-
ships from the global perspective.

The primary prerequisite for deep learning is sufficient labeled
training data. For example, the training datasets used by Sun et
al. [13] include ScanNet [14] and MegaDepth [15], which con-
tains 1613 monocular sequences with ground-truth poses and
depth maps and One million internet images of 196 labeled
outdoor scenes, respectively. However, obtaining a ground-truth
dataset for capsule endoscopic image stitching takes much work.
The images of the entire GI tract are massive and fragmented.

For example, the number of MCCE images per patient exami-
nation is about 57,600 [16]. Therefore, manually labeling these
images is usually time-consuming, subjective, and error-prone.
Especially when targeting fragmented images at a specific angle
in the GI scene, the available images for matching training
are very scarce. Fortunately, we can solve this obstacle with
self-supervised contrastive learning with non-labeled training
data. We build a pseudo-ground-truth dataset with matching
pairs by simulating the shooting scene of capsule endoscopy
in the GI tract. With this dataset, we can train models to find
patch-based matching pairs without labeling.

This paper presents a self-supervised patch-based matching
(S2P-Matching) that overcomes challenges in capsule endo-
scopic image stitching. Our methodology involves simulating
the behavior of the capsule endoscopic camera in the GI tract
to enhance the raw data. We then utilize modified contrastive
learning to extract deep feature descriptors as local features. To
achieve this, we employ a two-branch encoder to extract features
from both the patch and the background patch, which are then
connected over the channel. In this way, the feature of the orig-
inal image’s patch is packed into a 1D — d. dimension vector.
The compressed features are then fed into the Transformer model
to obtain matches by learning the globally consented matching
priors in the pseudo-ground-truth match pairs. As aresult, we get
the final accurate pixel-level matching by refining and filtering
the patch-level matching to pixel-level one. After comparing the
typical matching methods, we find that S2P-Matching can stitch
capsule endoscopic images with more accurate results and offers
the best tradeoff in simplicity and accuracy. Our contributions
can be summarized as follows:

® We propose a S2P-Matching framework for matching
capsule endoscopy images. By leveraging improved con-
trastive learning for patch-level matching, our framework
effectively addresses the challenge of complex matching
where images exhibit weak textures, close-up shooting,
and significant rotations without labels.

® We have enhanced the contrastive learning feature extrac-
tion process with a dual-branch encoder that can hierarchi-
cally acquire image patch and background patch features.
After consolidating these features on a multi-scale chan-
nel, the downstream transformer module can accurately
discern feature correlations for patch-level matching.

® We evaluate our S2P-Matching on real-world datasets.
The results show that our method could stitch more
accurately than the state-of-the-art matching methods.
The performance improvement can reach at most 203
and 55.8% in terms of NCM (Number of Correct
Matches) and SR (Success Rate), respectively. Our
method’s stitching effect is natural, with no obvi-
ous texture misplacement or excessive scaling texture
connection.

[I. RELATED WORK

Current methods for registering capsule endoscopic images
rely on handcrafted local feature descriptors designed to match
endoscopic images. These descriptors are used to calculate the
similarity distance between feature points and generate matches.
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For instance, Xie et al. [9] used the ORB feature descriptor
to reconstruct feature maps of the human colon, while Liu et
al. [10] extracted features based on SIFT feature descriptors
and combined matching algorithms. Zhang et al. [11] designed
a Gaussian pyramid ORB endoscopic feature descriptor. While
these descriptors can reduce the search space for matches and are
often sufficient for a common task, they may struggle with ex-
tracting feature points between capsule endoscopic images due
to challenges such as poor texture, viewpoint change, close-up
shooting, and repetitive patterns [13].

Researchers recently used the patch-level matching method
based on deep learning to match medical images. They remove
the feature detector phase and use deep learning to produce dense
descriptors representing the medical image’s patches to refine
the matching results. For instance, KdO-Net [18] has improved
the efficiency of deep convolutional neural networks applied in
the 3D pairwise point feature matching with patches. Zhou et
al. [17] proposed a detect-to-refine method. They first predict
and refine match proposals at the patch level. The features of the
patches are extracted using the ResNet34 backbone and are fed
into a correspondence network for the detection of match propos-
als. Inimage matching, homography estimation, and localization
tasks, they found that this method significantly improves the
performance of correspondence networks. However, it is still not
accessible to capsule endoscopic image stitching. This is because
regions of low texture or repetitive patterns occupy most of the
field of view. It is only possible to find correct correspondences
with specific repeatable interest patches.

Recent natural image-matching methods prefer Transformer
networks to expand the receptive field and extract accurate
matching regions with little discrimination. For example, Su-
perGlue [19] learns the matches of two interest point sets with
a Transformer network, a graph neural network. LoFTR [13]
extends this idea. With an FPN to extract image features, a local
feature Transformer module generates stable features for match-
ing. The Transformer model has a global receptive field, but its
computation will significantly increase. Since the patch-level
method can reduce the amount of input, the Transformer may
work well for patch-level matching of medical images.

Handcrafted features may outperform deep learning-based
features in medical image analysis. Lee et al. [20] conducted
a study comparing the performance of handcrafted and CNN
features in modality classification and found that handcrafted
features were superior to deep learning-based ones. This may
be due to the limited availability of training data, a significant
bottleneck hindering the application of deep learning in medical
images. To address this issue, researchers have been exploring
self-supervised and unsupervised learning techniques [21], [22],
[23], [24]. For instance, Liao et al. [22] introduced a dual-
scale unsupervised deep-learning method for matching ROIs in
consecutive WCE frames. Their approach outperformed non-
deep-learning methods on the WCE dataset. Similarly, Farhat et
al. [23] devised a self-supervised training technique for endo-
scopic image key-point matching using a triplet loss architecture
to address the issue of limited labeled data availability.

Inrecent years, contrastive learning applied to self-supervised
deep learning has led to state-of-the-art performance. The core

idea of contrastive learning is to pull an anchor and a ‘positive’
sample together in the embedding space and to push the anchor
away from many ’negative’ samples. For example, Chen et
al. [25] proposed a contrastive learning approach that improves
the quality of learned representation by using a large number of
minibatch instances to obtain negative samples for each training
instance. He et al. [26] construct a dynamic dictionary containing
queues and moving average encoders from the perspective of
contrast learning. It enables the construction of an extensive,
consistent dictionary on the fly, thus facilitating contrast unsu-
pervised learning. Researches has reported that data augmen-
tation is the key for self-supervised training. Simon et al. [27]
find that the matching algorithm can suppose a multiview boot-
strapping method to augment massive labeled data and applied
successfully on hand keypoint detection. SImCLR [25] shows
that stronger data augmentations help to bring accuracy gains
with contrastive learning and introduced spatial/geometric and
appearance transformations. Experiments have shown that this
approach can improve the performance of models on datasets
such as ImageNet-100. NICE-Trans et al. [28] performs joint
affine and deformable coarse-to-fine registration outperform the
coarse-to-fine or transformer-based deep registration methods
on registration accuracy. It inspired us to believe that the ground
truth of matching points can be obtained by generating appro-
priate simulations on original data.

Ill. PROPOSED METHOD

As shown in Figs. 2, 3 and Algorithm 1, the S2P-Matching has
five parts: data augmentation by capsule endoscopic camera be-
havior simulation, deep feature descriptor extraction, patch-level
matching via the Transformer, refining patch-level matching to
pixel-level matching, and correct correspondence filtering. We
first use affine transformation to simulate the shooting behavior
of the capsule endoscope camera in the GI tract, generating
multiple simulated images at different positions and angles.
Then, we combine the simulated images to acquire an extended
data set of reference images and get the pseudo-ground-truth
matching pair dataset. We use the deep feature descriptor extrac-
tion module based on the dataset to narrow the feature distance
between the reference image and the simulated matching one
and obtain the images’ feature descriptors without labeling the
matching points. The patch-level matching module next matches
the patch features via the Transformer [13] to get the matching
pool. After that, the matching granularity is refined by the
PatchtoPixel [17] method to obtain pixel-level matching results.
Finally, the correct correspondence filtering module filters the
matching pairs to get accurate pixel-level matching results.

A. Data Augmentation by Capsule Endoscopic Camera
Behavior Simulation

A capsule endoscopy camera always floats in the GI tract for
close-up photography. As a result, we get massive fragmented
GI tract images. They have many repetitive, weakly textured
regions and are challenging to annotate. We use data augmen-
tation to obtain pseudo-ground truth datasets with matching
relationships, avoiding tedious manual annotation. Based on
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Fig. 2. The overview of the S2P-Matching. The data augmentation module generates additional simulated images for each reference image (/o)
and gets the pseudo-ground-truth match pair (I et n]) dataset. Then, the match pairs are segmented into patches, and deep feature descriptors

are extracted. The patch features are combined and fed into the Transformer [13] module to obtain the globally-consented matching priors by
learning the matching pairs. Next, the PatchtoPixel [17] method was used to refine the matching granularity to obtain the pixel-level matching
results. Finally, the correct correspondence filtering module filters the matches, obtaining more accurate pixel-level matching pairs.
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Fig. 3. The process illustration of S2P-Matching. Two images are fed into the network simultaneously and are segmented into % X % patches

in d'-pixel steps. In this paper, & is finally set to 60. By contrastive learning, each patch is extracted into a 1 x d. feature vector and combined,
involving the initial position. After this, each original image is transformed into a feature map of dimensions % X % x d.. Next, the original images’
feature encoding and position encoding are united to find the patch correspondence in the Transformer [13] module. The PatchtoPixel [17] module is
responsible for carving the patch-level match into pixel-level matching. Finally, MAGSAC [29] filters the pixel matches to obtain pixel-level matching
results.

the affine transformation and changing the spatial position of angle of view, distance, and rotation angle and estimate an affine
the camera optical axis, we introduce a multi-view camera matrix. Then, the affine matrix transforms the reference image
position transformation method [30], [31] to simulate different and obtains a realistic simulation of the endoscopic image.

viewpoints of the reference images, as shown in Fig. 1. We The key to generating a simulated image is to obtain the affine
first fix the camera position and perspective by determining the — matrix A, which can be decomposed as A = H; Ry (w)TyRa(¢p),
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Algorithm 1: S2P-Matching’s main learning algorithm.

Input:I_Patches [H x W X 3], and the initial model
weights (Fe, T, P).
Output: F,(-) < Contrastive Learning Encoder;
T (-) < Transformer_EncoderDecoder (Q, K, V);
P(-)  PatchtoPixel_EncoderDecoder;
1: 7y, = Simulateq g fine(Zo), n is the number of
generated simulated images;
2 Iovp = Split, e (IO)’ Ii-,P = Splitrule(l'z/’)v pE [Oa Nd);
rule: splitting images of size H x W into N4 patches of
size % X % with a step size of d';
3: fOUti,p = ]:6(11'717)77: € {0, 'fl};
Fe(+) - Training parameters;
4: repeat
5: -Fc = StitChposition(foutC)v ce {Ovj};
Mt = ComPUteTransformer(FO’ F’L)’
T () + Training parameters;
6: Mid-level regressor:
Mlm - fmr(Mt)’ M; - (Mt + Mlm)/Z’
Fine-level regressor:
Mg = Fro (M), My = (M} + Mup) /2
P(-) + Training parameters;
7:until i =n
8: returnTrained models F.(-), 7(-), and P(-).

where T} is the transformation parameter. I?;, o are rotations
and H; > 0,w € [0,27),0 € (—7/2,7/2), ¢ € [0, 7). Hy rep-
resents the scaling parameter. It can be understood as the distance
between the camera position and the part being photographed.
w is the rotation angle around the camera axis, representing the
camera’s rotation when shooting. @ is the angle between the
camera’s optical axis and the routine image plane. ¢ is the angle
between the camera’s optical axis projection on the image plane
and the fixed vertical plane.

To ensure the rotational invariance of the S2P-Matching, the
sampling accuracy of the camera location’s inclination sec # and
angle ¢ needs to meet certain constraints. Here, multiple exper-
iments on natural images obtain the sampling intervals [32].
When secf > 2v/2, the tilt angle has reached 70°, and the
simulation image has minimal help for splicing. Therefore, the
range of sec 6 is fixed to [1,2v/2] to reduce computation. Then
we can calculate the simulation image I’ as:

12

exp (_#)
2( 0;-1) |9[L — 90 + ZAQ,Z € [1771]

II=<Ty
27 (sec? 0; — 1)

7 i

ey

where [ is the reference image and T} is the transformation
parameter.

The simulated images are reliable by simulating the spatial
position of the camera’s optical axis. According to the affine
matrix, the positions of the matching points in the simulated
image corresponding to the reference image can be calculated

and thus get the matching labels. As a result, we get a reli-
able pseudo-ground-truth dataset for capsule endoscopic image
stitching.

B. Deep Feature Descriptor Extraction

We use the patch-level matching method based on deep
learning to match capsule endoscopic images with low-texture
regions or repetitive patterns. The patch-level matching can
also help overcome the annotation from pixel-level errors in
the pseudo-ground-truth dataset. Before matching the patches
in the capsule endoscopic images, we use contrastive learning
to extract the patches’ deep feature descriptors. In contrastive
learning, we should distance patches’ features among the dif-
ferent source images and narrow features of the same source
image.

After obtaining the simulated images corresponding to the
source capsule endoscopic images by an affine transformation,
we split the image of size H x W into Ny = % X % patches
of size % X % with a step size of d’. As shown in Fig. 4,
we can use the affine transformation equation to determine
the mapping relationship between the patches. Considering the
capsule endoscopic image set of the same patient, a reference
patch usually corresponds to multiple patches. The matching
pair obtained by the affine transformation equation can be deter-
mined. We consider the original patches and the pseudo-patches
corresponding to the affine transformation as positive sample
pairs so that their feature distances are as small as possible. The
original patch and the pseudo-patch of another patient are treated
as opposite sample pairs to make the feature distance as large as
possible. However, if there is no clear affine transformation cor-
respondence with reference patches, we skip processing patches
from images of the same patient.

As shown in Fig. 4, the patches of the sample pairs are
inputinto the encoder network (backbone) for feature extraction.
Specifically, we modified the encoder to enhance contrast learn-
ing. However, the small size of each patch posed a challenge
to the conventional encoding approach, which uses a basic
convolutional block. We needed to consider the surrounding
information while matching. To realize this, we utilized the
ViT [33] model as the foundational encoder network. This
allowed us to evaluate the problem at multi-scale and obtain
[ by passing a patch through a ViT-based feature encoder. We
also obtained f; by feeding the surrounding patches into a ViT
feature encoder. We then combined these features to create a
new feature, f,,; = concatenate(f,, fs), which was designed
to be used for downstream tasks. Then, the f,,; are projected
intoa 1D — d. dimensional potential space through a Multilayer
Perceptron (MLP). The projected feature vector f.4 calculates
the Lo distance (D) in (2). The Lo distances between the deep
feature descriptor vector of the reference patch and the other
patches are calculated by:

(262
> pep @A £ 37 o el

where (4, j) = Vec(x;) — Vec(x;), Vec(-) means the deep
feature vector obtained from the last layer in the contrastive

D(i,j) = )
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Model structure of contrastive learning. We augment the images in contrastive learning using the multi-view simulation transformation.

The other difference is that we use patches instead of images to extract the features. According to the corresponding relation obtained by the
multi-view simulation, the features of patches with an intersection between image patches are drawn close by contrastive learning. The image

patches’ features determined to be irrelevant are drawn far away.

learning network, i.e., f.q4. z; represents the reference patch at a
specific location. x; represents the patch in a different position.
P(i) and N (i) are the sets of positive and negative samples of i
respectively.

Our contrastive learning is trained on the pseudo-ground-truth
dataset, where multiple positive and negative sample pairs exist
for a reference patch, and is supervised [34]. Therefore, the loss
function L ¢ updates the network parameter in (3).

Lp—— Z 1 D(i’p)/T
2 TPG 2 S Do /™

where B is the batch data set, |P(7)] is the cardinality of P(7),
and 7 is the scalar temperature parameter.

The contrastive learning agent task is to close the feature
distance between the reference patch and the corresponding
pseudo-patch and pull apart the distance between the original and
irrelevant patches. It is consistent with our behavior of seeking
matches according to the patch features’ similarity. Therefore,
we can use contrastive learning to extract the most appropriate
features for subsequent patch matching.

3)

pEP(i)

C. Patch-Level Matching Via Transformer

After obtaining deep feature descriptors of the patches in
the capsule endoscopic images, we proceed with patch-level
matching by finding the correspondence of the patches. Al-
though medical images always use the traditional matching
method to find nearest neighbor matching pairs, it does not match
weakly textured regions in the capsule endoscopic images [35].
We use the Transformer [36], built on multi-head self-attention
(MHSA), to expand the receptive field and find accurate cor-
respondences in obscure regions. As given in (4) and (5), the
MHSA [37] consists of multiple self-attention layers and plays
an increasingly important role in all areas of deep learning due

to its large receptive field.

SA(’)(I) = Softmax (TIWS) (IWI((Z)) ) IW\(;)

MHSA(I) = Coneat [SAG) (D] W, + 5, )
1€e(n;

where [ is the input elements, (i) is the head index, W is the
weight matrix, and 7 is a scaling parameter. The MHSA layer
with n; heads aggregates the self-attention outputs with W), €
RniPvxPout and 3, € RPour,

We construct a Transformer model similar to the LoFTR [13].
The differences exist in the ground-truth dataset that guides the
Transformer matching. The LoFTR adopts the labeled ground-
truth dataset from the real world, while we use the pseudo-
ground-truth dataset. Moreover, the LOFTR uses coarse-grained
feature maps of the original image, simply extracted by a lo-
cal feature CNN. However, our contrastive learning mentioned
above can naturally extract the most appropriate features for
our patch-level matching. The upper half of every feature is
derived from a specific patch, while the lower half is obtained
from the corresponding region where the patch is situated.
This combination of features has been designed to facilitate
feature matching for upcoming transformers. Then, the deep
feature descriptors of the patches are stitched according to the
image position to obtain a feature map for matching. Using the
feature map, our Transformer model can support the discovery of
the similarity between the patch features of two capsule endo-
scopic images.

Specifically, after cropping the original H x W image in
d'-pixel steps to obtain small patches of size % X % we convert
each patch into a d.-dimensional feature. For each H x W
capsule endoscopic image, it becomes a combined feature map
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of % X % X de, also known as Fy, and Fj jc(1,,) in Fig. 2. F, is
the combined feature map of our reference capsule endoscopic
images, and F; is the combined feature map of one of the n — 1
feature images of I, after an affine transformation. Using the
affine transformation matrix, we can know the position rela-
tionship between homologous image patches. This patch-level
position correspondence constitutes our pseudo-ground-truth
sample dataset for training.

1) Positional Encoding: In our Transformer model for
patch-level matching, the standard position encoding must also
be input to the attention module simultaneously. The patch alone
does not contain position information. However, its position in
the combined feature map is known. We can add the position
information to the feature by positional encoding and make the
feature position-dependent. Taking a cue from LoFTR [13], We
add the standard positional encoding to the backbone output
using a 2D extension of the standard positional encoding in
Transformer. Intuitively, the position encoding gives unique
positional information to each element in the sine wave for-
mat. Adding position encoding to f, and f; makes the trans-
formed features f/ and f/ position-dependent, which is critical
to S2P-Matching’s ability to produce matches in indistinctive
regions.

2) Attention: Self and Cross: The self-attentive layer
(shown in Fig. 2) focuses on the relationships within each
input feature (either f) or f!). The cross-attention layer fo-
cuses on the relationships between different features (f, and
11). Following [19], we interleave the self-attention and cross-
attention layers in the S2P-Matching module by Ry times.
f! and f! are transformed into F) and F] after the attention
module.

3) Establishing Patch-Level Matches: In S2P-Matching,
we use the dual-softmax operator as the matching genera-
tion layer. After obtaining the transformed features, the score
matrix S, between the features is calculated as Sy,(0,7) =
1. (F!,F]). We apply softmax to the two dimensions of S,,
to obtain the probability of soft mutual nearest neighbor match-
ing. The matching probability matrix P,, can be calculated as
follows:

P,(0,i) = Softmaxz(Sy(o,-))i - Softmax(Sy(-,i))e. (6)

4) Match Selection: Based on the matching probability ma-
trix P,,, also called the confidence matrix, we can easily select
matches with confidence higher than the threshold ¢.. Here,
we use the mutual nearest neighbor (M) [42] criterion to
filter possible outlier coarse matches. The patch-level match
predictions are denoted as:

M; = {(0,9)|V(0,i) € MNyn(Pm), Pm(0,i) > t:.}, (7)

D. Refining Patch-Level Matching to Pixel-Level
Matching

In patch-level matching, the Transformer finds the most
matched patches with greater confidence in the whole image
according to the global information. However, since the patches
are obtained by segmenting in d’-pixel point steps, patch-level

@ >( M) > M;, ) )
T @WE f T
T Mid-lever T Fine-lever 4
) Regressor ' Regressor
t t
4 Feature Feature
Collection

E Collection

(N ____4

Fig. 5. The structure of PatchtoPixel. Depth feature descriptors ex-
tracted by contrastive learning are used as local features for pixel-level
matching. Two regressors perform match generation with the same
structure, i.e., a mid-level regressor and a fine-level regressor. The
generated matches update the match set according to the confidence
score and finally obtain pixel-level matches.

matching can only guarantee the similarity of a specific range of
images. It cannot ensure a high degree of matching between
the centers of patches. Therefore, it is necessary to obtain
pixel-level matching using a refinement of patch-level match-
ing. We use Patch2Pix to search for pixel-level matches in the

patch-level match spaces. That is, refine the patch-level matches

N, N, .
M; = (p{‘,pf)i:’l = (xf‘,yf‘,:c?, yzB)i:‘1 € R* to pixel-level

Ny
matches M, = (pfvpiB)i:fl'
A yd aB yB), the

For patch-level matching M, (i) = (7', y{, z;, y;
patch block size is % X % To improve the matching accuracy,
the local search spaces are set to (! = Ad,y + Ad) and
(xB + Ad,yP + Ad). Pixel-level matching expands the range
by d pixels with the patch as the center. The expanded search
space covers the original space, which can be fault-tolerant for
patch matching to some extent.

We use the deep feature descriptors extracted by contrastive
learning as local features for pixel-level matching to reduce
the computational overhead while achieving a better matching
result. As shown in Fig. 5, we have used two regressors with
the same structure for match generation, i.e., a mid-level re-
gressor and a fine-level regressor. In the deep feature descriptor
extraction module, we have obtained the features F,, and F. of
patches p:! and pP. After collecting the features, the channels
are connected into a vector F;. The vector F; is entered into the
mid-level regressor. The regressor is a double-headed network.
The two-headed network generates the matching pairs while
the matches are evaluated for classification. In the regressor,
after processing the features through a fully connected net-
work, in the match generation head, the local match M;,, (1) =
(xf,y, 2B, yP) is output. In the classification header, a con-
fidence score s; is obtained for the production using sigmoid,
indicating the degree of detection validity. We use the pseudo-
correspondence obtained during affine transformation as labels
to guide network training. The geometric error between the
predicted and actual matches is measured by calculating the
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Sampson distance, as shown in (8).

()" e")

pram — V= {s1,},

Soev | (Foo) + (F12820)|

®)

where F is the image relative pose matrix, p’ = (z,y,1)7 and
g; represents the one-hot vector with the i-th value is 1.

The Sampson distance calculates the error degree of the
predicted match. So we can obtain the classification expectation
label of match accordingly, i.e., the error is less than the threshold
value t,, to consider the classification as correct. Thus the
classification labels /; can be obtained. If \I!;g Mty I =1,
otherwise /; = 0. Using the binary cross-entropy loss function,
the network parameters are corrected as shown in (9).

1 &
Lr(l,s) = N, > (Blilogs; + (1—1)log (1 - s:)), (9
i=1

where  is the weight that balances the quantities of the two
classes, and s; is predicted confidence score.

The generated mid-level matches M, update the match set
M according to the confidence score, and the exact refinement
matching is performed once more to obtain the final match result
M.

E. Correct Correspondence Filtering

After refining the matches at the patch level, we obtain the ini-
tial pixel-level matching pairs. However, due to the fragmenta-
tion and discrimination of capsule images, these matching pairs
will inevitably be mixed with impurity matches, mismatches,
or poorly matched pairs. They will lead to bad or even wrong
stitching of the final image. Therefore, the matching results must
be filtered to select the correct matches.

In pixel-level matching of capsule endoscopic images, two
types of matching pairs significantly impact the matching re-
sults. One is the impurity matching pairs. Impurity pixel points
are usually found as matching pairs because of their particular
presentation. However, when the impurities stick to the lens, the
impurity pixels will always appear in the image’s fixed position.
Stitching according to this will result in significant deviations.
The other one is the hyper-boundary matching pairs. As shown in
Fig. 6, S2P-Matching always matches the results by aggregating
images taken with simulated multi-perspective cameras. In the
back projection of the reference image, some matching points
will fall back outside the image boundary. These matching pairs
need to be filtered out.

After removing impurity and hyper-boundary matching pairs,
we use the MAGSAC algorithm [29] to screen for poorly
matched pairs. When MAGSAC fits matching pixels, it makes
continuous attempts on different target space parameters. In-
creasing the number of iterations to determine the model parame-
ters most matches meet improves the accuracy rate. At this point,
matching pixels that satisfy the model are inliers, while those

source

most similar patch between each pair of images

target

Fig. 6. The comprehensive correlation maps between matched image
pairs. The first row is the source image and the generated four multi-
view camera simulation images. The second row is the target image
and its generated dense corresponding matching results. We mark the
matching points in the image pair with the same color.

that do not satisfy are outliers. The threshold o of the interior
point is regarded as a random variable, and by marginalizing o,
the probability that a point is an internal point can be calculated.
We treat the possibility that each point is an inlier as a weight
for each point and use a weighted least squares fit to optimize
the model according to the weight. The number of iterations is
calculated as follows:

(i —0i—1)In(1 —n)

1 n
kni € Q) = t
(e 0) Umalen (1—(|I(047Ui7€)‘/|€|) )

i=1

(10)

where « is the homography matrix parameter, € is the set of
matching points, 0, is the maximum inlier threshold, n is the
number of points whose distance to the model is less than o, ax,
o; is the interior threshold of the ¢th point, 7 is a manually set
confidence in the results, ¢ the size of the minimal sample needed
for the estimation, and |I(«, 0y, €)| is the inlier number of the
model.

[V. EXPERIMENTS AND RESULTS

Our research primarily focuses on analyzing a series of
consecutive frames captured by healthcare professionals in the
clinical setting around the ROI. To evaluate the efficacy of
S2P-Matching, we have opted to utilize capsule endoscopic
images acquired continuously during periods of relative stability
as the test dataset. This deliberate selection ensures that the
compiled images incorporate overlapping areas, enabling us to
assess the accuracy of our S2P-Matching algorithm. In this case,
the shooting interval is 0.5 seconds, and the spatial resolution
of each image is 480 x 480 pixels. Accordingly, we conduct
statistical experiments to compare our method against state-of-
the-art methods, CAPS [38], ASIFT [39], DeepMatching [35],
R2D2 [40], SuperPoint [41], SuperGlue [19], LoFTR [13]
and TransforMatcher [37]. The experimental hardware environ-
ments include Intel(R) Xeon(R) E5-2680 v4 CPU@ 2.40GHz,
NVIDIA TESLA-P100 GPU, 16GB memory, and 37B hard disk.
Software environments include Ubuntul4.04 and Python 3.6.
Here, Python s the development language to contain the PyTorch
and OpenCV as the runtime library.
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TABLE |
MATCHING ACCURACY OF DIFFERENT DATA SETS. OUR APPROACH PERFORMS BEST WHEN DEALING WITH WEAK TEXTURE, CLOSE-UP TRANSFORMATION,
AND LARGE ANGLE ROTATION PROBLEMS. ACCORDING TO THE AVERAGE CALCULATION, OUR METHOD'’S IMPROVEMENT OF NCM AND SR SCORES CAN
REACH UP TO 203 AND 55.8%

method weak texture close-up transformation | large angle rotation Average
NCM | SR% | NCM SR% NCM SR% NCM | SR%
CAPS [38] 104 325 107 24.3 172 20.9 128 259
ASIFT [39] 40 58.2 149 69.8 134 65.1 108 64.4
DeepMatching [35] 133 66.5 284 74.3 221 70.0 256 70.3
R2D2 [40] 250 34.8 169 65.1 278 71.2 232 57.0
SuperPoint [41] 192 45.0 233 65.7 302 439 242 51.5
SuperGlue [19] 275 72.8 213 66.4 217 74.3 235 71.2
LoFTR [13] 258 79.3 314 73.2 306 82.9 293 78.5
TransforMatcher [37] 271 81.3 335 74.9 317 82.9 308 79.7
S2P-Matching (Ours) 262 83.6 348 76.3 323 85.1 311 81.7

A. Datasets and Evaluation Metrics

Our datasets comprise records from capsule endoscopy ex-
aminations conducted at a domestic hospital between 2016
and 2019. For the purpose of facilitating randomization and
achieving optimal stitching outcomes for comparative analysis,
a sample of 213 patients was selected. Subsequently, n*10
consecutive image frames were extracted for each patient, with
n ranging from 5 to 15, resulting in a total of 21,526 images.
After filtering, we obtained 20,862 images. We then separated
images from 20 patients for testing and used the remaining for
training. We selected 528 images as the test set with matching
points annotated by two collaborating physicians. The images
were then classified into three categories: weak texture, close-up
transformation, and large angle rotation, with 138, 204, and 186
images, respectively. Additionally, we chose two consecutive
10-frame sequences for testing purposes.

To achieve a more precise quantitative evaluation, obtaining
a ground-truth geometric transformation for each pair of images
is necessary. Unfortunately, real datasets are often subject to var-
ious factors that interfere with acquiring an actual ground-truth
geometric transformation. Therefore, we follow RIFT [43] and
utilize an approximate ground-truth geometric transformation
for evaluation purposes. The collaborating doctors manually
select five uniformly distributed correspondences for each image
pair, allowing for the estimation of an accurate affine transfor-
mation that closely approximates the ground-truth geometric
transformation.

After obtaining the correct matching points, we employ a tra-
ditional image fusion technique that utilizes perspective transfor-
mation [44] to produce image mosaics. Our approach maintains
the experimental parameters throughout the mosaicking phase to
guarantee conformity with established formats and to facilitate
an impartial evaluation.

To assess the performance of various image-matching algo-
rithms, we employ two standard metrics: the number of correct
matches (NCM) and the success rate (SR). A superior matching
method is characterized by higher NCM and SR scores. Addi-
tionally, to further appraise the quality of the matching points
acquired by different algorithms for the final image stitching
process, we employ SSIM (Structural Similarity) [45], FSIM
(Feature Similarity) [46], and PSNR (Peak Signal to Noise
Ratio) [47] as evaluation metrics for image stitching.

B. Comparison of Feature Point Matching

Table I summarizes the matching accuracy of different meth-
ods on three data types (i.e., weak texture, close-up transfor-
mation, and large angle rotation). The S2P-Matching method
has the highest average NCM and SR scores of 311 and 81.7%,
respectively.

To comprehensively evaluate our S2P-Matching approach
concerning capsule endoscopy images with impurities and low-
texture regions and its ability to handle transformations and
rotations common in close-up photography, we have selected
three sets of images from distinct datasets. Featured in Fig. 7 is a
visual comparison of the matching results yielded by our method
against those obtained through state-of-the-art techniques. Each
pair of input images comprises two capsule endoscopic images
taken at 0.5-second intervals. Notably, all three image pairs
were taken in close proximity, with rotational variance. We have
employed a white line to indicate corresponding pairs, clearly
depicting the matching results.

From Fig. 7, it can be seen that from the first row to the
third row, the texture becomes weaker, the degree of region
repetition becomes higher, and the matching pairs matched by
each method are reduced to different degrees. For example,
CAPS [38] and ASIFT [39] can only extract a small num-
ber of matching pairs, and there are incorrect matching pairs
that result in the final image splicing error. In this case, the
DeepMatching [35] algorithm can also extract only a limited
number of matching pairs. R2D2 [40] and SuperPoint [41],
the number of matches is large, but more inaccurate matches
are counterproductive to mosaic. In regions of the graph with
transformations caused by close-up shooting, such as the third
row, SuperGlue [19], LoFTR [13], and TransforMatcher [37] are
difficult to function, with fewer correct matches. Compared with
other methods, our S2P-Matching matching results achieve the
best feature-matching performance, see the last column of Fig. 7.
S2P-Matching can extract a sufficient number of significant
matching pairs without interference from impurities and obvious
transformation, which guarantees the final stitching.

C. Comparison of Consecutive Frames Stitching

In clinical practice, capsule endoscopy is constrained by its
limited capture area per image. This presents a challenge for
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DeepMatching SuperPoint SuperGlue TransforMatcher S$2P-Matching (Ours)
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Fig. 7. Visual comparisons of image matching results. From left to right: CAPS [38], ASIFT [39], DeepMatching [35], R2D2 [40], SuperPoint [41],
SuperGlue [19], LoFTR [13] and TransforMatcher [37] and S2P-Matching (our method). From top to bottom: (a) two continuous images with solid
texture areas, impurities, rotation and transformation caused by close-up shooting. (b) continuous images with solid and weak texture areas,
impurities, rotation and transformation due to close-up shooting. (c) two continuous images without noticeable changes in the overall texture and
with rotation or transformation by close-up shooting. We use the white line to mark the matching pairs.

DeepMatching SuperPoint SuperGlue TransforMatcher ~ S2P-Matching (Ours)

Fig. 8. Visual comparisons of image stitching results of continuous frames between our S2P-Matching and other methods. In the S2P-Matching-
based stitching, the connection between two original images is natural because of the massive matching numbers and high accuracy. Furthermore,
there is no obvious texture misplacement or excessive scaling texture connection. In the results of other methods, some methods fail to find enough
accurate matches in the matching of the first two weakly textured images to cause splicing difficulties.
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Fig. 9. Comparing NCM and SR scores of our S2P-Matching with CAPS [38], ASIFT [39], DeepMatching [35], R2D2 [40], SuperPoint [41],
SuperGlue [19], LoFTR [13] and TransforMatcher [37] under different rotation angles.

physicians in observing ROI within a relatively wide field of texture, transformation caused by close-up shooting, and large

view, thereby impacting diagnosis. Typically, an ROI region
involves multiple sequential images with overlapping areas. As
such, the continuous stitching of capsule endoscopy frames
is crucial. Continuous image frames usually contain complex
situations with multiple matching challenges, including weak

angle rotation. From the experimental results, it can be seen that
our method has obvious advantages over other methods for the
stitching of endoscopic continuous frame images. As shown in
Fig. 8, the stitching effect of our method is more accurate and
natural.
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TABLE Il
MATCHING RESULTS OF 10 CONSECUTIVE FRAMES REGARDING NCM AND SR FOR IMAGE MATCHING AND SSIM, FSIM, AND PSNR FOR IMAGE STITCHING
dataset1 dataset2
Method image matching image stitching image matching image stitching
NCM SR% SSIM FSIM PSNR NCM SR% SSIM FSIM PSNR
CAPS [38] 275 34.6 0.529 0.292 10.080 105 34.2 0.508 0.452 10.026
ASIFT [39] 463 52.7 0.677 0.500 16.900 56 26.9 0.423 0.314 10.502
DeepMatching [35] 368 64.5 0.698 0.505 15.648 419 65.3 0.620 0.436 11.462
R2D2 [40] 376 59.1 0.609 0.391 13.580 341 67.3 0.575 0.345 11.251
SuperPoint [41] 368 69.9 0.561 0.434 14.280 345 62.4 0.569 0.292 10.080
SuperGlue [19] 425 73.1 0.628 0.436 14.967 434 70.8 0.550 0.261 10.160
LoFTR [13] 493 73.9 0.683 0.492 16.462 452 66.5 0.677 0.653 12.934
TransforMatcher [37] 511 74.2 0.691 0.505 16.836 449 65.7 0.653 0.632 12.131
S2P-Matching (Ours) 531 75.4 0.741 0.533 17.103 463 66.9 0.709 0.687 13.462
TABLE IlI

COMPARING MATCHING THE PERFORMANCE OF THE MODEL IN AN ABLATION STUDY UNDER TWO CONSECUTIVE CAPSULE ENDOSCOPIC IMAGE
SEQUENCES. THE BASELINE IS THE DENSE CORRESPONDENCE MATCHING FRAMEWORK FOR A SINGLE SET OF IMAGE PAIRS USING GRADIENT FEATURE
DESCRIPTORS. “IDA” DENOTES IMAGE DATA AUGMENTATION, WHILE “DFD” REPRESENTS DEEP FEATURE DESCRIPTORS

Methods IDA  DED dataset1 dataset2
NCM | SR% | NCM | SR%
basic (dense correspondence matching framework using gradient feature descriptors) X X 469 61.3 442 63.1
basic + image data augmentation v X 496 70.9 477 69.4
basic + deep feature descriptors X v 482 70.2 459 65.8
basic + image data augmentation + deep feature descriptors (Our S2P-Matching) v v 528 73.9 493 71.1

In addition, two sets of capsule endoscopic images were
selected for assessment, each containing ten image frames cap-
tured in a relatively stable shooting process. Table II presents
the averaged NCM and SR scores and the SSIM, FSIM, and
PSNR scores to assess image stitching accuracy. The results
indicated that our S2P-Matching method resulted in the high-
est number of matching pairs. CAPS and ASIFT yielded the
lowest number of matching pairs, particularly in dataset 2,
posing challenges for subsequent image stitching. Furthermore,
compared to DeepMatching, R2D2, SuperPoint, and Super-
Glue, the overall performance of LoFTR and TransforMatcher
was superior, approaching the level of S2P-Matching, as evi-
denced in Fig. 8. SuperGlue also demonstrated commendable
performance. Our S2P-Matching method consistently deliv-
ered superior results in complex capsule endoscope stitching
tasks.

D. Ablation Study Experiments

We further conduct ablation study experiments to evaluate
the effectiveness of significant modules of our S2P-Matching
by implementing different image-matching frameworks based
on our S2P-Matching. To do so, we conduct image-matching
experiments on two datasets of capsule endoscopic image data
taken consecutively over a period of time. Table III summa-
rizes the image-matching results of our S2P-Matching and con-
structed baseline methods by showing the average NCM and SR
performance on two long capsule endoscopic image sequences.

From the quantitative results, we can find that “basic+IDA”
has more significant NCM and SR scores on two datasets than
“basic”, which indicates that the image-matching effect of the

method is slightly improved after using the image derivation
module simulated by the data augmentation module. This stems
from the model’s capacity to accommodate the effects of rota-
tion and transformation resulting from close-up shooting after
combining images generated from different angles with multiple
virtual cameras. Then, “basic + DFD” performs better than
“basic” regarding NSM and SR scores on dataset1 and dataset2.
It shows that the image-matching results in the weak texture
area are also improved when we replace the CNN descriptor
with the deep feature descriptor. More importantly, our method’s
superior NCM and SR scores over “basic + IDA” and “basic
+ DFD” demonstrate that combining the image derivation and
deep feature descriptors in our S2P-Matching framework can
further improve the image matching accuracy. This is because
our complete S2P-Matching framework fully considers various
difficulties that may be encountered in capsule endoscopic image
matching.

E. Rotation Invariance Analysis

We test the effect of rotation angle on the matching results to
analyze the method’s adaptability to different rotation angles of
close-up shooting. This experiment selects seven sets of capsule
endoscopic image pairs with different rotation angles ranging
from small to large and close-up transformation, and various
methods are used to match them.

The results in Fig. 9 showcase the variability of NCM and SR
scores among the different methods based on the rotation an-
gle. The comparison of results indicates that the S2P-Matching
method demonstrates superior accuracy when applied to capsule
endoscopy images captured at various rotation angles.
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V. CONCLUSION

We have outline a self-supervised patch-based matching (S2P-
Matching) for matching capsule endoscopy images. Unlike the
existing image matching methods, our S2P-Matching performs
joint affine and patch-level matching via the Transformer. Ex-
perimental findings with real-world MCCE images have demon-
strated the efficacy of S2P-Matching in enhancing accuracy,
particularly in addressing challenges in GI scenarios around
ROL. Our next research phase aims to investigate more complex
real-life scenarios, including illumination variations, presence of
bubbles, defocus, uninformative and motion blur, occlusion, and
reflected images. The algorithm is being adapted to encompass
capsule endoscopy images throughout the entire gastrointestinal
tract.
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