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Abstract—Microvascular invasion (MVI) of hepatocellular
carcinoma (HCC) is a crucial histopathologic prognostic
factor associated with cancer recurrence after liver trans-
plantation or hepatectomy. Recently, clinicoradiologic char-
acteristics are combined with medical images to enhance
the HCC prediction. However, compared to medical imag-
ing data, the clinicoradiologic characteristics (e.g., APOe4
genotyping) is not easy to collect or even unavailable, as
it requires more efforts of clinicians and more medical
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instruments for collecting diverse measurements. This
work explores how to transfer the knowledge of a teacher
network learned from non-image clinical data and image
data to a student network with only image data such that
the student network can leverage the transferred clinical
information to boost HCC classification with only imaging
data as input. Specifically, we present a modality-aware
distillation network (MD-Net) to transform non-image clin-
icoradiologic from the teacher network to the student net-
work. The teacher network integrates non-image clinicora-
diologic characteristics with two 3D MRI modality images
via two MRI-clinical-fusion modules and a symmetric atten-
tion (SA) module, while the student network extracts fea-
tures from two modality MRI data via two MRI-only modules
and then refine these two MRI features via a SA module.
A classification-level distillation and a feature-level distilla-
tion are jointly utilized to transfer the clinical information
between teacher and student networks. Furthermore, we
design a novel self-supervised task to predict clinicora-
diologic characteristics from the imaging data to further
enhance the downstream HCC classification. The experi-
mental results from our collected dataset and a multi-modal
sarcasm detection dataset have demonstrated the effec-
tiveness of our approach. Specifically, we achieved an AUC
score of 71.86% and 75.51% respectively, surpassing the
performance of the state-of-the-art classification methods.

Index Terms—Hepatocellular carcinoma (HCC), Mi-
crovascular invasion (MVI), Multi-modality, Knowledge dis-
tillation.

I. INTRODUCTION

HCARCINOMA (HCC) is the fifth most common cancer
in the world and the third leading cause of cancer-related

death [1]. The 5-year overall survival rate of HCC patients after
surgery is only 10-20% [2], [3], [4]. After hepatectomy and liver
transplantation, The 5-year recurrence rate can be as high as
50-70% and 35%, respectively [5], [6], [7], [8].

Many literature reports that vascular invasion is one of the
important factors that threaten the prognosis of patients [9],
[10], [11], [12], which limits the implementation of curable
treatment strategies for liver resection, liver transplantation,
and radiofrequency ablation [13], [14], [15]. According to its
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TABLE I
52 CLINICAL ITEMS (PARAMETERS) WE EXPLORED IN OUR WORK

detection methods, vascular invasion can usually be classified
into Macrovascular invasion (MaVI) and Microvascular inva-
sion (MVI) [11], [12], [16]. MaVI refers to the macrovascular
tumor thrombi visible to the naked eye (for example, the tumor
thrombus in the main portal vein). It is a key risk factor that
affects the survival of HCC patients after hepatectomy or liver
transplantation. MVI refers to the presence of nests of cancer
cells in the vascular cavity lined by endothelial cells under the
microscope [2], [17], [18], [19], which is present in 15-57.1%
of postoperative liver cancer specimens [18]. Similar to MaVI,
MVI is also a risk factor for poor outcomes after liver resection
or liver transplantation in patients with liver cancer [12], [20],
[21], [22]. However, unlike MaVI, MVI is only visible under
the postoperative pathology microscope [17], [18] and requires
extensive sampling [23]. Its relatively lagging gold standard for
pathology severely limits the timely and effective adjustment of
surgical treatment strategies. Therefore, the accurate stratifica-
tion of MVI grades before surgery can be used as an important
evaluation reference index for the formulation of treatment plans
for patients with liver cancer and the follow-up monitoring after
surgery. According to the number and distribution of microves-
sels involved, MVI can be further divided into M0 (no MVI),
M1 (MVI <= 5 and within 1 cm of the tumor edge) and M2
(MVI > 5 or > 1 cm from the tumor surface) [17].

Pathologically, the peritumoral tissue is the first infiltration
area to be invaded by MVI, therefore, compared with the tumor
itself, the macroscopic image features of the adjacent liver tissue
(for example, the peritumoral enhancement on the arterial phase
image, the peritumoral low signal on the hepatobiliary-specific
phase image) [23] and the microscopic features (for exam-
ple, high-dimensional images) Image peritumoral heterogene-
ity) [24] may be directly related to MVI. This argument has
been confirmed by different imaging omics comparison models
of tumor areas constructed in previous studies [24].

Recently, magnetic resonance imaging (MRI) has played an
import part in the study of MVI prediction [2], [20], [24], [25],
[26], [27]. However, there are still some small HCC patients
in the clinic, and the dynamic enhancement of Gadolinium-
enhanced MRI (GD-DTPA, a widely used MRI contrast agent
that enhances image quality by leveraging the paramagnetic
properties of gadolinium) is not typical due to the small le-
sions or small hepatic arterial blood supply, so the detection
and characterization of the lesions are difficult [28]. Gadoxe-
tate disodium-enhanced (Gd-EOB-DTPA) MRI offers excellent
identifiability of small or early HCC and the information of
tumor heterogeneity and vascularization [29], as shown in Fig. 1,
so it is reasonable to extract features from multi-parametric
images of GD-EOB-DTPA MRI to predict MVI of HCC.

Fig. 1. Examples of tumors in MR images, with the tumor area high-
lighted in red and further details visible in the magnified section of the
figure. In most instances, the tumors are relatively small, but there are
cases where the tumor volume is large, indicating a higher risk of MVI.
The term ‘HBP’ refers to the 3D Hepatobiliary phase MRI image, while
’3D PRE’ denotes the pre-contrast MRI image.

As verified by previous studies [26], [30], multi-sequence
multi-parameter MRI can provide complementary information.
Therefore, integrating the CNN features of different MRI se-
quences is helpful for the prediction of MVI. This is also
proved in our experiments, in which we find that the predic-
tion effect of multi-sequence data fusion is better than that of
single-sequence data. Further, the information provided by the
clinical radiological characteristics (As shown in Table I) of
patients is more relevant to the prediction of MVI. Experiments
have also proved that the introduction of clinical radiological
characteristics have greatly improved the prediction effect of
MVI. However, clinical radiology characteristics are not always
available in practice, and there are many experimental indicators
that are not fully obtained. So we thought of transferring the
knowledge of the teacher network that introduced clinical radi-
ology characteristics to the student network that only had image
data.

Early studies [19], [31], [32] utilized many radiologic features
to predict MVI of HCC. Due to the sensitivity of imaging
radiologic features to acquisition methods and reconstruction
parameters, the imaging radiologic features are very unreliable
to be widely used in clinical practice. Instead of relying on these
hand-crafted radiologic features, several convolutional neural
networks (CNNs) have been developed to take input contrast-
enhanced MRI or ultrasound imaging data and then learn dis-
criminative features from these input imaging data for MVI
prediction of HCC. More recently, non-image clinicoradiologic
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characteristics are introduced to improve the network prediction
with only the imaging data to leverage the complementary
information between them, such as a pathological complete re-
sponse(PCR) prediction of breast cancer patients [33]. However,
compared to imaging data, clinical information is difficult to be
collected due to several reasons: First, more medical instruments
and clinicians are required to compute clinical data. such as
molecular and demographical data. Second, some patients only
have the medical data in some cases, where normal patients are
not required to obtain.

In this paper, we present a modality-aware distillation network
(MD-Net) for predicting MVI of HCC to distill a teacher network
with a combination of imaging and clinical data to a student
network with only imaging data. By doing so, the inference stage
does not require any clinical data and the network performance
with only imaging data in the inference stage can be further
improved due to the clinical information transferred from the
teacher network in our method. Further, a regression task to pre-
dict clinical radiological characteristics from the image data is
proposed to transfer the clinical knowledge to the student model,
to the best of our knowledge, this is the first study that attempts to
to extract additional supervision from the image information by
leveraging the complementary information between the imaging
modality and the clinical modality. The task specifically de-
signed for imaging-clinical datasets and has a strong pertinence.
Here, multiple MRI data and 52 clinical items are utilized in our
work. Our main contributions are summarized below:

� We propose a novel modality-aware distillation network
(MD-Net) for MVI prediction of HCC. It introduces a new
way of transferring knowledge from a teacher network,
which uses both image modality and non-image clinical
data, to a student network that only uses image modality.

� The architecture of our MD-Net, including the use of two
MRI-only modules and a symmetric attention (SA) mod-
ule in the student network, and two MRI-clinical-fusion
modules in the teacher network, is a unique design that
refines and fuses features in a novel way. This design
contributes to the methodology by offering a new approach
to feature extraction and refinement.

� Apart from the original classification-level result distilla-
tion, our MD-Net also devise a feature-level distillation to
better transfer the clinical data from the teacher network
to the student network. Moreover, we devise a regression
task to predict clinical data from the image data for further
enhancing the MVI prediction.

� We collect a dataset with annotations for testing different
classification methods, and experimental results on the
collected dataset and a multi-modal sarcasm detection
dataset have verified the effectiveness of the developed
modality-aware distillation network.

II. RELATED WORK

A. Microvascular Invasion of Hepatocellular Carcinoma

Early MVI prediction works mainly examined radiologic
features at the local lesion area of an MR volume [2], [20], [24],
[25], and these features included non-smooth tumor margin,

peritumoral enhancement on arterial phase (AP), peritumoral
hypointensity on hepatobiliary phase (HBP), and so on [24].
However, these hand-crafted features are sensitive to the ac-
quisition methods and reconstruction parameters, thereby suf-
fering from limited capability in handle diverse clinical usage.
Motivated by the superior performance of deep features over
hand-crafted features in diverse medical image analysis tasks,
convolutional neural network (CNNs) have been developed to
classify MVI of HCC patients. Jiang et al. [34] utilized eXtreme
Gradient Boosting (XGBoost) and deep learning from CT im-
ages to predict MVI preoperatively. Zhang et al. [30] developed
a 3D CNN prediction model to fuse features from multiple MR
sequences. Men et al. [26] embedded long short-term memory
(LSTM) into a CNN to fuse multi-modal MR volumes for
predicting MVI of HCC patients. Xiao et al. [35] proposed a
task relevance driven adversarial learning framework (TrdAL)
for simultaneous HCC detection, size grading, and multi-index
quantification using multi-modality MRI. However, only MR
images are involved to predict MVI status in those CNN-based
methods. To boost the MVI prediction accuracy, our work
leverages both imaging modality and clinical modality within
a knowledge distillation learning framework.

B. Knowledge Distillation

Knowledge distillation techniques [36] often transferred the
knowledge from a teacher network (e.g., large complex models)
to a student network (e.g., small simple models). In medi-
cal imaging, the potential of the knowledge distillation tech-
nique [37], [38], [39] is promising yet relatively underexplored
as far as we know. Wang et al. [40] employed KD for efficient
neuronal structure segmentation from 3D optical microscope
images with a teacher-student network. Kats et al. [41] borrowed
the concept of KD to perform brain lesion segmentation with soft
labels by dilating mask boundaries. Christodoulidis et al. [42]
utilized KD for multi-source transfer learning on the task of lung
pattern analysis. Li et al. [43] presented a Mutual Knowledge
Distillation (MKD) scheme to thoroughly exploit the modality-
shared knowledge to facilitate the target-modality segmentation.
Xing et al. [44] formulated a Class-guided Contrastive Distilla-
tion module to pull closer positive image pairs from the same
class in the teacher and student models, while pushing apart neg-
ative image pairs from different classes. Ju et al. [45] leveraged
relevant retinal disease labels in both semantic and feature space
as additional signals and trained the model in a collaborative
manner using knowledge distillation. Javed et al. [46] proposed
a knowledge distillation algorithm to improve the performance
of shallow networks for tissue phenotyping in histology images.

Although achieving superior performance, these distillation
networks almost considered diverse imaging data and trans-
ferred information from the input imaging data. Unlike this, the
teacher network in our method takes multiple imaging data and
non-image clinical data, while the student network only utilizes
imaging data. Hence, our modality-aware distillation network
transfers the clinical information from the teacher network and
the student network to enhance the classification accuracy of the
student network with only imaging data.
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Fig. 2. Illustration of our modality-aware distillation network, which transfers knowledge from a teacher network with clinical data to a student
network without clinical data. The student network is trained with a supervised learning loss, along with both classification-level and feature-level
distillation losses, to align the student network’s predictions and feature distribution with those of the teacher network.

C. Multi-Modal Learning

Early multi-modal methods focused on a early-fusion strategy
to utilize the multi-modal information by concatenating the
input multi-modal images, but these methods are not effective
to integrate non-linear relationships among input modalities.
For example, OM-Net [47] concatenated multi-modal images
along the channel dimension as the input. Later, many recent
works adopt a feature-level fusion mechanism to fuse early, mid-
dle, or later modality-specific features extracted from different
encoders. Xia et al. [48] added clinical features and features
from cardiac magnetic resonance (CMR) image for mortality
risk prediction in dilated Cardiomyopathy. Duanmu et al. [33]
integrated CNN features learned from the input 3D MRI imaging
data, molecular data and demographic data. Tadesse et al. [49]
presented a fusion of multi-modal physiological data to predict
the severity of ANSD with a hierarchy of resource-aware de-
cision making. Fang et al. [50] proposed a multi-modal brain
tumor segmentation framework that adopts the hybrid fusion
of modality-specific features using a self-supervised learning
strategy. Cai et al. [51] devised a graph transformer geometric
learning framework to learn the multimodal brain network con-
structed by structural MRI (sMRI) and diffusion tensor imaging
(DTI) for estimating brain age. Xing et al. [52] leveraged trans-
former modules to learn the intra-modality and inter-modality
relationships of multi-modal MRIs for brain tumor segmenta-
tion. Lin et al. [53] proposed a multi-modal sensing framework
for activity monitoring, it can automatically identify human
activities based on multi-modal data, and provide help to patients
with moderate disabilities. Giri et al. [54] presented a multi-
modal approach for predicting protein functions by utilizing two

different kinds of information, namely protein sequence and the
protein secondary structure. Unlike these methods focusing on
developing techniques to fuse multi-modal features, our work
addressed the problem of transferring knowledge of a teacher
network learned from non-image clinical data and image data to
a student network with only image data. By doing so, the student
network can leverage the transferred clinical features to boost
HCC classification with only imaging data as the input, since
non-image clinical data is not easy to collect or even unavailable
when compared to medical image data.

III. METHOD

Fig. 2 shows the schematic illustration of the proposed
Modality-aware Distillation Network (MD-Net) for MVI predic-
tion of HCC. As a distillation network, our MD-Net consists of
a teacher network and a student network, but it distills a teacher
network with diverse clinical information to a student network
without any clinical data. The student network takes two MRI
sequences as the input, pass each MRI image into a MRI-only
module to extract MRI features, and then develops a symmetric
attention (SA) module to refine two MRI features for final MVI
prediction. On the other hand, the teacher network presents two
MRI-clinical-fusion module to first extract integrated features of
the MRI image and the clinical data, and then refine these two
obtained features via another SA module for generating a MVI
classification result. After that, we devise a distillation scheme
by considering both class-level distillation and feature-level dis-
tillation. The class-level distillation makes the two predictions
of the student network and the teacher network to be similar,
while the feature-level distillation transfers the clinical-guided
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Fig. 3. (a) MRI-clinical-fusion module: fusing MRI data with non-imaging clinical data, (b) MRI-only module: using MRI imaging only, and (c) one
example of channel-wise multiplication.

features of the teacher network to student’s features, which do
not consider any clinical data. Moreover, we devise a regression
task to predict the clinical modality data from multiple image
modalities and use this task to benefit the downstream the MVI
prediction.

A. Teacher Network

Non-image Clinical data has shown its capability of providing
complementary information for the classification task with only
image data [33]. Motivated by this, we integrate clinical data,
the Hepatobiliary phase (HBP) MRI image, and the pre-contrast
(PRE) MRI image as the input of the teacher network of our
MD-Net for the prediction of MVI in HCC and training the
student network with only image data. Specifically, the teacher
network first passes the HBP image and clinical data into a
MRI-clinical-fusion CNN to extract a 512-dimensional vector
Zt
hbp, and the PRE image and clinical data are then feed into

another MRI-clinical-fusion CNN for obtaining another 512-
dimensional vector Zt

pre. Then, we concatenate Zt
hbp and Zt

pre

to produce Zt, which is passed into two fully-connected layers
to predict a classification result P t with three elements of the
teacher network.

MRI-clinical-fusion module: Similar to [33], our MRI-
clinical-fusion module integrates MRI data and non-imaging
clinical data for a HCC prediction. As shown in Fig. 3(a), taking
a 3D MRI data and a vectorized clinical data as the inputs, the
image-clinical fusion module first applies four fully-connected
(FC) layers on the input clinical data to obtain four feature maps,
which feature channels are 64, 128, 256, and 256. Meanwhile,
we utilize four convolutional blocks on the input MRI image to
obtain another 3D feature maps, and the feature channels are
also set as 64, 128, 256, and 256. Each convolutional block
consists of two 3 × 3 convolutional layers, with each of these
layers is succeeded by a batch normalization layer and a ReLU
activation layer, as indicated in [55]. At the end of the block,
a max-pool layer is used to downsample the feature map by a
factor of 2. And then we channel-wisely multiply four feature
maps from the clinical data and the corresponding four features

Fig. 4. The schematic illustration of our symmetric attention (SA) mod-
ule.

from the MRI data for integrating them together. The specific
calculation method is shown in Fig. 3(c). The output Y of the
multiplication operation is a feature map with the same shape of
the input MRI feature X . Specifically, let C denote the clinical
features (a vector); X denote the MRI image features (3D); and
Y denote the output 3D feature map. Note that the number of
elements of the vectorC is the same as the number of channels of
3D feature mapX . Then, the channel-wise calculation (between
C and X) done in Fig. 3(c) is summarized as follows: (a) for
i-th element of C, we multiply it with the i-th channel of X and
take the multiplication results as the i-th channel of Y :

Yi(u, v) = Ci ∗Xi(u, v) (1)

where Ci denote the i-th element of C. Xi and Yi represent the
i-th channel of the 3D feature map X and Y , respectively. (u, v)
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denotes the pixel coordinates at the Xi and Yi. (b) Then, we
conduct such operation for all elements of the clinical feature
vector C and thus can generate the multiplication result Y .
Regarding i-th feature multiplication operation, we first obtain
the multiplication result Yi from Ci and Xi, and then pass Yi

to following CNN block to produce a new feature X(i+1) for
the next (i+ 1)-th feature multiplication. When reaching the
last feature multiplication operation of the MRI-clinical-fusion
module, we apply average pooling and max pooling separately
to the feature multiplication result to obtain two feature vectors,
which are then concatenated to produce a feature vector with 512
elements, which is the final output feature of the MRI-clinical-
fusion module, see Fig. 3(a).

B. Student Network

Although a fusion of the clinical data and the image data can
improve the HCC classification result, the clinical data are not
often available when compared to the MRI images for classi-
fying HCC patients in clinical diagnosis. In order to improve
the flexibility of our model in clinical application, we devise
a modality-aware knowledge distillation network to transfer
the knowledge learned by a teacher network with a fusion of
a clinical data modality and the image modality to a student
network with only the image modality. By doing so, the clinical
data knowledge can be distilled from the teacher network to the
student network, and thus the classification performance of the
student work can be enhanced even though the student network
does not get any clinical data in the testing stage.

As shown in Fig. 2, our student work takes a 3D HBP MRI
image and a 3D PRE MRI image as the input, and then passes
the HBP data into a MRI-only module to obtain features Zs

hbp

and the PRE data into another MRI-only module to obtain the
feature map Zs

pre. Note that Zs
hbp and Zs

pre are two vectors with
512 elements. After that, we concatenateZs

hbp andZs
pre to obtain

Zs and feed Zs into a fully-connected layer to predict a HCC
classification result P s, which has three elements.

MRI-only module: In our student network, the MRI-only
module extracts a 512-dimensional feature vector from an 3D
MRI image. As shown in Fig. 3(b), the Image-only module’s
architecture is the same as the image feature extraction part in the
teacher network, which consists of Four convolutional blocks,
and one fully-connected (FC) layers.

Moreover, to balance the efficiency and computational bur-
den, we set the channel number of output features of nine
convolutional blocks to be different. The feature channels of
the first five layers are 32,32,64,64 and 128, while the feature
channels of the last four layers are empirically set as 256, 128,
256, and 256.

C. Symmetric Attention (SA) Module

Our SA module is to refine two features from different im-
age modalities by leveraging their complementary information
based on self-attention frameworks [56], [57], [58]. As shown in
Fig. 4, specifically, let X and Y to denote the input two feature
maps of the SA module. Then, the SA module first applies a
linear transformation layers on X to obtain three feature maps,

including queryQx, keyKx, and valueVx. Meanwhile, we apply
a linear transformation layers on Y to generate a key feature
map Ky and a value feature map Vy . After that, we generate
a score map Sx by multiplying Qx and the transpose of Kx,
and another score map Sy by multiplying Qx and the transpose
of Ky . Then, we multiple the obtained score maps Sx with the
value feature map Vx, and multiply Sy with Vy to produce two
resultant feature maps, which are then added together to generate
the output refined feature map X̂:

X̂ = Vx × (Qx ×Kx
T ) + Vy × (Qx ×Ky

T ). (2)

Similarly, the SA module applies another transformation layer
on Y to obtain a feature map Qy . After that, the refined feature
map ŷ is computed by:

Ŷ = Vx × (Qy ×Kx
T ) + Vy × (Qy ×Ky

T ). (3)

D. Regression Learning for Clinical Data Prediction

This work present a novel pretext task to train our modality-
aware distillation network. Note that we have the clinical data,
the HBP MRI image, the PRE MRI image, and the underlying
HCC label for each patient of the training set. The pretext task in
our MD-Net aims to predict the clinical data from the HBP and
PRE image modalities for learning generic knowledge to benefit
a downstream HCC classification. The clinical data prediction
task takes the medical image data as the input to predict the
clinical data, which is one of the inputs of the teacher network
of our method in the training stage.

As shown in Fig. 2, the student network feeds the concatenated
features from the input HBP image and the input PRE image
into two fully-connected (FC) layers to predict a 52-dimensional
vector P c for estimating the underlying clinical information.
And we utilize the input clinical data as the ground truth of the
predicted P c.

E. Modality-Aware Distillation

We apply the knowledge distillation strategy to transform the
clinical information of the teacher network to the student net-
work. Apart from the straightforward classification result-level
distillation, we present an auxiliary feature-level distillation loss
to distill features fused from clinical data and MRI image of the
teacher network to features from only MRI image.

Classification-level distillation: Let qsm(xi) denote the class
probabilities for the class of the MRI xi data produced from the
student network, while qtm(xi) represent the class probabilities
for the class of the MRI xi data produced from the teacher
network network. Then, the classification-level distillation loss
Ld
class is simply defined to push make the class probabilities

from the teacher network as targets for training the student net-
work. To do so, we utilize the Kullback Leibler (KL) divergence
to measure the difference of two distribution:

Ld
class = DKL

(
qtm(xi)‖qsm(xi)

)

=
N∑

i=1

M∑

m=1

pm2 (xi) log
pm2 (xi)

pm1 (xi)
(4)
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where N and M denote the number of training sample and the
number of total class. DKL(·) represents the Kullback-Leibler
divergence between two probabilities.

Feature-level distillation: Apart from the classification-level
knowledge distillation, we also transfer the intermediate features
of the teacher network with the clinical information to that of
the student network. In this regard, we devise a feature-level
distillation strategy. Specifically, we distill the output features
of two Interactive Models of the teacher network, since these
two features integrate the clinical data and the HBP image and
the clinical data and the PRE image respectively. Hence, we
compute a feature-level distillation loss Ld

feature as the combi-
nation of the Kullback Leibler (KL) divergence between Zt

hbp

and Zs
hbp and the Kullback Leibler (KL) divergence between

Zt
pre and Zs

pre:

Ld
feature = DKL

(
Zt
hbp‖Zs

hbp

)
+ β1DKL

(
Zt
pre‖Zs

pre

)

=
N∑

i=1

M∑

m=1

pm2 (xi) log
pm2 (xi)

pm1 (xi)
(5)

where β1 is to weight Kullback-Leibler divergence terms, and
the weight β1=1. DKL(Zt

hbp‖Zs
hbp) denote the Kullback-

Leibler divergence between two features Zt
hbp and Zs

hbp.
DKL(Zt

pre‖Zs
pre) represents the Kullback-Leibler divergence

between two features Zt
pre and Zs

pre.
Our loss function: The loss function of our network consists

of two supervised losses on the teacher network and the student
network, the regression loss for the clinical data prediction, and
distillation loss between the student network and the teacher
network. The definition of our loss function is given by:

Ltotal = Ls
T + Ls

S + Lclinical + Ld
class + Ld

feature (6)

where Ls
T and Ls

S denote the supervised loss of the teacher
network prediction and the supervised loss of the student net-
work prediction, respectively. Here, we utilize focal loss [59] to
compute the prediction loss of Ls

T and Ls
S . Lclinical represents

the regression loss for the clinical data prediction, and we use the
cross-entropy loss to compute the prediction error of the P c and
the underlying ground truth of the clinical data. Ld

class denotes
the classification-level distillation loss of (4) and Ld

feature is
the feature-level distillation loss of (5) between the teacher
network and the student network. We utilize the loss function
of (6) to train our modality-aware distillation network for a MIV
prediction. Pseudo code of our proposed method is shown in
Algorithm 1.

F. Technical Details

Data Processing: Note that different patients have different
tumor sizes, and the tumors are often smaller in proportion to the
image of a patient. If the entire image of the patient is directly
passed into the network as the input, there are a large number of
non-tumor pixel values, which is not conducive to the training
of the network. To avoid this, we find the largest circumscribed
cube for the three-dimensional tumors of all patients, and then
remove other non-tumor regions outside this cube. The cube
size is empirically set as 80× 80× 20. Moreover, we randomly

Algorithm 1:
Require: The multimodal image data {X,Y }, the clinical
feature C, and the number of training epochs Ne.

Output: The trained teacher model T and student model S.
1: Server executes:
2: Initialize T and S
3: for epoch r = 1 to Ne do
4: for x, y, c ∈ X,Y,C do
5: qt, Zt

hbp, z
t
pre = T (x, y, c) � Input the multimodal

image data x, y and clinical feature c into the
teacher model.

6: qs, Zs
hbp, z

s
pre, P

c = S(x, y) � Input the
multimodal image data x, y into the student model.

7: Update T and S according to (6) using Adam

extract (64× 64× 16) volumes from the selected cube region
(80× 80× 20)) of each patient’s 3D data for data augmentation
in the network training. It is important to note that we use the
tumor mask solely to identify the tumor’s location. The input
cube fed into the network contains not only the tumor region
but also surrounding background areas (e.g., peritumoral liver
tissue or other organs). During model deployment, to avoid the
need for manually labeling the cancerous region, we can train
a region-cutting network to approximate the tumor’s location,
which can then be used for predictions.

Inference stage: Given a 80× 80× 20 HBP MRI image and
a 80× 80× 20 PRE MRI image, we employ a center cropping
operation on two input volumes to obtain two 64× 64× 16
volumes and pass them into the student network of our MD-Net
to produce a HCC classification result P s and a clinical data
prediction result P c. And we directly take P s as the final
classification result of our MD-Net.

Implementation Details: We implement our MD-Net with
deep learning framework “Pytorch”. Random affine transfor-
mation, and a horizontal flip, and a vertical flip are employed to
augment the training data. Adam optimizer was used to minimize
the total loss function of the deep learning framework. The
total epoch number and the batch size are set as 80 and 16.
The initial learning rate is 0.0003, and we adjust the learning
rate by a decay rate of 0.9 in every 2 epochs. For reproducible
research, our code and the collected dataset are available at:
https://github.com/lianjizhe/MD-NET.

IV. EXPERIMENTS

A. Dataset and Evaluation Metric

Dataset: Currently, there is no public annotated dataset
for a MVI prediction in HCC. To evaluate the effective-
ness of the developed MD-Net, we collected a dataset (de-
noted as “XMU-HCC”, Ethic code: B2021-113) consisting
of 270 pathologically confirmed HCC patients with preopera-
tive Gd-EOB-DTPA MRI met the inclusion criteria. The HCC
MRI data were taken by a 7-point baseline sample collec-
tion protocol [17]. Gd-EOB-DTPA is short for Gadolinium
ethoxybenzyl-diethylenetriaminepentaacetic acid. Specifically,
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TABLE II
QUANTITATIVE RESULTS (MEAN ± VARIANCE) OF OUR NETWORK AND

STATE-OF-THE-ART METHODS ON OUR DATASET

Gd-EOB-DTPA is a novel hepatobiliary-specific MRI contrast
agent that can provide functional and structural information of
hepatobiliary lesions. Several studies [60] reported that Gd-
EOB-DTPA-enhanced MRI could reflect some of the biological
features of HCC, including histological grade and microvascular
invasion (MVI). In this retrospective study, each patient with
preoperative Gd-EOB-DTPA MRI met the inclusion criteria: (a)
solitary HCC with the longest diameter≤ 5 cm; (b) without gross
vascular invasion, bile duct tumor thrombosis or extrahepatic
metastasis upon preoperative imaging; (c) without previous his-
tory of HCC-related treatments (hepatectomy, liver transplanta-
tion, chemotherapy, radiotherapy, transarterial chemoemboliza-
tion, radiofrequency ablation, and immunosuppressive therapy);
(d) complete histopathologic description of HCC; (e) MRI with
sufficient image quality scanned within 1 mo before surgery [25].
According to the high-risk factors of adverse outcomes, all 270
patients were classified into M0 (no MVI), or M1 (invaded
vessels were no more than five and located at the peritumoral
region adjacent to the tumor surface within 1 cm), orM2 (MVI of
>5 or at >1 cm away from the tumor surface), respectively. The
collected dataset consists of 128 M0 patients, 93 M1 patients,
and 49 M2 patients. Pre phase images (denoted as “PRE”), hep-
atobiliary phase images (denoted as “HBP”), and clinical data
are collected for each patient. We do not require any registration
operation between HBP and PRE images. Moreover, we utilize
a five-fold cross-validation strategy to test our network and
state-of-the-art classification methods. Specifically, following
the stardard steps of a leave-one-out five-fold cross-validation
scheme, we split the whole datasets with 270 cases (128 M0

patients, 93 M1 patients, and 49 M2 patients) into five folds.
In each round of the cross-validation, we take one fold as the
testing set and the other four folds as the training set. Then,
we compute the mean and variance value of five rounds for
all evaluation metrics, which are F1-score, AUC, accuracy and
kappa values, in order to conduct the comparisons between our
network and compared methods. We conduct cross-validation
five times using different random seeds, resulting in 25 results
for each model. We then report the mean and standard deviation
of these results. To determine statistically significant differences
in comparisons with our proposed method, we calculate p-values
using two-sided Wilcoxon signed-rank test to compare the AUC
of the 25 results between our network and the compared meth-
ods, with the corresponding p-values presented in Table II.

Clinical Data: The clinical data consists of 52 Preoperative
laboratory indexes and is reported in Table I. Non-image clinical

data in our work are collected and obtained from the report of
blood tests, the patient’s medical record report, as well as the
MRI hallmarks by the radiologists’ reviews. Note that a wide
resection margin is recommended to improve the prognosis of
MVI-positive patients. However, MVI is defined as the cancer
cell nest in vessels lined with endothelium, which is visible
only on microscopy and poses a challenge for non-invasive
diagnosis [25]. Hence, the preoperative laboratory indicators,
Child-Pugh score and Barcelona Clinic Liver Cancer (BCLC)
stages is of vital importance for the non-invasive stratification
of MVI grades before hepatectomy or liver transplantation. The
main clinical data was concluded as follows: 1) the preoper-
ative laboratory indicators contain serum tumor markers (e.g.,
alpha-fetoprotein, carcinoembryonic antigen, carbohydrate anti-
gen 19-9, etc.), hepatitis virus (e.g., hepatitis B virus, anti-
hepatitis C virus, HBVDNA loads, etc.), liver function indexes
(e.g., alanine aminotransferase, aspartate aminotransferase, total
bilirubin, prothrombin time, etc.). 2) Child-Pugh score considers
five factors, three of which assess the synthetic function of
the liver (i.e., total bilirubin level, serum albumin, and interna-
tional normalized ratio, or INR) and two of which are based
on clinical assessment (i.e., degree of ascites and degree of
hepatic encephalopathy). 3) The BCLC classification includes
information related to the extent of disease, liver function, and
patient performance status to define the disease stage. Please
refer to the supplementary material for the detailed meaning of
all 52 clinical items.

B. Comparisons Against STATE-of-The-Art Methods

Compared Methods: We evaluate the effectiveness of our
classification network by comparing it against seven state-of-
the-art methods, including concatenation-based feature fusion
method [61] (denoted as “Concat”), “3DCNN” [34], LSTM-
based multi-modality fusion method [26] (denoted as “LSTM”),
M2Net [62], stage wise multi-modality fusion network [63]
(denoted as “Concat_2S”), AdaMSS [64], XSurv [65], tradi-
tional knowledge distillation [36] with our module (denoted
as “KD_ours”), and similarity-preserving knowledge distilla-
tion [66] with our module (denoted as “SP_ours”). For a fair
comparison, we obtain the classification results of all competi-
tors by exploiting its public implementations or implementing
them by ourselves, and the network parameters of each network
are fine-turned to obtain the best classification results for com-
parisons.

Quantitative Comparisons: Table II reports the mean ± vari-
ance results of three metrics for our method and seven com-
pared networks under a five-fold cross-validation experiment
on our “XMU-HCC” dataset. From the results, we can find that
“KD_ours” has the best performance on three metrics on all
compared methods, and they are the F1-score score of 61.69,
the Accuracy score of 63.14, the AUC score of 71.01, and
the kappa score of 0.402. More importantly, our method has
larger F1-score, Accuracy, and AUC scores than “KD_ours”.
Specifically, our method has a F1-score improvement of 0.84%,
an Accuracy improvement of 0.64%, an AUC improvement of
0.85% and a kappa score improvement of 0.01, when compared
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to KD_ours. Moreover, our method outperforms “KD_ours”
and “SP_ours” on all three metrics, which demonstrates the
superior performance of our distillation method over “KD_ours”
and “SP_ours”. We compute p-values with two-sided Wilcoxon
signed-rank test between our network and compared methods in
terms of the AUC metric, and report the corresponding p-values
in Table II. Apparently, we can find that all the p-values of
our network over compared methods are smaller than 0.05. It
indicates that our method has an AUC significant improvement
between our network and each compared method.

C. Ablation Study

We also conduct the ablation study experiments to verify the
major components in our network design. Here, we construct
ten baseline networks, and compare the quantitative results of
our method and baseline networks on the “XMU-HCC” dataset.

Baseline Network Design: For renaming different ablation
study networks, we first utilize a “S”, “T” and “C” to denote
these networks based on the student network, teacher network
and the clinical variables of our distillation framework, and
then we add the modality names (i.e., PRE, HBP, or Clini-
cal) to define the names of different methods. Moreover, we
utilize a format of “ours-w/o-[component name]” to rename
these baseline networks, which is reconstructed by remove one
component (it can be a modality, a loss, or a module) from our
network. We first construct four baseline networks based on
the student network of our modality-aware distillation method,
and they are denoted as “S-PRE”, “S-HBP”, “S-PRE-HBP”
and “S-PRE-HBP(Clinical)”. Here, “S-PRE-HBP” represents
our student network with the PRE image and the HBP image.
“S-PRE-HBP(Clinical)” represents our student network with
the PRE image and HBP image as inputs and a multi-task
outputs that predicts the clinical variables and the class. “S-
PRE” denotes our student network with the only PRE image,
while “S-HBP” represents our student network with the only
HBP image. The next baseline networks (denoted as “Only-
Clinical”) by taking only clinical data (which is later converted
into the class probabilities through one fully-connected layer)
for the MVI prediction. Moreover, we construct three baseline
networks based on the teacher network of our method. The
first baseline network (denoted as “T-Clinical-PRE-HBP”) is
our teacher network with the PRE image, the HBP image,
and the non-image clinical data, while another two baseline
networks (denoted as “T-Clinical-PRE” and “T-Clinical-HBP”)
are our teacher network with the PRE image and the non-image
clinical data, respectively. On the other hand, we build two
networks to respectively remove the PRE MRI data and the HBP
MRI data from the student network and the teacher network
of our method, and they are denoted as “ours-w/o-pre”, and
“ours-w/o-hbp”. Lastly, apart from classical two supervised loss
functions at the student network and the teacher network, our
method includes another four loss functions, which are Ld

class,
Ld

feature(hbp), Ld
feature(pre) and Lclinical. Hence, we construct five

baseline networks to evaluate the effectiveness of these four loss
functions by removing each loss function respectively. Specifi-
cally, the first baseline network (“ours-w/o-class-distill-loss”) is

TABLE III
QUANTITATIVE RESULTS OF OUR METHOD AND BASELINE NETWORKS OF

THE ABLATION STUDY

reconstructed by removing the classication-level distillation loss
Ld

class from the total loss of our network. The second baseline
network (denoted as “ours-w/o-HBP-feature-distill-loss”) and
the third baseline network (denoted as “ours-w/o-PRE-feature-
distill-loss”) is reconstructed by removing the feature-level dis-
tillation loss Ld

feature(hbp) on features from HBP image modality
and the feature-level distillation loss Ld

feature(pre) on features from
the PRE image modality from the total loss of our network.
The fourth baseline network (denoted as “ours-w/o-feature-
distill-loss”) is reconstructed by moving the feature-level dis-
tillation loss Ld

feature(hbp) and Ld
feature(pre) on features from two

image modalities from the total loss of our network. The last
baseline network (denoted as “ours-w/o-clinical-pred-loss”) is
to remove the regression loss Lclinical of the clinical data pre-
diction from the total loss of our network. Tables III and IV
reports the mean and variance results of F1-score, Accuracy, and
AUC from our network and all fifteen baseline networks. We
compute p-values between our network and baseline methods
in terms of the AUC metric, excluding “Only-Clinical”, “T-
Clinical-PRE”, “T-Clinical-HBP” and “T-Clinical-PRE-HBP”.
Apparently, we can find that all the p-values of our network
over baseline methods are smaller than 0.05. It indicates that
our method has a AUC significant improvement between our net-
work and each baseline method. Moreover, we compute p-values
between “T-Clinical-PRE-HBP” and the other three baseline
networks (“Only-Clinical”, “T-Clinical-PRE” and “T-Clinical-
HBP”) and found that all the p-values were less than 0.05,
indicating a significant improvement of the teacher network
compared to the other three baseline networks in terms of AUC
value.

Effectiveness of multi-modality in our teacher and student
network: According to the quantitative results of Table III,
we can find that “S-PRE-HBP” has higher F1-score, Accu-
racy, AUC values than “S-PRE” and “S-HBP”. It shows that
combining the PRE and HBP MRI data together can enhance
the MVI classification performance of our student network.
“S-PRE-HBP” enhances the mean F1-score value from 59.31%
to 60.02%, the mean Accuracy value from 60.83% to 61.95%,
and the mean AUC value from 69.35% to 69.98%. Moreover,
“T-Clinical-PRE-HBP” outperforms “T-Clinical-PRE” and “T-
Clinical-HBP” in terms of F1-score, Accuracy, AUC metrics.
It indicates that the combination of the PRE and HBP MRI
data in the teacher network of our method improves the MVI
classification accuracy.
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TABLE IV
QUANTITATIVE RESULTS OF OUR METHOD AND BASELINE NETWORKS OF THE ABLATION STUDY

Effectiveness of medical multi-modality in our modality-
aware distillation method: According to the quantitative com-
parisons in Table III, it can be easily observed that our method
has a superior performance of F1-score, Accuracy, and AUC
over “ours-w/o-pre” over “ours-w/o-hbp”. Moreover, compared
to the best-performing results of “ours-w/o-pre” and “ours-w/o-
hbp”, our method improves F1-score from 60.26% to 62.53%,
Accuracy from 62.39%, and AUC from 70.21% to 71.86%. It
demonstrates that removing the PRE MRI data or HBP MRI data
from our network degrades the MVI classification performance
of our network.

Effectiveness of the clinical knowledge distillation: On the
other hand, the student network “S-PRE-HBP” has the F1-score
value of 60.02%, the Accuracy value of 61.95%, and the AUC
value of 69.98%; see Table III. And the teacher network the
F1-score, Accuracy, AUC values of “T-Clinical-PRE-HBP” are
75.43%, 76.16%, and 84.69%. Apparently, “T-Clinical-PRE-
HBP” has a superior F1-score, Accuracy, and AUC perfor-
mance over “S-PRE-HBP”. It shows that the teacher network
has successfully leveraged the additional clinical information.
Furthermore, our method has the F1-score value of 62.53%,
the Accuracy value of 63.78%, and the AUC value of 71.86%.
Hence, we can observe that our method has larger F1-score,
Accuracy, and AUC scores than “S-PRE-HBP”. It indicates that
our network has successfully learned the clinical knowledge
from the teacher network to enhance the MVI classification
performance of the student network, which relies on only MRI
data.

Effectiveness of the MRI images in our method: We construct
three baselines from the teacher model of our network by adding
PRE images, HBP images, as well as PRE + HBP images, re-
spectively. And these three baselines are denoted as “T-Clinical-
PRE”, “T-Clinical-HBP”, and “T-Clinical-PRE-HBP”. From the
quantitative results of Table III, we can find that our network with
the clinical variables only has a F1-score of 69.38%, an Accuracy
score of 69.93%, and an AUC score of 79.62%. By adding the
PRE images or the HBP images with the clinical variables, the
teacher model of our network has larger F1-score, Accuracy,
and AUC scores. Moreover, by combining PRE images, HBP
images, and clinical variables, the teacher network of our method
has the best MVI grade prediction performance. It indicates that
the PRE and HBP images has the complementary information
to the clincial variables for predicting the MVI grade.

Effectiveness of feature-level single-modality distillation:
Table IV compares the mean and variance values of
F1-score, Accuracy, and AUC of a five-fold cross-validation
experiment from our method, “ours-w/o-feature-distill-loss”,

Fig. 5. t-SNE [67] visualization of feature reductions after the SA
module for three configurations: S-PRE-HBP, S-Clinical-PRE-HBP, and
T-Clinical-PRE-HBP. M0: no MVI, M1: MVI <= 5 and within 1 cm of the
tumor edge, and M2: MVI > 5 or > 1 cm from the tumor surface.

“ours-w/o-HBP-feature-distill-loss” and “ours-w/o-PRE-
feature-distill-loss”. Apparently, our method has larger
F1-score, Accuracy, AUC scores than “ours-w/o-feature-
distill-loss”. It indicates that the additional feature-level
KL divergence loss (see (5)) between the student network
and the teacher network has its contribution to the superior
MVI classification of our method. Moreover, our method
also outperforms “ours-w/o-HBP-feature-distill-loss” and
“ours-w/o-PRE-feature-distill-loss”, which indicates the
effectiveness of the feature distillation loss functions from the
HBP image and the PRE image.

Effectiveness of the classification-level multi-modality dis-
tillation of our method: As shown in Table IV, compared to
“ours-w/o-class-distill-loss”, our method improves the AUC
from 70.89% to 71.86%. It demonstrates that removing the
classification-level distillation loss from our network degrades
the MVI classification performance of our network.

Effectiveness of the regression task in our method: From the
quantitative results shown in Table IV, we can observe that our
method also outperforms “ours-w/o-clinical-pred-loss’ in terms
of F1-score, Accuracy, and AUC. It improve the mean F1-score
value from 61.15% to 62.53%, the mean Accuracy value from
63.13% to 63.78%, and the mean AUC value from 70.84% to
71.86%. This is also verified in Table III, where the additional
clinical prediction task (S-PRE-HBP (Clinical)) can effectively
improve the performance of S-PRE-HBP, increasing the AUC
from 69.98% to 70.27%. It shows that the regression loss of
predicting the clinical data enables our network to achieve a
higher MVI classification accuracy.

D. Qualitative Results of Our MVI Prediction Network

Fig. 5 presents the t-SNE [67] visualization of feature re-
ductions after the SA module for three configurations: S-
PRE-HBP, S-Clinical-PRE-HBP, and T-Clinical-PRE-HBP. The
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Fig. 6. Visualization of class activation maps for nine cases (Case1 to
Case9) with correct MVI predictions.

comparison reveals that the features from S-Clinical-PRE-
HBP and T-Clinical-PRE-HBP, which incorporate clinical data
(with S-Clinical-PRE-HBP incorporating clinical data indirectly
through distillation and supervision), form more compact clus-
ters for each class (i.e., M0, M1, and M2) compared to the
features from S-PRE-HBP, which do not use clinical data. It
can further demonstrate the effectiveness of clinical features for
enhancing the MVI classification of our method.

Fig. 6 shows the middle slices of nine randomly chosen PRE
or HBP data (see Case 1 to Case 9), and their corresponding
class activation maps (M3D-CAM) [68] for our classification
results. From these class activation maps (CAMs), we can find
that the important areas for our MVI grade classification task are
tumoral areas and peritumoral areas. Hence, when the CAMs for
the input data can highlight these tumoral areas and peritumoral
areas, our method has the correct MVI grade prediction.

V. DISCUSSION AND CONCLUSION

This work presents a modality-aware knowledge distillation
network (MD-Net) for a MVI prediction in HCC. Our MD-Net
transfers the teacher network with a non-image clinical modality
and a multi-MRI image modality to a student network with only
image multi-MRI image by formulating a classification-level
distillation and a feature-level distillation. By doing so, with the
help of the distilled clinical information, our student network can
obtain a superior HCC prediction in the testing stage, which does
not have any clinical modality data. In the teacher network, we
formulate MRI-clinical-fusion CNNs and a symmetric attention
(SA) module to integrate two groups of the MRI data and the
clinical data. Then, we formulate two MRI-only module and a
SA module to fuse features from two MRI data in the student
network of our MD-Net. Moreover, we devise a regression task
to predict a clinical data from the MRI images for benefiting the
downstream HCC prediction task. Experimental results on our
collected dataset and a multi-modal sarcasm detection dataset
show that our MD-Net outperforms state-of-the-art methods in
terms of a MVI prediction in HCC.

Note that this work only involves the PRE and HBP MRI
data into the developed MVI classification network. However,
we find that the classification performance degrades when more
MRI data is added. The reason behind is likely that our network
with more MRI modality images tends to be over-fitted due to the
insufficient training data. We argue that this issue can be resolved
by devising a model to more efficiently fuse different MRI
modality images or enlarging the training dataset. Moreover,
we will test our network on more and larger datasets and extend
it to handle multi-center data.
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