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Fine-Grained and Multiple Classification for
Alzheimer’s Disease With Wavelet

Convolution Unit Network
Jinyu Wen , Yang Li , Meie Fang , Lei Zhu , David Dagan Feng , Life Fellow, IEEE,

and Ping Li , Member, IEEE

Abstract—In this article, we propose a novel wavelet
convolution unit for the image-oriented neural network to
integrate wavelet analysis with a vanilla convolution oper-
ator to extract deep abstract features more efficiently. On
one hand, in order to acquire non-local receptive fields and
avoid information loss, we define a new convolution oper-
ation by composing a traditional convolution function and
approximate and detailed representations after single-scale
wavelet decomposition of source images. On the other
hand, multi-scale wavelet decomposition is introduced to
obtain more comprehensive multi-scale feature informa-
tion. Then, we fuse all these cross-scale features to improve
the problem of inaccurate localization of singular points.
Given the novel wavelet convolution unit, we further design
a network based on it for fine-grained Alzheimer’s disease
classifications (i.e., Alzheimer’s disease, Normal controls,
early mild cognitive impairment, late mild cognitive impair-
ment). Up to now, only a few methods have studied one or
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several fine-grained classifications, and even fewer meth-
ods can achieve both fine-grained and multi-class clas-
sifications. We adopt the novel network and diffuse ten-
sor images to achieve fine-grained classifications, which
achieved state-of-the-art accuracy for all eight kinds of
fine-grained classifications, up to 97.30%, 95.78%, 95.00%,
94.00%, 97.89%, 95.71%, 95.07%, 93.79%. In order to build
a reference standard for Alzheimer’s disease classifica-
tions, we actually implemented all twelve coarse-grained
and fine-grained classifications. The results show that the
proposed method achieves solidly high accuracy for them.
Its classification ability greatly exceeds any kind of existing
Alzheimer’s disease classification method.

Index Terms—Alzheimer’s disease, wavelet analysis,
fine-grained, multiple classification.

I. INTRODUCTION

A LZHEIMER’S disease (AD) is a common disease in the
elderly. At present, there is no effective treatment that can

cure AD or change its progression. Mild Cognitive Impairment
(MCI) is an intermediate stage between AD and normal controls
(NC). Clinical studies show that mild cognitive impairment
(MCI) can be divided into early mild cognitive impairment
(EMCI) and late mild cognitive impairment (LMCI). EMCI
stage is reversible, detection and intervention timely can avoid
the development of AD, while diagnosis and treatment timely
at the LMCI stage can delay the development of AD or cure
it. Therefore, Early detection and diagnosis of dementia will
become the main goal. Accurate early diagnosis of AD is a
meaningful and challenging task.

With the successful applications of convolutional neural net-
works for natural image-oriented classification tasks, many stud-
ies transferred these methods to medical image classification and
computer-aided diagnosing diseases. In the recent ten years,
many deep learning method based AD classification methods
listed in Table I were continuously proposed. However, these
existing methods have some limitations.

� They all directly used vanilla convolution operations de-
signed for natural images. The local receptive field is
limited. Dilated convolution can enlarge local receptive
domain to a certain extent, but it will be accompanied
by much information loss. Different from natural images,
detailed features may fill the whole medical image. The
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TABLE I
RELATED WORKS UPON COARSE-GRAINED AD CLASSIFICATION AND THEIR CORRESPONDING ACCURACY RATES. THE HIGHEST ACCURACY AND SECOND
HIGHEST ACCURACY FOR EACH KIND OF COARSE-GRAINED CLASSIFICATIONS ARE RESPECTIVELY MARKED IN RED AND BLUE (D-1: AD VS. NC, D-2: AD

VS. MCI, D-3: MCI VS. NC, T-1: AD VS. NC VS. MCI)

implementation and accuracy of fine-grained AD classifi-
cation have encountered a bottleneck. A novel convolution
operation with non-local receptive field is needed to more
effectively extract the depth features of medical images.

� Most of the existing methods can only achieve coarse-
grained classifications. Only a few methods, for exam-
ple, [20], [21], studied some kinds of fine-grained clas-
sifications. While fine-grained classifications have more
important clinical significance. In addition, there are many
AD classification methods, but the classification combi-
nations they can achieve are uneven. A method that can
realize twelve kinds of full classifications is needed to
provide a reference for the research in this field.

� Most existing works adopted Magnetic Resonance Imag-
ing (MRI) for AD classifications. According to clinical
medicine theory, Diffusion Tensor Imaging (DTI) reflects
the continuity of tissue structure between fiber bundles in
the brain, which is closely related to Alzheimer’s Disease.
Thus, we chose DTI for fine-grained AD classifications.

About choosing DTI data, we give more detailed explana-
tions here. The modalities of neuroimaging include DTI scans,
Positron Emission Tomography (PET) scans, MRI scans, etc. are
commonly used in the diagnosis of AD. DTI [22] also known
as special MRI modality which is based on water molecule
motion. The principle of DTI imaging is that the diffusion of
water molecules in the gradient field will change the magnetic
moment. Therefore, it can display the walking direction of nerve
conduction bundles in white matter and realize fine imaging of
human central nerve fibers. The continuity of tissue structure
between fiber bundles in the brain can be inferred from imaging
of diffused fiber bundles in water [23]. In the study of patients
with AD, the computed DTI images show an abnormal decrease
in FA (Fractional anisotropy) and an abnormal increase in MD
(Mean diffusivity) values in gray matter, white matter, etc.
Therefore, compared with other image data, DTI data is more

conducive to the realization of the fine-grained classification of
MCI.

In order to break through the above-mentioned limitations of
existing AD classification methods, we apply the wavelet theory
into the convolution operations to define a novel convolution,
and integrate features from single-scale and multi-scale wavelet
decomposition, to acquire non-local respective field and avoid
information loss. Based on the novel wavelet convolution unit
(WCU), we adopt DTI data to implement twelve kinds of full
combination classifications with improved accuracy, especially
for fine-grained classifications.

In sum, we propose a wavelet convolution unit to build an
effective WCU-Net for fine-grained and multiple AD classifi-
cation. The deep learning method with WCU and the computed
DTI data mainly guarantee that our proposed method achieved
fine-grained AD classification with high accuracy. Our work
makes the following three main contributions as:

� We propose a novel WCU, where a novel kind of con-
volution is defined by integrating wavelet transforma-
tion into the traditional convolution function to acquire
non-local receptive fields and avoid information loss.
The WCU-embedded network dramatically improves the
performance of the convolutional neural network. In the
network with WCU, wavelet transformation runs through
the process of convolution, batch normalization (BN), and
activation to obtain new wavelet coefficients after each
level of the convolution operation. Due to the locality,
multi-resolution, and multi-scale properties of wavelet
transformation, the new convolution operator can fully
take advantage of these optimal properties. WCU expands
the receptive field to non-locality and captures comprehen-
sive cross-scale features to improve the effect of extracting
deep features. To the best of our knowledge, WCU is
the first work embedding wavelet analysis into a vanilla
convolution neural network.
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� We propose a new AD classification framework via WCU-
Net and brain DTI data, which achieves all coarse-fined
and fine-grained combination classifications for the first
time. Most existing AD classification methods are lim-
ited to coarse-grained classifications among AD vs. MCI
vs. NC. A few methods achieve one or several kinds
of fine-grained classifications. The proposed framework
achieved all eight kinds of fine-grained classifications,
where fine-grained triple classifications emerge for the first
time. Our method provided a reference standard for later
AD classification research.

� Our work solidly achieves high accuracy for all twelve
kinds of classifications, especially improves the accuracy
for eight kinds of fine-grained classifications from 92.5%,
92.6%, 93.5%, 90.9%, 81%, none, none, 92.6% to 97.30%,
95.78%, 95.00%, 94.00%, 97.89%, 95.71%, 95.07%,
93.79%. Firstly, emerged fine-grained triple classifications
reach an accuracy higher than 95%. The classification
accuracy for fine-grained double classification EMCI vs.
LMCI is lifted by 16.89%. The accuracy for fine-grained
quadruple classification reaches 93.79%, 1.19% higher
than state-of-the-art methods. In addition, the accuracy
can be further lifted by using initial weights from suitable
pre-trained classic network models.

The subsequent content of this paper is organized as follows:
Section II briefly introduces frequency domain analysis method
including the wavelet analysis method and its application in
image processing and introduces the existing work on AD aided
diagnosis and classification based on neural network. Section
III describes the novel wavelet convolution unit, the neural
network framework based on WCU and the training method in
detail. Section IV describes the realization of AD fine-grained
multiple classification methods based on WCU-Net using brain
DTI image data. Section V carries out a series of experiments
and results analysis. Finally, Section VI concludes the work and
gives future research directions.

II. RELATED WORK

A. Frequency Domain Analysis Method

Frequency domain analysis is a view from frequency, which
can find something not in the time domain. Among them, Fourier
transform and wavelet transform are two typical frequency
domain analysis methods. Wavelet is composed of a family of
basis wavelet functions, which can describe the local properties
of signal time (spatial) and frequency (scale) domains, while
Fourier transform only has the properties of frequency analysis.
In addition, the wavelet transform is an order of magnitude
faster than the Fast Fourier transform. Assuming that the signal
length is L, the computational complexity of Fourier transform
and wavelet transform is Llog2L and L respectively. Wavelet
analysis is widely used in image analysis, such as image feature
extraction, image compression and image watermarking.

In recent years, there are several papers introduced wavelet
transform into CNN [24], [25], [26]. Liu et al. [24] applied
wavelet decomposition to obtain high and low frequency in-
formation. Then low frequency information is continuously

decomposed 4 times. And the high frequency information is
continuously concated with the low frequency information in
the next layer to be updated. In the end, the last high and low
frequency information is concated. All these operations emerged
before convolution. Fujieda et al. [25] used wavelet analysis to
replace the max pooling operation to form a modified U-Net
architecture, which is the generalization of dilated filtering and
subsampling. But in this existing work, wavelet transform only
acts as a filter with fixed coefficients to participate or substitute
a certain procedure, for example downsampling, in the structure
of the network. They didn’t integrate the wavelet transform
with convolution operation as a new unit, just combined them
together.

B. AD Classification Based on Conventional Method

In the task of AD classification, most of conventional method
focus on coarse classification of AD, NC and MCI [2]. Xiao
et al. [5] proposed a new classification framework to accu-
rately identify patients with Alzheimer’s disease. The method
analyzed the multi-feature combination correlation technology
and improved the SVM-RFE algorithm by using the covari-
ance method, which showed that the multi-feature combination
method was better than the single feature method. White matter
(WM) injury is an important part of the AD pathological cascade,
which always be neglected in the diagnosis of AD [27]. The most
powerful tool in White matter is DTI, which is a non-invasive
in vivo imaging technique. Identification of White matter fiber
trends and degree of damage by dispersion characteristics can
reveal the structural integrity of AD and delineates the deteri-
oration of white matter [28]. Ben Ahmed et al. [15] proposed
to extract local image-derived biomarkers from DTI and sMRI
to construct multimodal AD features. Few scholars using con-
ventional method to do fine-graind double classification [29].
Ashburner and Friston [30] proposed one method based on con-
ventional feature representation of voxel-based morphometry.
Zhang et al. [31] proposed one landmark-based morphometrical
feature method.

C. AD Classification Based on Deep Learning Method

In general, the patient is in the middle and late stages when he
is diagnosed with AD. Therefore, early diagnosis of AD using
artificial intelligence requires a sensitive and efficient diagnosis
method, such as [32], [33], [34]. In recent years, with excellent
achievements in various fields, deep learning has gradually been
widely applied in the field of medicine. CNN, the most common
deep learning method, has received a lot of attention due to its
success in the field of image analysis and classification [35],
[36]. However, using deep learning methods to diagnose AD is
still a great challenge due to the lack of pre-processed medical
image acquisition, errors and knowledge. Aderghal et al. [3]
proposed a data enhancement strategy adapted to sMRI scan
specificity for training and classification of limited continuous
sections. Lei et al. [13] proposed a discriminant feature based
learning and canonical correlation analysis in MRI and PET
modes. Multimodal images help to improve the diagnosis of AD,
but these multimodal combined methods need to take a long time
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TABLE II
THE ACCURACY ACHIEVED BY EXISTING FINE-GRAINED AD CLASSIFICATION METHODS AND OURS. THE RED VALUE REFERS TO THE HIGHEST ACCURACY,

AND THE BLUE VALUE REFERS TO THE SECOND HIGHEST ACCURACY. OBVIOUSLY, OUR METHOD ACHIEVES HIGHEST ACCURACY FOR ALL THESE
LISTED CLASSIFICATIONS

in the image processing stage. To solve these problems, Fang
et al. [37] proposed a novel framework that integrates three state-
of-the-art deep convolutional neural networks with multimodal
images for AD classification to achieve higher accuracy.

In the task of AD classification, MRI data are processed
mostly, such as double classification of AD and NC [9], [11], and
three pairwise combinations in AD, MCI and NC [1], [4], [6],
[10], [12]. [14] described an automated and robust method for
detecting and identifying AD MRI and PET images. Bi et al. [7]
proposed a new deep-learning technique for the prediction of
AD based on MRI images. The accuracy of the method in AD
vs. NC vs. MCI classification was 91.25%. DTI has been used in-
termittently for the classification task of identifying Alzheimer’s
disease [17], [18], achieving double classification (AD vs. NC)
with the accuracy 0.885, 0.8235 respectively. Ebadi et al. [16]
reported studies on the potential of applying brain connectivity
patterns as an aid in diagnosing AD and MCI by using an
integrated classification module to perform classification tasks.
Table I lists these methods and the corresponding classification
accuracy.

With more and more scholars focusing on the coarse-grained
double classifications concerning AD, NC and MCI, the methods
are constantly improved and reached satisfied accuracy rate. A
few scholars used the deep-learning method to do fine-graind
classification of AD [38], which further refine MCI into EMCI
and LMCI. Liu et al. [34] proposed a joint classification and
regression framework for AD diagnosis via a deep multi-task
multi-channel learning framework. Basaia et al. [39] proposed
a CNN-based approach to fine-grained classification of MCI
using MRI data, which achieved six kinds of combination double
classifications among AD, LMCI, EMCI and NC. Fang et al. [20]
proposed a fine-grained method via re-transfer learning, which
achieved five kinds of accuracy has been improved. De and
Chowdhury [21] proposed quadruple classification methods of
AD vs. NC vs. EMCI vs. LMCI in DTI data. In this method,
VoxCNNs [40] network was used to train on FA, MD and EPI
data respectively, and random forest classification was used on
average data of FA and MD. For fusing output results of the
four network models, the author proposed a hierarchical average
fusion decision to achieve the classification task, and the classi-
fication accuracy reached 92.6% which better than the existing
methods. Table II lists these methods and the corresponding
classification accuracy.

III. APPROACH

In the task of fine-grained and multiple classification, we pro-
pose a novel method for AD prediction. Next, we will introduce
our self-defined WCU, our fine-grained multiple classification
network (WCU-Net), and prediction problems on AD by WCU-
Net.

A. WCU (Wavelet Convolution Unit)

Wavelet analysis has good localization properties in both the
spatial domain and frequency domain, and wavelet transform
has the characteristics of multi-resolution, which is conducive
to the extraction of different features of each resolution. The low
frequency part of a certain scale is decomposed into four parts by
two-dimensional wavelet function decomposition: approximate
information of higher order scale and detailed information of
three directions (i.e., horizontal, vertical and diagonal), as (1):

fwav(x, y) =
1√
MN

∑
m

∑
n

Wϕ(0,m, n)ϕ0,m,n(x, y)

+
1√
MN

∞∑
j=0

(∑
m

∑
n

WH
ψ (j,m, n)ψHj,m,n(x, y)

+
∑
m

∑
n

WV
ψ (j,m, n)ψVj,m,n(x, y)

+
∑
m

∑
n

WD
ψ (j,m, n)ψDj,m,n(x, y)

)
, (1)

where M and N represent the size of a certain image.
ϕ0,m,n(x, y) represents the scale function and the calculation is
shown as (2). ψDirj,m,n(x, y) represents wavelet primary function
and the calculation is shown as (3). j represents the order, which
determines the extent and narrowing. Dir shows the direction,
which can be horizontal, vertical or diagonal.m and n represent
the position of the movement. In (1), Wϕ(0,m, n) represents
the approximate coefficient and its calculation is shown as (4).
Wψ(j,m, n) represents the detail coefficient and its calculation
is shown as (5).

ϕ0,m,n(x, y) = 2
j
2ϕ
(
2jx−m, 2jy − n) , (2)

ψDirj,m,n(x, y)=2
j
2ψDir

(
2jx−m, 2jy−n) , Dir={V,H,D},

(3)
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Wϕ(0,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ϕ0,m,n(x, y), (4)

Wψ(j,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ψDirj,m,n(x, y). (5)

Wavelet transform can decompose an image into components
of different sizes, positions and directions. Based on the wavelet
transform, we improved it shown as (6). After wavelet decom-
position, we used ξ(·) function in approximation and detail
coefficient. ξ(·) represents the combination of convolution, BN
and activation as (7), which can make the coefficients of wavelet
decomposition more local and more complete than the overall
information obtained. In (7), the Fm means feature map.

ξwav(x, y) = ξ(Approx) + ξ(Detail)

= ξ

(
1√
MN

∑
m

∑
n

Wϕ(0,m, n)ϕ0,m,n(x, y)

)

+ ξ

⎛
⎝ 1√

MN

∞∑
j=0

(∑
m

∑
n

WH
ψ (j,m, n)ψHj,m,n

(x, y) +
∑
m

∑
n

WV
ψ (j,m, n)ψVj,m,n(x, y)

+
∑
m

∑
n

WD
ψ (j,m, n)ψDj,m,n(x, y)

))
, (6)

ξ(Fm) = ReLU(BN(Conv(Fm))). (7)

As we all know, vanilla convolution has limited local receptive
field, which often results in discarding some non-local structure
information in deep abstract features. Dilated convolution is
usually adopted to expand local receptive field by sampling,
with much information loss. While for medical images, both
non-local structure information and local detail information of-
ten have important clinical meanings. Thus, we define the above
novel convolution, integrating wavelet transform into convolu-
tion operation, to simultaneously acquire non-local receptive
field and avoid information loss.

Fig. 1 take a piece of original MRI as an example to illustrate
the implement process. According to the novel defined convo-
lution, four coefficient components (A: approximate represen-
tation of the original image, D: diagonal edge features of the
original image, V: singular features in the vertical direction, H:
singular features in the horizontal direction) are generated by
wavelet transformation at first. Then doing convolution for each
component, we totally get four pieces of map images. Assuming
the output feature map being 1× 1, the stride being 1 and
adopting 5× 5 convolution kernels, we acquire four different
5× 5 local receptive fields, as illustrated in Fig. 2(c). Certainly,
there is some overlap for three receptive fields corresponding to
diagonal features, horizontal features and vertical features. For
comparison, Fig. 2(a) and (b) respectively illustrated the local re-
ceptive fields about vanilla convolution and dilated convolution
with factor 2. Except for the overlapping part, we can see that

Algorithm 1: Wavelet Convolution Unit.

1 WCU (X)
2 Ws ← SinScaT (X, wave)
3 Wm ←MulScaT (X, wave)
4 W ← Concatenate ([Ws, Wm], 1)
5 Xr ← ξwav (W )
6 return Xr

7 Function SinScaT (X, wave)
8 C : {ci}3i=0 ← dwt (X, wave)
9 Ĉ : {ĉi}3i=0 ← ξwav (c0, c1, c2, c3)
10 Γs ← idwt ((ĉ0, ĉ1, ĉ2, ĉ3), wave)
11 return Γs
12 Function MulScaT (X, wave)
13 Ĉ ← wavedec (X, wave, 3)
14 Γ0,1 ← idwt (ĉ0, ĉ1, wave)
15 Γ3,2 ← idwt (Γ0,1, ĉ2, wave)
16 Γm ← idwt (Γ3,2, ĉ3, wave)
17 return Γm

the novel receptive field is 3.24 times larger than that of vanilla
convolution, as illustrated in Fig. 2. Since the four coefficients
of wavelet decomposition represent different image features,
the region after stacking them marked with the yellow box in
the original MRI of Fig. 1). The local receptive field of vanilla
convolution is also marked with the red box for comparison.
Further point-wise update in the frequency domain globally
affects all input features involved in wavelet transform according
to wavelet transform theory. When we carry out inverse wavelet
transformation to obtain the final feature map (see Fig. 1(b)),
the expanded local receptive field further diffuses to non-local
receptive field. And, we can see that the feature map image is
very close to the original image, without much information loss.
The final feature map image of vanilla convolution is shown
in Fig. 1(a) for comparison, which is quite different from the
original image, with much information loss.

Based on self-defined wavelet decomposition, we propose a
wavelet convolution unit as shown yellow square in Fig. 3, which
consists of four parts: Encoder, WCU, Decoder, Fully connec-
tion. WCU (wavelet convolution unit) is self-defined module
for extracting information of cross-scale and effective by using
wavelet analysis and embedding vanilla convolution. In order
to acquire non-local receptive field, we implement convolution
operations to coefficients of single-scale wavelet decomposition.
Besides, multi-scale wavelet decomposition used to obtain more
comprehensive multi-scale feature information. What’s more,
we fuse all these cross-scale features in the wavelet convolution
unit to solve the problem of inaccurate localization of singular
points. Our WCU is shown in Algorithm 1.

Firstly, the image is decomposed by a single-scale to obtain the
low-frequency approximation coefficient and three (horizontal,
vertical and diagonal) high-frequency detail coefficients, and
apply ξ function in each coefficient, and then invert the coeffi-
cients. Before the inverse transformation, the local coefficients
in the wavelet transform domain are changed by ξ function,
which can selectively enlarge the classification of local details
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Fig. 1. Take a piece of original MRI as an example to illustrate how to
acquire non-local receptive field by our convolution embed wavelet. In
the process of our convolution embed wavelet operation, four different
coefficients images A, D, V, and H are obtained by wavelet transform,
and then four different feature maps are generated by convolution, with
four times local receptive field of vanilla convolution. Furthermore, point-
wise update in the frequency domain globally affects all input features
involved in wavelet transform. Hence, the actual receptive field doesn’t
limit in the region marked by yellow box as illustrated in the original MRI,
but diffuses to non-local receptive field of the whole image. The receptive
field of vanilla convolution operation limits in the red box marked in the
original MRI. In addition, the feature map images obtained by vanilla
convolution and our wavelet convolution are illustrated as image (a) and
image (b) for comparison.

Fig. 2. Illustration of receptive field marked with blue blocks of different
convolution operations. (a) The limited local receptive field of vanilla
Convolution operation. (b) The expanded local receptive field of dilated
convolution operation, a dilated filtering with factor 2. (c) The expanded
local receptive field of our proposed convolution operation.

and reduce the useless components. At the same time, the image
is decomposed to three scales and reconstructed according to
different scale coefficients to obtain the transformed feature
map. Finally, the results of the two reconstructions are connected
together and the ξ function is applied again to obtain the output
result of the wavelet convolution unit. In the experimental test,
the wavelet primary function we choose is the Haar wavelet
(First-order Daubechies wavelet) which is the only discontin-
uous wavelet directly suitable for discrete 2D images. Haar

wavelet has both orthogonality and symmetry. In addition, in
the multi-scale decomposition part, we set 3-scale decompo-
sition. In the convolution of single-scale wavelet decomposi-
tion, kernel size = 1, stride = 1, padding = 0; kernelsize =
3, stride = 1, padding = 1 were set in the convolution of
single-scale and multi-scale combination.

B. Architectural Design (WCU-Net)

CNN as a typical network structure in deep learning, which
consists of several layers, including but not limited to the convo-
lutional layer, pooling layer, activation layer and full connection
layer. The framework of our method is mainly composed of four
parts, including encoding, wavelet convolution unit, decoding
and full connection layer, as shown in Fig. 3. To deal with
variable length/short sequences efficiently, we use the idea of
encoding and decoding. In the stage of encoding and decoding,
the general convolution operation is mainly used to constantly
adjust the depth of network layers. In these two processes we
have used a combination of the convolutional layer, BN, and
activation layer to improve the fitting capability of the network
model. The convolutional layer of deep CNN is used to extract
scale/displacement invariant features of local areas of images.
The main benefit of the convolutional layer is the idea of weight
sharing in the same feature map, which reduces parameters and
leads to the simplicity of the model. The number of input and
output channels in different layers of the convolution layer is
shown as the values around the blue box in Fig. 3. In all convo-
lution layers, kernelsize = 4, stride = 2, padding = 1. The
convolutional layer is followed by BN layer, which is essentially
a normalized network layer.

The input’s distribution of all hidden layer neurons is then
mapped to a non-linear function by degrees, finally to the limit
saturation area of value interval. It is then designed to be back
to the general normal distribution with 0 for the mean value
and 1 for the variance value. Then, to avoid gradient disap-
pearing, the inputs for the nonlinear function is designed to
be in the area where is input sensitive. This is followed by
the introduction of an activation layer for the model to learn
complex representations. In order to increase the convergence
rate, the activation function used in this paper (except for the final
output) is nonlinear activation function ReLU. The performance
of CNN mainly depends on the layer structure and filter set, and
many studies show that network structure design is an effective
way to improve the performance of CNN [36]. In this paper,
we design a wavelet convolution unit based on the localization
and multi-resolution characteristics of the wavelet, details in
Section III-A. The last part is the full connection layer. The
feature map processed in the previous parts has turned into
a vector, which is no longer spatially located. The nonlinear
relationship between local features in the convolution layer
can be found by adding the full connection layer. We used 3
layers of full connectivity, and output the predicted categories
by softmax. In order to improve the generalization ability of the
network model, we adopt the dropout method before and after
full connection, and the coefficient is set to 0.5. In the process
of training, we used the classical cross entropy loss function to
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Fig. 3. The framework of our proposed network which consists of four parts: Encoder, WCU, Decoder, Fully connection. WCU (wavelet convolution
unit) is self-defined module for extracting information of cross-scale and effective by using wavelet analysis and embedding vanilla convolution.
Encoder and Decoder are common convolutions for feature extraction, which mainly reflected in the depth of features. Fully connection is the last
step for predicting category labels and softmax is helped to achieve output classification results.

Fig. 4. The outline of fine-grained combination classification on AD, EMCI, LMCI and NC, including DTI data processing, the network architecture
with WCU and the classification prediction results. The inputs are MD (the first row in the light yellow block) and FA (the second row in the light
yellow block) computed from DTI data of four types of cohorts (i.e., AD, NC, EMCI, LMCI). In the network architecture, WCU is the kernel, whose
detailed specific process is shown in the middle part of this figure and Fig. 3.

calculate the loss cost between the real label and the predicted
output.

IV. AD CLASSIFICATION VIA WCU-NET

A. DTI Data

As we all know, data preprocessing has always been an
important step in deep learning models, especially in the medical
field. DTI is a special form of MRI, which is the non-invasive
method that can observe effectively and track the white matter
fiber tracts. MRI is mostly used in the diagnosis of Alzheimer’s
disease and other symptoms. Generally speaking, DTI can better
reflect the characteristics of brain diseases, which is conducive
to diagnosis.

The signal data of diffusion anisotropy are quantified by the
concept of symmetric matrix in three dimensional view, which is

called theD, as shown in (8). Where,Dxx,Dyy ,Dzz are the dis-
persion coefficient applied along the three mutually perpendicu-
lar directions of x, y and z axes of the space cartesian coordinate
system. The DTI is a 3×3 symmetric, positive definite matrix,
which contains three eigenvalues (λ1, λ2, λ3) and associated
eigenvectors V = (v1, v2, v3)

T . The three eigenvectors reflect
the three dispersion directions of water molecules. The size of the
eigenvalue indicates the degree of dispersion of water molecules
in each direction.

D =

⎛
⎝Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎞
⎠ = V T

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠V. (8)

In our method, the FA and MD indices IndFA, IndMD of
DTI are used, these two indices are images pre-processed from
DTI data using FSL software or scripts. As shown in the yellow
square of inputs in Fig. 4, the MD image is in the first line, and the
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TABLE III
THE ACCURACY OF NINE COMBINATION CLASSIFICATIONS ACHIEVED BY PROPOSED WUC-NET WITH OR WITHOUT ADOPTING PRE-TRAINED CNNS DURING
WEIGHT INITIALIZATION PROCESS. EACH PRE-TRAINED MODEL CAN IMPROVE THE ACCURACY FOR SEVERAL KINDS OF COMBINATION CLASSIFICATIONS TO A

CERTAIN EXTENT. THE RED VALUE MEANS THE HIGHEST ACCURACY, AND THE GREEN VALUES MEANS THAT ADOPTING THE CORRESPONDING
PRE-TRAINED MODELS IMPROVED THE ACCURACY TO A CERTAIN EXTENT (D-1: AD VS. NC, D-4: AD VS. EMCI, D-5: AD VS. LMCI, D-6: NC VS. EMCI,

D-7: NC VS. LMCI, D-8: EMCI VS. LMCI, T-2: AD VS. EMCI VS. LMCI, T-3: NC VS. EMCI VS. LMCI, QC: AD VS. NC VS. EMCI VS. LMCI)

second line is the FA image. FA in white matter was positively
correlated with the integrity of myelin sheath, fiber density and
parallelism. Hence, the fiber structure of white matter in the brain
was most clearly observed by the FA image, and the gray matter
boundary was obvious. The calculation formula of IndFA is
shown in (9). Where λ̄ is the mean of three eigenvalues. MD
reflects the overall diffusion level and resistance of the molecule.
MD only represents the size of diffusion and has irrelevant to the
direction of diffusion. The larger IndMD is, the more free water
molecules are contained in the tissue. The calculation formula
of IndMD is shown in (10). Tr(D) refers to the trace of D,
which is a matrix invariant.

IndFA =

√∑3
i=1 3 (λi − λ̄)

2∑3
i=1 2λ

2
i

, (9)

IndMD = Tr(D)/3 = (Dxx +Dyy +Dzz) /3. (10)

B. Fine-Grained and Multiple AD Classification
Framework

In this paper, we build a new framework for fine-grained and
multiple AD classification via WCU-Net. For double, triple and
quadruple classifications, the framework is almost the same.
In the experimental setup, only their input and output are
different. As shown in Fig. 4, the framework includes three
parts: the data input, the network architecture of Encoder,
WCU, Decoder, FC and Activation function, and the output
of class prediction. In the first part, we preprocessed DTI
data. FSL (https://fsl.fmrib.ox.ac. UK/fsl/fslwiki/Fsl Installa-
tion/Linux) tools were used to extract b0 image, peel brain,
eddy correction, tensor calculation and other operations on the
original DTI data. FA and MD are selected as input data from
the obtained tensor indices. In the second part, we input FA
and MD indices of 4 categories (AD, NC, EMCI, LMCI) via
Encoder, WCU, Decoder, FC and Activation function (Softmax)
successively. In this part, we mainly expand and present the
processes in WCU. WCU uses the wavelet convolution unit self-
defined by us and combines the characteristics of single-scale
wavelet decomposition and multi-scale wavelet decomposition
to obtain complete cross-modal characteristics. The last part
is the prediction output of the network, which converts the

probability distribution into label data. The final prediction class
depends on the category with the highest probability.

C. Pretrained Models Help Improve Accuracy

CNN is the most commonly used to detect AD in deep
intelligent systems, some studies tend to design the struc-
ture of CNN [33]. Classical network structures, such as
ResNet, DenseNet, SqueezeNet, Inception, AlexNet, VGGNet
and GoogLeNet, have been successfully applied into the task of
image classification [41], which is helpful to weight initializa-
tion process. In this paper, we adopted these 7 classical network
models as different manifestations of weight initialization in our
network structure. Table III lists the classification accuracy by
WCU-Net with pre-trained CNNs. The classification accuracy
without pre-trained models is also listed in the last column for
comparison. It can be seen from Table III that each pre-trained
model can improve the accuracy for 2 to 4 kinds of combination
classifications to a certain extent, marked by red or blue values in
column 2 to 8. Especially for fine-grained double classifications
NC vs. EMCI and NC vs. LMCI, the effect of pre-trained is
obvious. In summary, the highest accuracy values of nine com-
bination classifications reach 0.9920, 0.9730, 0.9611, 0.9870,
0.9611, 0.9900, 0.9636, and 0.9379 respectively, where the best
classification accuracy for AD vs. NC, AD vs. EMCI and AD
vs. LMCI vs. EMCI vs. NC is persisted by WCU-Net without
pre-trained. Therefore, one can decide whether pre-trained is
needed and which pre-trained model is chosen to reach the
best classification accuracy in applications. While in this paper,
we still use the results obtained by WCU-Net without pre-
trained to make comparisons with existing AD classification
methods.

V. EXPERIMENTAL RESULTS

A. Datasets and Parameters

DTI is a special form of MRI, but its acquisition is more
difficult than MRI. DTI can capture white matter tracts and gray
matter tracts in the brain and works by measuring the diffusion of
water molecules within living tissue. Since the diffusion tensor is
a symmetric 3× 3 matrix, it can be described by its eigenvalues
(λi) eigenvectors (Vi). Eigenvalues and eigenvectors are then
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TABLE IV
DATASET DETAILS AND AFTER AUGMENTATION DATA SET FOR TRAIN, VALID

AND TEST

used to deal with scalar indices. In the dataset we used, FA and
MD are available together. The two main diffusion indices, FA
and MD, are based on eigenvalues and represent the magnitude
of the diffusion process. Age is a major risk factor for AD, so
we selected a population between 73-76 years of age and with
significant differences in cognitive function scores (AD: 18-27,
EMCI/LMCI: 24-30, NC: 25-30) to research and analysis. The
dataset we downloaded comes from 902 samples divided into
four categories: 153 AD patients, 167 LMCI, 363 EMCI, and
219 NC. The DTI data set is selected as the training, verification
and test set of the model, the number as shown in Table IV.
Data used in this paper were from the Alzheimer’s Disease
Neuroimaging (ADNI: www.adni-info.org) database. Since the
amount of data for each class is not equal, and the total number
of data is not enough to train the deep learning model, data
amplification is used to increase the number of samples per
minority class. In addition, the medical image is a gray image
after visualization, in order not to change the image greatly,
the data enhancement methods mainly include amplification by
adding random noise and brightness. In order to increase the size
of our data, we will use data enhancement to expand the data we
have obtained. The method of data enhancement is consistent
with the literature [20], and the situation after data enhancement
is shown in Table IV.

In the process of network training, the size of the image
to 128 × 128. In the training process, the initial learning rate
is 0.001, 40 epochs, the batch size is 32, we employ batch
normalization. The optimization function is SGD. The value of
momentum is 0.85. In addition, we adopted an adaptive loss
adjustment strategy to update the learning rate to 0.1 times
of its original value every 8 epochs. We used Python 3.8.12
and the Pytorch version of 1.10.2 with CUDA version of 10.2
GNU/Linux x86 in Tesla T4 16 G RAM device-64 system.
The source code of this article has been shared on GitHub:
https://github.com/22385wjy/medicalImageClassification

B. Combination Classifications in AD, LMCI, EMCI, and
NC

Clinical studies have shown that the fine-grained AD classifi-
cation is of great significance. There have been various studies
on AD classification. However, most existing methods were
limited in coarse-grained double classifications, i.e., AD vs.
NC, AD vs. MCI and MCI vs. NC. Some methods implemented
coarse-grained triple classification, i.e., AD vs. NC vs. MCI. In
recent years, some scholars have further classified MCI with

fine granularity. In the early years, few scholars using DTI
data to do fine-grained double classification [29], [38], and
the higher accuracy is 0.81. Several scholars using MRI data
for fine-grained quadruple classification of AD. Ashburner and
Friston [30], Zhang et al. [31] and Liu et al. [34] are three
methods that all applied in fine-grained quadruple classification
of AD and using MRI data, but the accuracy is lower. There
are also some methods using MRI data in triple and quadruple
classification for AD classification, which can obtain better
performance. For example, the triple classification accuracy
can reach 68.8%, and the quadruple classification accuracy can
reach 59.1% in [42]. However, the triple classification is AD
vs NC vs (EMCI+LMEC), which is similar to the traditional
coarse-grained triple classification. The accuracy of the quadru-
ple classifications can reach 61.9% in [43]. Basaia et al. [39]
proposed a CNN-based approach to fine-grained classification of
MCI using MRI data, which achieved six kinds of combination
double classifications among AD, LMCI, EMCI and NC. Fang
et al. [20] proposed a fine-grained method via re-transfer learn-
ing, which improved accuracy of 5 kinds of fine-grained double
classifications. At present, De and Chowdhury [21] achieved
fine-grained quadruple classification with the accuracy 0.926.

In this paper, in order to facilitate the accurate diagnosis of
AD classification as far as possible, we developed twelve combi-
nation classifications, including 4 coarse-grained classifications
and 8 fine-grained classifications, as listed in the last column of
Tables I and II. Two kinds of fine-grained triple classifications
(AD vs. LMCI vs. EMCI and NC vs. LMCI vs. EMCI) emerged
for the first time.

The first line in Fig. 5 shows the prediction accuracy curve
distribution of the proposed method without the pre-trained
network model as the initialization weight parameter, and there
is a certain deviation in the distribution between the training
stage and the verification stage. In the training process, the
accuracy curve does not fluctuate, and the accuracy in different
classification combinations is closer to 1 with the increase of
training epochs. In the process of verification, a small range of
oscillation occurred in the epoch 1 to 8, but the overall upward
trend is correct. During the validation process, the parameters are
constantly updated. With the increase of the number of rounds,
the accuracy of AD vs. NC and EMCI vs. LMCI classification
were close to 1, and the accuracy of quadruple classification was
slightly lower, but also between 0.9 and 1. In the case of other
data combination classification, the accuracy also stabilized
at the 11th epoch. The second line in Fig. 5 shows the loss
curves of the training and verification stages. The loss of double
classification is small, while the loss of quadruple classification
is relatively large. However, the loss in both the training and
verification process decreases obviously and tends to be stable.
Therefore, it shows that the network model proposed in this
paper has good generalization performance and strong fitting
ability.

The accuracy of our method for the classification AD vs. NC
and eight kinds of fine-grained classifications is listed in Table II.
For comparison, the accuracy of existing methods concerning
fine-grained classification is also given in Table II. We can see
that the accuracy of our method is much better than that of [20],
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Fig. 5. (Top) The accuracy curves. (Bottom) The loss curves of WCU-Net in the training stage and validating stage for the tasks of AD vs. NC
classification and all eight kinds of fine-grained classifications, without using initialization weight parameters from pre-trained network model. In the
training process, all accuracy curves rapidly and stably approximate to 1. In the verifying process, all accuracy curves also approximate to 1 or a
value higher than 0.9 after 11th epoch. While for loss curves, the more classes, the greater the loss value. But all loss curves still rapidly decrease
and converge to a small value. In sum, these curves show that the proposed network model has good generalization performance and strong fitting
ability.

[39] for 6 kinds of double classifications achieved in that paper.
For fine-grained quadruple classification, the accuracy of our
method is 0.9379, also 1.19% higher than that of [21]. Our
method firstly achieved fine-grained triple classifications. The
accuracy for AD vs. EMCI vs. LMCI and NC vs. EMCI vs.
LMCI resectively reach 0.9571 and 0.9507.

C. Result Analysis

Fig. 6 shows the heat map of accuracy compare of all coarse-
grained and fine-grained AD classifications concerned in this
paper. Row corresponds to class combinations. Column corre-
sponds to classification methods. The darker the color of the
matrix cell, the higher the accuracy of its corresponding method,
as shown by the colorbar on the right. Each light blue cell without
any value means that there is no corresponding combination
classification. The cells with values display the accuracy (two
decimal places retained) of the corresponding method under
different combination classifications. From this heat map, we
can make the following conclusions.

� Most of methods can only achieve coarse-grained classi-
fications. A few of methods achieve one or several kinds
of fine-grained classifications. Our method achieves all
twelve kinds of classifications. Fine-grained triple classi-
fications can only achieved by our method.

� Most of methods achieved unstable accuracy for different
class combinations. There even exist many cells with the
accuracy less than 0.70. Our method achieves solidly high
accuracy higher than 0.935 for all twelve kinds of class
combinations.

It seems that there are lots of research works on AD classifi-
cation. But they usually focused on different data modalities and
class combinations. Comparability among all kinds of methods
is not very strong. Our method achieves all twelve kinds of
coarse-grained and fine-grained classifications with solidly high
accuracy, which can build a suitable reference standard for later
AD classification researches based on DTI data. However, there
is one point that needs special explanation. In this paper, we
mainly focused on the accuracy of DL method, but missed Neu-
roscience part related to the potential target pairs of ROIs linked
to the continuum of AD. Actually, this is very important for
disease research based on neuroscience and the interpretability
of computer-aided diagnosis based on deep learning methods. It
will be a meaningful research direction to combine neuroscience
and AI methods more deeply in future research.

D. Ablation Experiments

As described in Section III, the optimal performance of our
method mainly depends on single-scale wavelet decomposition
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Fig. 6. The heat map of accuracy comparison among all concerned coarse-grained and fine-grained AD classification methods in this paper. The
darker the color of the matrix cell, the higher the accuracy of its corresponding method. Light blue cell means no corresponding classification work.
A large area of light blue cells shows that most of the existing methods only achieve a few combination classifications. But our method realizes all
twelve kinds of classifications, with SOTA accuracy for all fine-grained classifications. Such a method also provides a complete reference for later
research work in this field. The fonts with the same color on the horizontal axis in this figure indicate that the data modalities used by these methods
are common. Red, blue, green and black respectively correspond to DTI, MRI+PET, MRI+DTI and MRI. (1)–(27) respectively refer to different
methods proposed in the following references: Ben Ahmed et al. [1], Payan and Montana [2], Aderghal et al. [3], Yang et al. [4], Xiao et al. [5],
Madusanka et al. [6], Bi et al. [7], Duc et al. [8], Xing et al. [9], Pan et al. [10], Ebrahimi and Luo [11], Liu et al. [12], Lei et al. [13], Vu et al. [14], Ben
Ahmed et al. [15], Ebadi et al. [16], Qu et al. [17], Lella et al. [18], Bigham et al. [19], Ashburner and Friston [30], Zhang et al. [31], Liu et al. [34],
Basaia et al. [39], Wen et al. [38], Prasad et al. [29], De and Chowdhury [21], Fang et al. [20].

Fig. 7. The accuracy histogram for five groups of ablated methods
(without uSiS, without uMuS, without uCo, without uAmD, without
uCoMS) and our complete method in this paper. Obviously, our com-
plete method has a comparative advantage, especially for fine-grained
triple classifications and quadruple classifications.

(uSiS), multi-scale wavelet decomposition (uMuS), ξ function
operation (uCo) and data amplification uAmD. To further prove
the effectiveness of these four components, we design five
groups of methods to do ablation experiments here, i.e., w/o
uSiS, w/ouMuS, w/ouCo, w/ouAmD and w/ouCoMS (with-
out uMuS and uCo). All experimental results are illustrated in
Fig. 7 for comparison with our complete method. We can see that
four components have their functionality. Data amplification is
essential. Other three components are more important for fine-
grained classifications. Especially, the accuracy for fine-grained
quadruple classification is obviously improved when they work
together.

VI. CONCLUSION

In this paper, a novel WCU-Net is proposed, which combines
single-scale and multi-scale transformation in a wavelet con-
volution unit. This strategy not only obtain non-local receptive

fields but also achieve cross-scale information fusion. Then the
WCU-Net has been successfully applied to the fine-grained
and multiple AD classifications with SOTA accuracy. We know
fine-grained classification is of great significance for accurate
diagnosis of cognitive disorders and correct treatment. The
accuracy of fine-grained quadruple classification still need to
be further improved. In fact, the WCU neural network proposed
in this paper can be applied to the classification and staging
of various diseases based on medical images. We will conduct
more studies in this direction and try to apply research results
into computer-aided clinical diagnosis in the future.
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