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Abstract—Objective: The m6A modification is the most
common ribonucleic acid (RNA) modification, playing a role
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in prompting the virus’s gene mutation and protein struc-
ture changes in the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). Nanopore single-molecule di-
rect RNA sequencing (DRS) provides data support for RNA
modification detection, which can preserve the potential
mS A signature compared to second-generation sequenc-
ing. However, due to insufficient DRS data, there is a lack
of methods to find m6A RNA modifications in DRS. Our
purpose is to identify m%A modifications in DRS precisely.
Methods: We present a methodology for identifying m®A
modifications that incorporated mapping and extracted
features from DRS data. To detect m%A modifications,
we introduce an ensemble method called mixed-weight
neural bagging (MWNB), trained with 5-base RNA synthetic
DRS containing modified and unmodified m®A. Results:
Our MWNB model achieved the highest classification
accuracy of 97.85% and AUC of 0.9968. Additionally,
we applied the MWNB model to the COVID-19 dataset;
the experiment results reveal a strong association with
biomedical experiments. Conclusion: Our strategy enables
the prediction of m® A modifications using DRS data and
completes the identification of m°® A modifications on the
SARS-CoV-2. Significance: The Corona Virus Disease 2019
(COVID-19) outbreak has significantly influence, caused
by the SARS-CoV-2. An RNA modification called m%A is
connected with viral infections. The appearance of m%A
modifications related to several essential proteins affects
proteins’ structure and function. Therefore, finding the
location and number of m%A RNA modifications is crucial
for subsequent analysis of the protein expression profile.

Index Terms—COVID-19, ensemble learning, m®A RNA
modifictions, nanopore single-molecule direct RNA se-
quencing (DRS), SARS-CoV-2.

[. INTRODUCTION

HE Corona Virus Disease 2019 (COVID-19) outbreak has
T spread throughout the world, claiming a large number of
lives and affecting global economic and social stability [1]. Vac-
cine development and anti-infection strategies have emerged as
critical components of the global response to this pandemic [2].
Due to our limited understanding of the Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2), there are
currently no specific drugs available to treat SARS-CoV-2. Thus,
understanding the genetic information of SARS-CoV-2 enables
us to analyze the virus’s characteristics and aids in developing
and implementing measures.
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Ribonucleic acid (RNA) modifications are closely linked
to gene activation and expression, affecting the structure and
morphology of proteins through several actions [3], [4]. Ad-
ditionally, locating modification sites can be highly benefi-
cial for analyzing the relationship between RNA modifications
and protein expression. Numerous studies examining the func-
tion of m®A in viral-host interactions have identified distinct
roles, implying widespread regulatory control over viral life cy-
cles [S]. SARS-CoV-2 is a single-stranded RNA genome found
in COVID-19 [6]. Theoretically, SARS-CoV-2 has the potential
to mutate due to changes in protein structure and properties.
Changes in the structure and properties of proteins also can be
reflected by changes in the m% A modification status. As a result,
research needs to understand the location and magnitude of m° A
modifications. Moreover, Kim’s article published in Cell [ 7] pre-
dicted possible base modification sites in the SARS-CoV-2 tran-
scriptome. Additionally, as demonstrated in experiments of [§],
m6A negatively regulates SARS-CoV-2 infection. It shows that
m6A may have the impact on the biological function of the
spike protein, which is a key material for the SARS-CoV-2 im-
munoassay kit. Thus, elucidating the location and magnitude of
mS A modifications contributes to understanding the regulatory
mechanisms that govern viral replication. It is advantageous for
vaccine development and anti-infection strategy development in
the era of the COVID-19 pneumonia pandemic.

While some experimental methods have been adapted for
mS A detection, some limitations remain. There are frequently
issues with resolution and immune specificity [9], and the pro-
cedure is frequently unsatisfactory in terms of cost and preci-
sion [10]. In addition, compared to second-generation sequenc-
ing that requires polymerase chain reaction (PCR), an amplifica-
tion technique that loses mS A modification information, DRS
preserves the underlying m%A signature. In DRS, nanopores
move uniformly from the beginning to the end of the RNA
sequence in a sliding window of base length five. The current
value at each moment is determined by the composition of the
five nucleotides inside the sliding window. DRS can record
traces of base modification in the form of electrical signals,
and the capacity of DRS to detect base modification in RNA is
demonstrated [11]. The following section provides an overview
of the currently used DRS-based RNA m° A detection method.
In [3], [12]-[14], methods are proposed to detect modifications
using hypothesis testing technique. While these methods pro-
duce results, they have limitations in terms of robustness and
generalizability to larger datasets, and this type of method is
highly dependent on the reliability of the control sample [13].
Additionally, these methods’ performance is entirely dependent
on the sensitivity of potential modification types to features.
The type of modification is unknown, which means we can not
distinguish m® A with other modifications.

Machine learning techniques have been enormously success-
ful in biomedical engineering [15]-[19]. Many classical ma-
chine learning algorithms perform exceptionally well at detect-
ing base modification. For instance, Hidden Markov Models
(HMM) and Support Vector Machines (SVM) have been used
to identify specific base modifications in DNA and RNA in some
previous work [20], [21]. However, certain issues impair their

ability to generalize. To begin, DRS is a novel technique, and the
samples obtained in vivo are heterogeneous. As a result, despite
the higher accuracy of DRS compared to previous generation
sequencing technologies, accurately labelling them is challeng-
ing. Moreover, suitable training samples are scarce due to the
lack of DRS samples, leading to insufficient performance of
deep-learning models.

Therefore, it is critical to investigate an effective method
for handling this novel data. In this study, we propose an
ensemble learning framework for m%A detection using DRS
data. According to DRS data, we obtain extracted features from
raw sequencing data, including current and quality data, as
well as screened mapping base features, including mismatches
frequency, delete frequency and insert frequency. The extracted
and mapping features are then fed into the proposed integrated
learning model (Mixed-weight neural bagging) to obtain m%A
prediction results. Additionally, we compare the performance
of the model introduced to that of state-of-the-art methods. All
methods employ parameter tuning techniques to produce the
best models. Finally, we use our model to predict m%A base
modification in the most recent COVID-19 data set and obtain
illuminating results for gene mutation problems. We make the
following contributions to our work:

1) We propose a pipeline for detecting m®A modifications
using DRS that includes an end-to-end processing flow
based on a well-trained mixed-weight neural bagging
(MWNB) model. The MWNB model achieves superior
performance by providing dedicated feature extraction
modules for both extracted and mapping features. When
compared to current state-of-the-art m% A RNA detection
methods, the accuracy is approximately increased by
8 %.

2) We investigate the MWNB model’s optimal parameters.
Additionally, we compare the performance of the MWNB
model, which utilizes both raw data and extracted fea-
tures, to that of the best models that utilize only raw
data or only extracted features. For raw data, models such
as LSTM, RNN, and GRU are compared. For extracted
features, we compare SVM, Decision Tree (DT), Extra
Tree (ET), LightGBM, and random forest (RF).

3) In all models, we tune parameters using the grid search
algorithm. The best performance obtained from the grid
search algorithm of each model is used to evaluate mod-
els’ performance. Additionally, metrics such as accuracy,
precision, specificity, sensitivity, Fl1-score, G meanl, G
mean2, and AUC are considered during the evaluation
process. Moreover, we apply our model to the DRS data
of a SARS-CoV-2 sample and determine the location of
the potential gene mutation.

The remainder of the paper is divided into the following
sections. In Section II, we introduce the nanopore sequenc-
ing technology and discuss related work on identifying RNA
modifications. Then, in Section III, we detail the methodology
for detecting m® A modification using our MWNB model. Sec-
tion IV presents our experimental results and compares MWNB
with other state-of-the-art methods on the DRS and COVID-19
datasets. We discuss the shortcomings of our framework and
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future work direction in Section V. Finally, in Section VI, we
conclude the paper in Section VI.

II. RELATED WORK

The nanopore RNA sequencing process preserves the mod-
ification of m%A and faithfully records the disturbance of the
mS%A molecule to the background current in the form of an
electrical signal [22]. Several studies confirmed the difference
in electrical signals between m%A and normal adenylate in
theory and practice [20]. Smith ez al. accurately performed direct
RNA-seq on two samples with high degree m% A and low degree
mS A, respectively [21]. Their work indicated that they observed
modification of current signals and base calling error near m®A.
As a result, it has a research foundation for determining the
base position by comparing the differences in electrical signals.
Thus, we introduce related works in m% A modification detection
by following three parts. To begin, a novel sequencing tech-
nology, nanopore sequencing, is introduced. Following that, we
demonstrate one of the most frequently used statistical methods:
statistical hypothesis testing, which has evolved into one of the
primary algorithms for detecting RNA m5 A modifications using
nanopore technology [14]. Additionally, we demonstrate several
novel machine learning techniques that have been applied in this
field.

A. Nanopore Sequencing Technology

The detection and identification of RNA sequences in liv-
ing organisms is a challenging and significant research topic.
Nanopore single-molecule direct RNA sequencing (DRS) is a
promising and advanced technology for solving this problem.
The basic principle of DRS is as follows. When RNA sequences
pass sequentially through a nanopore which is a protein-electron
coupler, different sequences excite different current patterns.
The relationship between these patterns and corresponding
sequences have been studied in current researches. In recent
studies, observed current signals can be fed into machine learn-
ing models to obtain predicted RNA canonical base sequences
when do not consider RNA modifications [23]. However, in real
organisms and the canonical base, there are also some chemical
groups that are modified base, such as m°®A. When modified
bases are present in the sequence, DRS can clearly show the
difference between them and the canonical base.

B. Statistics Methods for Base Modification Detection

Several previous studies demonstrated statistical methods
for detecting base modifications using direct sequencing with
promising results [12]. Stoiber M H et al. [13] used the Mann—
Whitney U test to detect mPC on DNA/RNA, which is also
a modification, and m®A on DNA in all sequence contexts
without requiring unmodified samples in addition to de novo
detection. When m°C' occurs and when it does not, the elec-
trical signal characteristic distribution of m®C' is significantly
different, even more so than the distribution of m®A [24] Liu
et al. [14] used the Kolmogorov—Smirnov test to demonstrate
that NanoMod outperformed Tombo at detecting m°C in E. coli.

Statistics-based modification detection methods have several ad-
vantages, such as low computational resource consumption [25].
Nonetheless, Their flaws remain insurmountable. Completely
clean samples must be prepared (free of any base modification)
for ensuring detection precision. [3] must be performed using
the same sequencing experiments and data pre-processing steps
as the experimental sample. Without a doubt, statistical methods
significantly increase the difficulty and cost of the preliminary
sample preparation stage, particularly for some precious biologi-
cal samples. Additionally, statistical methods lack improvement
space; it is difficult to improve the performance of statistical
methods at the algorithm level.

C. Machine Learning Approaches in Modification
Detection

Researchers gradually shifted their focus with the develop-
ment of machine learning algorithms and their widespread ap-
plication in bioinformatics. They attempted to implement RNA
modification detection using machine learning techniques [26]—
[28]. Garalde et al. developed a tool called the Nanopolish that
uses the HMM (hidden Markov model) to identify m®C' on
DNA in the CpG context accurately. SignalAlign [?] also a
modification detection tool based on the HMM with the hier-
archical Dirichlet process. Rand et al. used the SignalAlign to
detect m®C and m® A sequences in E. coli DNA. The mCaller,
which doubles as a modification detector, detected m®A on
DNA using four machine learning classifiers (neural network,
random forest, logistic regression, and naive Bayes classifiers).
Mclntyre et al. [22] demonstrated that the most accurate pre-
dictor (84%) used the mCaller with the neural network. Prior
research has concentrated on DNA base modification, partic-
ularly m®C. Due to structural similarity and the difficulty of
obtaining accurate data sets, the mbA modification in RNA
has not been investigated previously. Huanle Liu ef al. recently
constructed a labelled dataset using in vitro transcription of
mOSA and classical adenosine, respectively. Additionally, the
SVM classifier they proposed produced acceptable results (90%
in accuracy). Moreover, novel machine algorithms in this area
should be investigated to improve the solution to this problem.

[ll. PROPOSED METHOD

The purpose of this work is to develop a practical model
for identifying m% A RNA modifications using nanopore single-
molecule direct RNA sequencing (DRS). We combine the ex-
tracted feature classification model (Bagging-LightGBM) and
the raw sequencing classification model (Bagging-LSTM) using
a weight bagging strategy implemented by the neural network.
The combined model, dubbed Mixed-Weight Neural Bagging
(MWNB), is used to assess m®A4 RNA modifications via DRS.
The following sections introduce the MWNB model, divided
into three sections: capturing various features from DRS, pre-
processing and selecting features, and the MWNB classifier
methodology.

The proposed method, which serves as a framework for m®A
modification recognition in RNA sequencing, requires that the
first step extract base features from RNA sequences. This step
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Overview of the framework shows the procedure of detecting m% A RNA modifications using RNA sequencing. The framework is divided

into three sections: gaining raw sequencing data and extracting features (Part A), classifying the data using Mixed-Weight Neural Bagging (Part B),
and obtaining the prediction results (Part C) (Part C). Critical features such as base current intensity, base quality, mismatches frequency, delete
frequency, and insert frequency are introduced in Part A. In Part B, the mixed-weight bagging network (MWBN) is proposed for detecting m% A RNA
modifications in five-base DRS sequences. Additionally, Part C details the procedure for obtaining prediction results.

introduces the features that are used and defines their meanings.
The following step is to identify appropriate base features,
thereby improving classification performance and minimizing
information loss. We demonstrate how we handle extracted
feature measurements and how we select essential features.
Following that, five distinct types of features are employed based
on their biological significance and experimental results. We
illustrate the Bagging-LightGBM classifier used to discover the
relationship between features and m®A modifications in the
third section. We introduce the Bagging-LSTM model in the
fourth section, which is used to classify m®A modifications
based on features extracted from direct sequencing. Finally, we
demonstrate how to fuse the Bagging-LightGBM algorithm with
the Bagging-LSTM algorithm to obtain fused results.

Additionally, in the classifier design, a sequence handled
model: LSTM is utilized in our DRS data. To optimize the result,
we use the grid search algorithm to optimize the parameters of
the LSTM to improve classification accuracy. Also, for extracted
features, LightGBM [29] is applied. We used the grid search
algorithm to optimize the parameters of the LightGBM. Then, to
improve model ability, we proposed a fusion model to integrate
multiple LightGBM [29] models and LSTM models by weight
bagging strategy to identify m%A modification. The weight
bagging strategy is implemented by a neural network to obtain
the voting results. Based on the above fusion model: MWNB,
not only is better performance obtained, but also the best per-
formance technology for current problems can be determined.
Finally, we use our model on the COVID-19 data set and display
the potential m5 A sites in SARS-CoV-2 RNA sequencing. Fig. 1
shows the complete work of the framework.

A. Feature Extraction

The downloaded compressed DRS data is decompressed
using the NCBI-recommended “FastQ-dump” software and

mapped to the complete synthetic sequences using the “Min-
imap2” software with the “-ax map-ont” pre-settings option.
“Samtools” software was used to sort and index the mapped
readings. We acquire the raw data of quality and current af-
ter the sorting operation. We next extracted each position’s
characteristics in reference using two independent Epinano
scripts (https://github.com/enovoa/EpiNano). The feature table
was constructed using a sliding window with a length of five
bases and a step of one base, as well as the feature of the next
location, which included base quality, base current, mismatches
frequency, insert frequency, and delete frequency. We exhibit the
features we derived from the RNA sequence and explain each
feature’s meaning in Table I.

B. Feature Pre-Processing and Selecting

After feature extraction, we get five related features: C, Q,
Mis, Ins, and Del. The selection of features has a significant
impact on classification accuracy and is a necessary step before
clustering or classification. According to earlier research [21],
the five characteristics of bases listed above are primarily asso-
ciated with whether or not m%A modification takes place. The
duration of sliding windows also has an impact on the accuracy
of forecasting m%A RNA modifications. We determined the
sliding window length of the base, which is five bases, based
on [21], and deleted some 5-base sequences that did not fit the
standards of base matching rules by referring to the [21].

Following the previous feature selection, we list all of the
features used in creating our model. First, we take the mean,
median, and standard deviation values of based quality and base
current intensity as feature values to represent the fundamental
information of base pieces. Furthermore, the frequency of mis-
matches, insert, and delete in each base from the base fragment is
considered expanded information. Table I lists all of the features
we ended up using in our model.
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TABLE |

WE RETRIEVE FEATURES FROM THE RNA SEQUENCE’S RAW DATA. C AND

Q INDICATE THE BASE CURRENT FEATURE AND BASE QUALITY FEATURE,
RESPECTIVELY, CONTAINING THE MEAN, MEDIAN, AND STANDARD
DEVIATION OF FIVE BASES (C=cl, ¢2, ¢3, ¢4, c5, AND ¢;=c — Meani,
¢ — Mediani, ¢ — Stdi, Q=q1, 92, 93, 94,95, AND ¢;=q — Mean;,

q — Median;, g — Std;). THE PROBABILITY OF MISMATCHES, INSERT, AND
DELETE ARE MIS, INS, AND DEL. (MIS=mis1, misa, miss, miss, miss,
INS =insy,insa,inss,insy,inss, DEL = dely, dels, dels, dely, dels)

Feature Abs Description
Per-base estimates
of current intensity emitted by
the sequencing machines.
Per-base estimates
of quality emitted by
the sequencing machines.
A base of the database
which is different from the

query base called “mismatch”.
1« — num of mismatch
Mis = total num of base
A base of the database is not be
mapped a base corresponding to
the query sequence called “insert”.
Ing = —um of insert
—_total num of base
A base of the query sequence
is not mapped a base of database
called “delete”.
_ _num of delete
Del = total num of base

Base current C

Base quality Q

Mismatches frequency | Mis

Insert frequency Ins

Delete frequency Del

C. Bagging-LightGBM Feature Classification

We use the light gradient boosting machine (LightGBM) as
the base classifier for predicting m® A RNA modifications utiliz-
ing attributes of base fragments. LightGBM [29] is a unique gra-
dient boosting decision tree (GBDT)-based approach. Through
iteration, GBDT builds weak decision tree classifiers, each of
which is trained based on the residual error of the previous round
of classifiers and continuously improves the accuracy of the
final classifier by lowering the deviation. Compared to GBDT,
LightGBM provides the advantages of faster training efficiency,
higher accuracy, and the ability to analyze massive amounts of
data.

For training dataset X = {(x;,y;|z; € R¥,y; € R,|X| =
n}, where = = {r1,22,...,2;,...,2,} is the input fea-
ture set, k is the dimension of input features and y =
{y1,Y2,- -, Yi, .-, Yn} is the corresponding label. The input
features of Bagging-LightGBM include mismatch frequency,
delete frequency, and insert frequency. The goal of LightGBM
algorithm in training base learner is to optimize a loss function
L. Considering F'(x) as an estimated function, the optimization
goal is given as:

G = argrminE, ,[L(y, €)] (1)

where € is the initial constant function value of the algorithm.
After training base classifier, the boosting process is used
to improve the model performance. From iteration M =
{1,2,...,4,...,m}, the pseudo residuals or gradient is g; =
{915,925, -, 9ij, -, gnj } in each iteration, and the modified
dataset called MX = {mX;,mXy,...,mX;,...,mXy} in

Algorithm 1: Bagging-LightGBM Classifier.
Require:
1: Given trainning dataset,
X = {(2i,yi|lzi € R*,y; € R,|X| =n}.
2: Base LightGBM classifier, ®.
3: The number of sub-sampling, K.
Ensure: Aggregation of /' sub-sampling
4:foreachi =1: K do
5: bootstrap sample in X to obtain modified training
dataset train x and validation dataset valx.

6: train the i*" expert (classifier ®) in trainy and
valx.
7: end for

8: The predictions P = {p1,pa,. .
expert models.
9: return P

., DKk } is obtained by K

each iteration. The formula of g;; and m X are:

_ OL(yi, Fj-1(zi))
aFj,1 (.’L‘l>

9ij = (2)

where Fj(x) = Fj_1(x) + € - hj(x), the € is updated iteratively
according to € = argemin Y " Ly, Fj_1(xi) + € - hy(x:)),
the h;(z) is the fitted decision tree model using modified dataset
mX; to train. The decision tree model is the base learner in
LightGBM algorithm.

We apply the bagging approach to bootstrap additional model
integration. Bagging, also known as bootstrap aggregation, is
a type of integrated learning model (Fig. 2), used with other
classification and regression methods to improve accuracy and
stability is its most major advantage. This method divides the
training set into different training subsets, trains the sub-models
with the training subsets, and ultimately integrates the sub-
models to obtain comprehensive prediction results. To examine
the hyperparameters in our job, we utilize the LightGBM model
listed below as the basic learner. The number of base learners, the
sample ratio when the base learner is trained, the feature ratio
during training, whether to extract samples and replace them,
and whether to extract features and replace them are among the
parameters. Algorithm 1 illustrates the bagging classifier.

D. Bagging-LSTM Raw Data Classification

The previous section introduces the Bagging-LightGBM
model, which uses extracted characteristics to categorize m®A
RNA modifications. The current intensity and quality are se-
quence data, according to DRS data. RNN models, such as
RNN, LSTM, and GRU, have exceptional sequence classifica-
tion performance. To categorize the feature obtained using direct
sequencing data, we propose the Bagging-LSTM models.

LSTM network is an elegant solution to capture the informa-
tion forward and backwards. This model can access complete,
sequential information about all context information after each
time step in a given sequence. This study proposes a dual LSTM
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model evaluation. The Bagging-LightGBM model produces numerous predictions about whether m® A emerge.
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Model architecture figure shows the architecture of the MWNB model. A. Figure shows the structure of a dual LSTM model for detecting

m® A RNA modifications. B. The architecture plot of the Bagging-LSTM model with cross validation. In the bagging model, the training set is chosen
at random and divided into many subsets used to train various dual LSTM models and make predictions. C. The attention neural model structure

for features classification.

model to classify the m® A modifications based on the extracted
features in current intensity and quality signals. The architecture
of the dual LSTM model can be seen in Fig. 3. In the dual LSTM,
at each time step ¢, hidden state is hc' for current intensity and is
hq! for quality. The input current intensity data is zc! at the time
step ¢, and the input quality data is xq®. The hidden state at the
previous time step t — 1 is he! =1 and hq'~! for current intensity
and quality. Also, in the LSTM cell for current intensity and
quality, the input gate is ic? and i¢® in time step ¢, the forget gate
is fct and fq', the output gate is oc’ and oq', and the memory
cellis cct and cq?, respectively. The updating equations are given
as follows:

ict =0 (W(ic) [het T 2] + b(ic))

fd=0o <W<f 9 [het ™t wct] + b(fc))
ot =¢ (W(OC) [he T adt] + b(OC))
cct = fet x ec™t + it x tanh (W(CC) [het T adt] + b(CC))
he' = oc' x tanh (cc') @)

where W0 ¢ pwxd  WW(fe) ¢ Roxd  Jyloc) ¢ pwxd,
W) ¢ R*4 are the weight matrices for different gates
in input current intensity zc’ and hidden state is hc!~! for time
step t — 1 and hc! for time step ¢. Here X is the element-wise
multiplication, o(-) and the tanh(-) and are the element-wise
activation function. The LSTM handling quality features are
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used the same structure as the current intensity LSTM. The
details are as follows:

i =0 (W(W) [hgt, 2q'] + b(iq))
fd=0o (W(fq) [hg' Y 2q"] + b(fQ))
o' =0 (W(OQ) ' 2q'] + b("‘I)>
cq' = fa' x cq' " +ig" x tanh (WD - [hg' ™ ag']+H )

hqt = og" x tanh (cqt) 4

Further, we use the same bagging strategy to generate the
predictions of Bagging-LSTM. The final prediction is L =
{l1,12,...,lpr }. M is the number of base learner (dual LSTM).

E. Mixed-Weight Neural Bagging (MWNB)

Bagging is an easy-to-use strategy that has a high rate of
success in reducing generalization errors. The model averaging
technique is used in the classic bagging approach to increase the
model’s accuracy and stability. We propose a neural network
to learn the weights of different weak learners’ output in order
to get a better fitting effect in this challenge. The procedure is
depicted in Fig. 3(c).

Two attention branches are included in ANM to supplement
the characteristics recovered by Bagging-LSTM and Bagging-
LightGBM, and to provide a prediction of the presence of m5 A
modifications. With reference to [30], component A of Fig. 3(c)
constructs the self augmentation part of the features, and
Fig. 3(c) constructs the self augmentation part of the features.
Part B of Fig. 3(c) illustrates the attention enhancement module
and learns the significant coefficients of the features through
the complete concatenation layer to better uncover the ultimate
relationship between the features and the classification results.

IV. EXPERIMENTS

The experimental results are listed in this section. We begin
by describing the dataset’s basic information before moving
on to the implementation details. Third, evaluation metrics and
model evaluation measurement are briefly explored. Following
that, we describe the impact of parameter selection on model
performance and introduce parameter adjustment and feature
selection in all models. We also show how models perform in
different classifiers with different settings. Finally, we apply
our best model to the recognition of m%A modifications in
COVID-19 data.

A. Dataset

We used two data sets in this study: one from Epinano [21],
and the other from Kim et al. [6] for the original SARS-CoV-2
data. African green monkey kidney cells (vero cells) infected
with the COVID-19 were used as the source sample. After
mRNA purification and extraction, they went through the same
sequencing technique and upstreamed the pretreatment process
as the training set. The signal value at a given time was defined
by around four bases (A, T, C, G), and all about 1024 bases

were organized and combined to generate a signal pattern in the
nanopore sequencing process. To cover as many scenarios as
feasible, Liu et al. [21] created a sequence master comprising
all signal patterns and employed synthetic substrates with and
without N6-methyladenosine in 2019. Two readings in our data
collection contained m%A and two reads that did not contain
mSA. We classified them into 19,806 positive samples and
19,964 negative samples based on previous research [21].

B. Implementation Details

In this identification task, we used two datasets to train,
validate and test the models. The two datasets are the Epinano
dataset [21] and the original data [6] of the SARS-CoV-2 pro-
vided by Kim et al. The Epinano dataset was used for training,
validating and testing the model, while the COVID-19 dataset
was used for validation only.

To improve the validity of the data, we performed feature
extraction and data preprocessing with reference to Section III
A and Section III B. Specifically, for each base, we extracted
three mapping features (mismatch frequency, insert frequency,
and delete frequency) and two extracted features (base current,
base quality) from the raw data by the mapping tool. The two
extracted features (current and quality) for the raw data extracted
the mean, median, and variance for each base, respectively.
The three mapping features (mismatch, insert, delete frequency)
were obtained from the mapping tool. In our 5-base sequences,
all feature inputs for each sequence include mismatch frequency,
insert frequency, delete frequency in 5 dimensions, and base
current and base quality in 15 dimensions. Thus, features of the
5-based fragment have 45 dimensions in total.

In model training, other state-of-the-art comparison experi-
mental models were trained using the feature extraction meth-
ods mentioned above. In the training of the MWNB model,
the features extracted from the original data were input to
Bagging-LSTM for feature extraction, and the mapped fea-
tures were input to Bagging-LightGBM for feature extraction.
The attention neural model used the final extracted bagging
features to discriminate whether m®A modifications occur.
All experiments were implemented on an Intel XeonE5-2630
v4 @ 2.20GHzz CPU and NVIDIA GeForce RTX 2080 Ti
ArchLinux. All models were implemented in Scikit-learn and
Pytorch.

In tuning the parameters, we used the leave-one-out 5-fold
cross-validation to develop and evaluate the model ability. First,
we randomly split the dataset into six folds, and each fold
contains an almost equal number of samples. The data in the
test set is one of the six-folds, and the training and validation
sets were the remaining five folds. In the training process, four
folds were used, and the fifth fold uses for testing. The process
was repeated five times, picking the different folds for testing
each time, and the other four folds were used in training. The
data in the test set was one of the six-folds, and the training and
validation sets were the remaining five-folds.

C. Evaluation Metrics

To assess the performance of models, we used 6 metrics:
Accuracy (acc), precision (pre), sensitivity (se), specificity (sp),
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AVERAGE CLASSIFICATION PERFORMANCE OF LEAVE-ONE-OUT 5-FOLD CROSS-VALIDATION OF ALL MACHINE LEARNING METHODS IN OUR mS A

TABLE Il

MODIFICATION TASK. THE PERFORMANCE OF MODELS IS SHOWN IN TESTING DATASET AND 5-FOLD CROSS VALIDATION DATASET

Model [ acc (%) pre (%) sp (%) [ se (%) [ Fl-score (%) [ G mean; (%) | G meana(%) | AUC
Testing dataset
MWNB (Ours) 97.85 98.37 97.20 98.41 98.39 98.39 97.80 0.997
SVM (linear) 79.63 82.69 75.24 84.07 83.37 83.38 79.53 0.871
DT [31] 81.64 82.52 79.93 83.32 82.92 82.92 81.61 0.816
RF [32] 91.15 93.95 87.82 94.43 94.19 94.19 91.07 0.970
ET [33] 94.44 96.65 91.99 96.86 96.75 96.75 94.39 0.989
RNN 87.33 94.47 95.44 79.1 86.10 86.44 86.89 0.950
GRU 89.34 90.22 90.59 88.07 89.13 89.14 89.32 0.951
LSTM 91.79 95.61 87.48 96.04 95.82 95.82 91.66 0.977
[21] 90 - - - - - - 0.944
[32] 78.58 - 79.65 - - - - -
Leave-one-out 5-fold cross validation dataset
MWNB (Ours) | 97.89 £0.15 | 98.23 £0.18 | 98.25+0.18 | 97.52+0.30 | 97.87 £0.17 | 97.87 £0.17 | 97.88 £ 0.15 | 0.997 £ 0.0004
SVM (linear) 79.08+£0.32 80.77+0.34 80.95+0.28 77.21£0.42 78.95+0.37 78.97+0.37 79.06+0.34 0.83740.0012
DT [31] 81.27+0.34 82.2240.21 83.29+0.17 80.23+0.60 81.21+0.38 81.224+0.38 81.26+0.35 0.8444-0.0009
RF [32] 91.88+0.17 94.3440.28 94.684+0.29 89.06+£0.27 91.6240.19 91.6610.19 91.831+0.17 0.9764-0.0009
ET [33] 94.35+0.08 96.37+0.18 96.55+0.20 92.13£0.25 94.21£0.12 94.2340.12 94.3240.09 0.98440.0007
RNN 87.63+0.22 90.04+0.25 90.344-0.22 84.91+0.39 87.40+0.28 87.4440.28 87.58+0.24 0.93140.0010
GRU 89.16+0.10 91.16+0.13 91.3540.16 86.96+0.26 89.01+0.14 89.04+0.14 89.1340.11 0.9364-0.0008
LSTM 90.08+£0.29 91.57+0.35 91.70£0.32 88.44+0.37 89.98+0.33 89.99+0.33 90.06+0.30 0.94040.0011
TABLE Il

Fl-score, G mean;, and G means. The accuracy is Accuracy =

%, and precision is Precision = (TPT+7PFP) Sensitivity
and specificity are Sensitivity = (T:—;-iPFN) and Speci ficity =
Tn

Tty relatively. In above equations, T'p represents that the
prediction results of the model are a positive examples (P) and
the ground truth are right examples (T), T’y stands for that the
prediction results of the model are negative examples (N) and
the judgment results are right examples (T), F'p represents that
the prediction results of the model are positive examples (P)
and the judgment results are wrong examples (F), Fy is that the
prediction results of the model are negative examples (N) and the
judgment results are wrong examples (F). Moreover, F'lscore,
Gmeany, and Gmeansy are also calculated in evaluation of
models:

Precision x Sensitivity

F1 =2x 6

seore (Precision + Sensitivity) ©
Gmean, = +/Sensitivity x Precision @)
Gmeans = \/Sensitivity X Speci ficity (8

Furthermore, a basic evaluation metric for assessing classifi-
cation performance is the receiver operator characteristic curve
(ROC).The area under ROC (AUC) also can show the model
performance. The calculation formula of AUC is as follows:

Mx(M+1)
ZinsiEpositiveclass ranki’ﬂsi - P

M x N

where rank;, s, represents the number of the i-th sample. (Prob-
ability scores are ranked from small to large, ranked in the rank
position), M is the number of positive samples, and N is the
number of negative samples.

AUC = €))

D. Comparison Results of MWNB With Other Models

The features extracted and mapping from raw sequencing data
were used as input features in our MWNB model. The m® A RNA
modification categorization findings were obtained using two
models (Bagging-LightGBM for extracted features from raw
sequencing and Bagging-LSTM for mapping features). Because

AVERAGE CLASSIFICATION PERFORMANCE OF LEAVE-ONE-OUT 5-FOLD
CROSS-VALIDATION OF LIGHTGBM [29], BAGGING-DT [34],
BAGGING-LIGHTGBM, AND OUR MWNB MODELS. THE RESULTS SHOW
MODELS’ PERFORMANCE IN TESTING DATASET

Model acc (%) | pre (%) | sp (%) | se (%)
LightGBM [29] 94.25 97.56 97.77 90.67
Bagging-DT [34] 9338 | 9539 | 91.06 | 95.67

Bagging-LighGBM | 96.02 | 97.68 | 97.80 | 94.21
MWNB (Ours) 97.85 98.37 97.20 98.41

of the peculiarities of our MWNB model, we first compared it
against classic machine learning models. Traditional machine
learning models did not choose a more appropriate feature ex-
traction approach for the difference of features, which is the most
significant distinction between our MWNB model and them.
We also compared our MWNB model to a strategy based on
ensemble learning to make more comprehensive comparisons.
Additionally, we compared deep learning-based methods with
our MWNB model..

Firstly, we compared our MWBN to classic machine-learning
models. The evaluation metrics for all the best models produced
through parameter tuning (Section IV.D) are shown in Table II.
The model’s results mentioned above training and exploration of
the optimal model indicate that: simple machine learning models
such as DT have the advantage of being fast to train and easily
interpretable; however, the classification accuracy obtained is
insufficient; the SVM model’s training time is lengthy. While the
model is sophisticated, the precision gained in this study is also
insufficient. For the two models discussed above, the model clas-
sification accuracy attained on this task was approximately 80%.
We employed two ensemble learning models: RF and ET, which
performed well on this challenge. These approaches achieved
accuracies of approximately 91% to 94%. We estimated the AUC
of each best model and provided their ROC graphs in Fig. 4. As
illustrated in Fig. 4, all ensemble learning methods (RF, ET)
achieved an AUC value greater than 0.95.

In addition to comparing our MWNB model to regularly
used classical machine learning methods, we compared it to
the unique ensemble learning model. The table below compares
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Fig. 4. Best-performing models’ ROC chart. The ROC figure of SVM [21] with different kernel types, such as linear, poly, RBF, and Sigmoid, is

shown on the left. The ROC chart of decision tree (DT) [31], random forest (RF) [32], and extremely random trees (ET) [33] is shown in the middle
figure, and the ROC plot of RNN, LSTM, and GRU models is shown in the right figure.
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Fig. 5.  AUC figure shows the performance of LightGBM, Bagging-DT,
Bagging-LightGBM, and our MWNB.

our proposed MWNB model to its base learner LightGBM,
Bagging-DT, and Bagging-LightGBM models. The AUC of
these models is depicted in Fig. 5. The best AUC for these models
is 0.9968, which our MWNB model achieves.

Additionally, we compared the performance of our MWNB
models to that of deep learning models that were employed in all
features. In comparison, we used LSTM, GRU, and RNN with
our MWNB. Additionally, these models outperformed DT and
SVM in terms of performance. The RNN and upgraded RNN
(GRU and LSTM) models also had AUC values greater than
0.95. LSTM, GRU, and RNN performance details are provided
in Fig. 4 and Table II. Moreover, we integrated these models us-
ing the bagging technique. The performance of Bagging-LSTM,
Bagging-GRU, and Bagging-RNN is illustrated in Table IV and
Fig. 6. The best AUC value for these models was 0.9887, which
Bagging-LSTM obtained.

As shown in Table III, the MWNB approach produces the
best outcomes. The LightGBM model has been adjusted and
enhanced in numerous ways to enhance the gradient boosting
decision tree (GBDT). It offers the advantages of being efficient
in training, having outstanding accuracy, and processing enor-
mous amounts of data. We enhanced the model’s generalisation

TABLE IV
AVERAGE CLASSIFICATION PERFORMANCE OF LEAVE-ONE-OUT 5-FOLD
CROSS-VALIDATION OF BAGGING-LSTM, BAGGING-RNN, AND
BAGGING-GRU. THE RESULTS SHOW MODELS’ PERFORMANCE IN TESTING

DATASET
Model acc (%) | pre (%) | sp (%) | se (%)
Bagging LSTM | 9477 | 96.63 | 92.70 | 96.81
BaggingRNN | 9258 | 9575 | 89.00 | 96.11
Bagging-GRU | 93.86 | 94.62 | 9292 | 94.80

ROC of Modification Prediction based on Bagging-LSTM,
Bagging-RNN, & Bagging-GRU
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Fig. 6. AUC figure shows the performance of Bagging-LSTM,
Bagging-GRU, and Bagging-RNN.

and accuracy by fusing several LightGBM models using the
bagging approach. Additionally, the LSTM excels in extracting
sequence relationships, and we used the Bagging-LSTM model
to extract critical information from extracted features in raw
sequencing data. Finally, we merged the Bagging-LSTM and
Bagging-LightGBM models using the attention neural network.
In our assignment, our MWNB model performs optimally. Our
MWNB model obtained the best performance in our task. The
MWNB’s accuracy was 97.85%, precision was 98.37%, sen-
sitivity was 97.20%, and specificity was 98.41%. The AUC
value, which is the highest, was 0.997 obtained by the MWNB
method.
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Fig. 7.

Accuracy for different paramters in the Bagging-LightGBM model of testing dataset. The orange bar shows the result that the number of

base learner is 50, and the blue bar illustrate accuracy which the number of base learner is 100 obtain in different sample ratio and various feature

ratio.

E. Parameter Tunning

The initial step of the parameter tuning experiment is to
determine the proper parameter values for Bagging-LightGBM.
To begin, we required a parameter option for the base Light-
GBM learner. LightGBM has a plethora of parameters that must
be selected. The following diagram illustrates the procedures
involved in selecting appropriate parameters:

1) We began by setting the starting parameters. The grid
search method determines the learning rate and the num-
ber of iterations. The learning rate is between 0.01 and
0.5, and the number of iterations is between 100 and 2000;

2) Then, we investigated the optimal number of leaves be-
tween 100 and 500;

3) Finally, the parameters for regularization AL, and AL,
are established. The range of lambdal; and AL is
approximately le-5 to 1.0.

The best model achieves an accuracy of 96.55% when the
LightGBM parameters are selected. The best model has a learn-
ing rate of 0.1, a total of 1400 iterations, 350 leaves, a AL
of le-3, and a ALs of le-3. Fig. 7 illustrates the accuracy,
precision, sensitivity, and specificity of LightGBM over a range
of iterations and leaf counts.

Second, we employed the same method (grid search) to in-
vestigate other bagging parameters. Five parameters must be
determined throughout the bagging process. The following dia-
gram illustrates the procedures involved in selecting appropriate
parameters:

1) The total number of basic learners to be integrated is pre-
determined. The examined range of base learner numbers
is 50 to 200;

2) The sample extraction ratio and feature extraction ratio
are next investigated. Both are between 0.5 and 1.0;

3) Finally, we determined the sampling procedure for the
sample subset and the feature subset.

The best model achieved an accuracy of 96.02% when the
Bagging-LightGBM parameters were chosen. The best bagging
model’s base learner is LightGBM. We chose 100 base learners
for parameter selection, a sample extraction ratio of 1.0, and a
feature extraction ratio of 0.6. Additionally, we employed non-
replacement sampling to create sample subsets and replacement
sampling to create feature subsets. Fig. 7 displays the accuracy
of LightGBM over a range of iterations and leaf counts.

We also employed the grid search technique to identify the
parameters of Bagging-LSTM in the second round of parameter
tuning. First, we experimented with varying the number of
concealed cells N: from 10 to 200. Additionally, we experi-
mented with various batch sizes (4 to 64) and learning rates
(le-5 to le-1). The optimal LSTM parameters are as follows:
N=50, batch size=16, learning rate=0.001. We used the same
method in bagging as we did in Bagging-LightGBM. The most
accurate Bagging-LSTM model achieved a precision of 94.77%.
We chose a base learner count of 20, a sample extraction ratio
of 0.8, and a feature extraction ratio of 0.5 for parameter se-
lection. Moreover, we employed non-replacement sampling to
create sample subsets and replacement sampling to create fea-
ture subsets. Furthermore, we investigated the attention neural
network’s parameters using the best Bagging-LightGBM and
Bagging-LSTM. We experimented with various batch sizes (4
to 64) and learning rates (0.00001 to 0.1). The following hyper-
parameters define the optimal model: batch size = 16, learning
rate = 0.001.

Fig. 8 A illustrates the average classification performance of
5-fold cross-validation for DTs with varying maximum depths.
The experimental findings demonstrate that when the decision
tree’s maximum depth is 200, the ideal classification accuracy
rate of 81.64% and precision rate of 82.52% are reached. Fig. 8
B displays the average classification performance for various
maximal feature counts and subtree counts. When a maximum
of ten features are utilized and a maximum of 500 subtrees are
employed, the ideal accuracy is obtained: 91.15 % of the average
classification accuracy rate and 93.95 % of the average classi-
fication precision rate. Fig. 8 C plots the average classification
performance of 5-fold cross-validation with varying maximum
feature counts and subtree counts for ET. On ET, the highest
accuracy is obtained when the maximum number of features is
15 and the number of subtrees is 1000: 94.44% average classi-
fication accuracy rate, 96.65% average classification precision
rate.

In the following settings, we obtained the best accuracy of
the bagging method in 93.38% and the best precision rate in
95.39%. The number of base learners (DT) is 500, the proportion
of samples used for each training of the base learner is 80%, and
the proportion of features used for each training of the base
learner is 50%.
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Schematic diagram of the SARS-CoV-2 Genome. At the top of the picture is the genome’s axis (1-29903) of SARS-CoV-2. The bars in the

middle represent the different genes of the genome anchored in the corresponding regions. The lower part of the image is the predicted density
map of m® A sites. The higher part(like “peak”) means that the m® A predicted sites are densely distributed.

F. Bagging-LightGBM Model Used in COVID-19

To assess our model’s performance with respect to m% A
modifications inside certain sequence motifs (RRACH). We per-
formed mS A prediction on SARS-CoV-2 RNA data, identified
several locations with high confidence, and then examined their
possible biological importance, which will aid future research
on COVID-19 focused medication development and infection
process. Further research will be required to enable single-read
detection of RNA modifications and extend our findings to other
RNA alterations.

We studied SARS-CoV-2 DRS data from Korea using the
same upstream procedure as previously described. Thus, we
used the Korean vero-infected (host and SARS-CoV-2) dataset
to demonstrate our female’s ability to detect m® A alteration.
65.4% (Fig. 9) of readings were mapped to SARS-CoV-2,
indicating that Kim’s sample is dependable and reproducible.
We observed a modification score draft with noise that was
distributed uniformly across the genome. We selected a prob-
ability threshold of m% A to minimise false positives to verify
the results’ accuracy. The other major peaks suggested the
presence of a significant amount of m% A. The majority of
the high probability loci were discovered in the ORF1b region
of the genome. ORF1b encodes a nonstructural protein (NCP)
required for viral transcription, replication, and inhibition of
host immune response and gene expression. Antiviral therapy
aims to inhibit RNA-dependent RNA polymerase [35]. Our
findings imply that the nonstructural protein mRNA of NCV is
highly methylated. It could be connected to RNA stability and
amino acid sequence mutations. The inclusion of a synthetic
inhibitor of m® A reduces the influenza virus’ replication [36].
The model results help our understanding of the SARS-life
CoV-2’s activities at a deeper level, which aids in developing
targeted antiviral medications.

V. DISCUSSION

This work presented a machine learning-based method to
recognize RNA m® A modifications in DRS. Features derived
from the raw signals and their mapping information were utilized
as the model input. Several classifiers were utilized: SVM, RF,
ensemble learning (RF, ET, and Bagging) and our MWNB to
classify the m% A and normal base based on different features
of the positions while mapping the reads to reference sequence.
Based on the machine learning techniques and the extracted
features, an integrated framework was developed to detect m5 A
modification based on features produced by sequencing patterns.
We proposed the MWNB model to classify m6A RNA modifi-
cations by targeted feature extraction (Bagging-LightGBM for
mapping features and Bagging-LSTM for extracted features of
current and quality) according to signal difference of sequencing
data. The model is not only applicable to the detection of
m® A modifications in RNA sequencing, but from the modelling
perspective, our model can be directly used in the detection of
other modifications with only simple migration.

Although our model has achieved good detection results,
some erroneous predictions still exist due to the data and model’s
limitations. First, our dataset was synthesized artificially using
in vitro transcription techniques, while the actual predictions
used for the model are naturally occurring in the organism.
Although the chemical structures of the two are identical in
terms of currently available theories, there may be potential
systematic differences. Moreover, the current sampling rate for
nanopore sequencing is not high enough, with the number of
samples obtained per base ranging between 8-9 discrete current
observations [37]. Such low-dimensional data are challenging
to distinguish between the occurring and non-occurring m® A
modifications. Also, compared to the multi-electrode, nanopore
sequencing has only one channel [38], and the number of features
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in the data itself is too low. We hope that in the near future
Oxford Nanopore U.K. will provide the resolution and sampling
accuracy of the device to provide higher dimensional feature
information for improving the performance of the model.

In our future work, we will further improve our modification
detection framework in two ways. First, from the data side,
we will use RNA/DNA sequencing data and corresponding
modification labels in real scenarios to validate our model’s
performance further. In addition, from the footing of model
improvement, we will consider end-to-end learning to simplify
the complexity of model training and achieve better feature
extraction by some feature extraction and enhancement means,
including attention mechanism.

VI. CONCLUSION

This article proposes a Bagging-LightGBM model for m® A
modification detection. In the proposed Bagging-LightGBM,
we combine speed-up LightGBM models and Bagging strategy
to form a fusion model. The Bagging-LightGBM model is
trained and tested on artificially synthesized sequences, which
obtains the best performance of 97.85% of accuracy. We used
state-of-art machine-learning models such as SVM, DT, RF, ET,
and Bagging in our dataset to compare our model ability. To
ensure models’ performance, we use the same grid search al-
gorithm and 5-fold cross-validation on other state-of-art models
and our Bagging-LightGBM. Our Bagging-LightGBM model
outperforms other methods. More importantly, we applied the
optimal m% A modification detection model (MWNB) to the
SARS-COV-2 sequencing data to obtain the possible m® A
modification site information. The prediction results will help
us to find the possible location of gene mutation.
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