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Abstract

Video synopsis is a technique that condenses a long surveillance video to a short summary. It faces challenges to process
objects originally occluding each other in the source video. Previous approaches either treat occlusion objects as a single
object, which however reduce compression ratio; or have to separate occlusion objects individually, but destroy interactions
between them and yield visual artifacts. This paper presents a novel data structure called Flexible Object Graph (FOG) to
handle original occlusions. Our FOG-based video synopsis approach can manipulate each object flexibly while preserving
the original occlusions between them, achieving high synopsis ratio while maintaining interactions of objects. A challenging
issue that comes with the introduction of FOG is that FOG may contain circulations that yield conflicts. We solve this
problem by proposing a circulation conflict resolving algorithm. Furthermore, video synopsis methods usually minimize a
multi-objective energy function. Previous approaches optimize the multiple objectives simultaneously which needs to strike
a balance between them. Instead, we propose a stepwise optimization strategy consuming less running time while producing
higher quality. Experiments demonstrate the effectiveness of our method.

Keywords Video synopsis - Occlusion objects - Graph structure - MCMC

1 Introduction

For surveillance videos, akind of very effective approaches
is called “video synopsis”

Nowadays, surveillance videos are widely captured for secu-
rity concerns. Since most of them are lengthy and redundant,
the technique of condensing a surveillance video into a
short summary is of great importance to the fast brows-
ing, lightweight storage, and efficient transferring of the vast
amount of surveillance videos.
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(Rav-Acha et al., 2006; Pritch et al., 2007, 2008, 2009),
which extract object tubes and shift tubes forward along the
time axis to condense objects into a shorter video space. By
“video synopsis”, objects that originally appear in different
frames are shown in the same frame, leveraging the empty
space in the video background and squeezing out redundancy
between objects. However, the input videos usually contain
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occlusions (see the right inset) between objects posing sig-
nificant challenges to video synopsis methods.

In practice, “occlusion” is a common phenomenon in
surveillance videos due to the perspective projection camera
model. Figure 1 illustrates two object tubes with one occlu-
sion point (x — ¢ 2D view). Previous approaches (Pritch et
al., 2008; Nie et al., 2012; Li et al., 2009, 2015; Nie et al.,
2019) typically group occlusion objects together and view
them as a single tube (Fig. 1a). All the objects are shifted
as a whole and scaled uniformly. Therefore, the occlusion
relationships between them are well preserved, but the flexi-
bility to manipulate each object individually is lost, yielding
less compact synopsis videos. On the contrary, if a method
pursues a high compression ratio, it shall be able to freely
manipulate objects, just like the case in Fig. 1b. This, how-
ever, may yield occlusion mismatch artifacts as illustrated in
Fig. 1b and by real examples in Fig. 2.

The above analysis shows that there is a contradic-
tion between improving compression ratio and maintaining
occlusion relationships. In this paper, we attempt to tackle
this dilemma, proposing a video synopsis method support-
ing manipulation of every object as flexible as possible while
preserving occlusion interactions between them.

Our idea is illustrated in Fig. 1c. We divide object tubes
into segments according to occlusions between objects.
Based on the segments, we build an occlusion graph where
each segment is a node of the graph, and occlusion points
indicate edges between nodes. To manipulate the graph, we
first specify a root node for the graph, which is usually the
temporally frontmost segment. We assign a global shifting
variable to the root node, and assign each segment with a
length-scaling variable. When the scaling value is less than
1.0 (e.g. 0.5), the segment will be shortened (halved). On the
contrary, if the scaling value is greater than 1.0 (such as 2.0),
the segment will be lengthened (by a factor of 2). We apply
a depth-first traversal algorithm to the occlusion graph to
update position of the graph. Firstly, the root node is shifted
according to the global shifting variable. Then, from the root
node, we adjust length of all the segments according to their
scaling variables one after another.

The above way of object manipulation has two promising
properties. (1) Flexibility: thanks to the local scaling adjust-
ment, segments can be flexibly manipulated. (2) Occlusion-
Preserving: since the segments are updated one after another
by the depth-first traversal algorithm, the occlusion relation-
ships between objects are preserved.

The occlusion graph works well when it does not contain
any circulation, such as the example in Fig. 1. However, when
there is a circulation, the depth-first traversal algorithm will
encounter the problem of circulation conflict. For example,
Fig. 3a shows three objects with three occlusion points. We
divide the objects into segments in Fig. 3b where the arrows
show the traversal path of the depth-first traversal algorithm.
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The red arrow indicates a place where a circulation conflict
may occur. In Fig. 3c, we show a configuration of scaling
variables that indeed yields a conflict. As can be seen, the
bottom-left occlusion point is mismatched. In this paper, we
propose a circulation conflict resolving algorithm to solve
this problem. The idea is illustrated in Fig. 3d and e. The
core step is to add as few pseudo occlusions as possible into
the graph (Fig. 3d). With the pseudo occlusions, the depth-
first traversal algorithm will generate the traversal path in
Fig. 3e instead of b. Please pay attention to the green and
blue arrows. They will be enforced to have identical scal-
ing variables. In this way, we can synchronize the segments
indicated by the green/blue arrows in this example to obtain
the result in Fig. 3f without circulation conflict. We call the
occlusion graph enhanced by the circulation conflict resolv-
ing algorithm as Flexible Object Graph (FOG). Note that
Fig. 3e—f just show a simple example to illustrate the basic
idea. In the main text, we will describe the circulation con-
flict resolving algorithm in detail, which can handle more
complex situations.

With the well-defined FOGs, our synopsis method opti-
mizes global temporal positions of FOGs and local scaling
variables of segments to obtain a synopsis video. The opti-
mization is usually guided by three objectives (Pritch et al.,
2008; Nie et al., 2019): maximizing activities condensed into
the synopsis, keeping chronological order of objects, and
minimizing false collisions. Existing approaches (Pritch et
al., 2008; Nieetal., 2012, 2019; Ghatak et al., 2020; Moussa
& Shoitan, 2021) usually optimize the multiple objectives
simultaneously. Differently, we propose a stepwise optimiza-
tion strategy based on the MCMC sampling algorithm (Nie
et al., 2019). While optimizing the current objective, our
method always maintains the goals achieved in previous
steps by rejecting MCMC samplings that destroy previously
accomplished goals. In this way, we do not need to bal-
ance between multiple objectives. Instead, we optimize each
objective as much as possible at each step, obtaining better
results in less time.

In summary, our contributions include:

e We propose a new data structure, i.e., FOG, for surveil-
lance video synopsis, with a circulation conflict resolv-
ing mechanism. Our FOG-based synopsis method can
manipulate segments of objects as flexible as possible
(thus obtaining higher compression ratio) while pre-
serving occlusion relationships between them (avoiding
visual artifacts).

e We propose a stepwise optimization strategy that can gen-
erate better synopsis results using less time without the
need of striking a balance between multiple optimization
objectives.
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Fig. 1 An illustration of two object tubes with one occlusion point in
x — t 2D view. a Most of previous approaches treat multiple occlu-
sion objects as a single object which are shifted as a whole and scaled
uniformly. The occlusion points are preserved, but the manipulation
flexibility is minimized. b If shifting and scaling every object indi-

We divide occlusion tubes into segments, and build an occlusion graph
based on the segments. We adopt a depth-first traversal algorithm to
adjust the length of segments to increase the flexibility of manipula-
tion. The algorithm naturally protects occlusions. Besides, we support
shifting the graph as a whole by applying the shifting offset to the root

vidually, the manipulation flexibility is maximized to obtain higher segment
compression ratio, but the occlusion relationships may be corrupted. ¢
Occlusion 2 Artifact 2 | Artifact 3

y
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x
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Fig. 2 Left shows an input video with three object tubes occluding at two positions. Right shows the synopsis video with occlusion-destroyed

artifacts

e Extensive experiments demonstrate that our method
generates high-compression-ratio synopsis results with
fewer visual artifacts.

2 Related work

Different ways have been developed for generating video
summaries, such as video summarization (Ma & Zhang,
2002; Hoferlin et al., 2011; Lee & Grauman, 2015; Kumar et
al., 2018; Zhao et al., 2018; Rochan & Waang, 2019; Zhong
etal., 2022; Nimmagadda et al., 2023; Negi et al., 2023; Hsu

et al., 2023) that extract key frames/shots from input videos,
and video montage (Kang et al., 2006; Li et al., 2009; Sun et
al., 2014) that stitch spatiotemporal video portions together
by seam carving. In this paper, we focus on video synopsis:
a technique that is very effective for condensing surveillance
videos.

The work of Rav-Acha et al. (2006); Pritch et al. (2007,
2008) presented the first series of video synopsis approaches.
They first extract tubes from a surveillance video, then
attempt to condense all the extracted tubes into a synopsis
video of much shorter length than the input video, by opti-
mizing the temporal positions of the tubes. The optimization
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Problem When There is a Circulation
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Fig.3 a Anillustration of three object tubes with three occlusion points,
where there is a circulation in the occlusion graph. b The depth-first
traversal path where the red arrow indicates the place where a circula-
tion conflict may occur. ¢ The numbers on segments are scaling variables
with which the circulation conflict problem does occur. d To solve the

maximizes the number of tubes condensed into the synopsis
video, preserves the temporal order of tubes, and prevents
false collisions between the tubes. During the past ten more
years, lots of attention has been paid to improve these pio-
neering works from the following aspects.

Object Tube Extraction. Some attention has been paid
to the extraction of object tubes. In Pritch et al. (2008); Nie
et al. (2012, 2019), objects are extracted by subtracting a
background image from video frames. In Lu et al. (2013),
foreground objects and their shadows are modeled by a Gaus-
sian mixture model and a texture method, and then tracked
through a particle filter. In Huang et al. (2012), objects are
tracked using a contrast context histogram-based appearance
model and a velocity-based motion model. In their later work
Huang et al. (2014), all the appearance and motion models
of moving objects are integrated into a MAP formulation
for better tracking accuracy. In Zhong et al. (2014); Liao
et al. (2017), a 3D graph-cuts algorithm is used for fast
object tube extraction in the compression domain of video.
Recently, more sophisticated object detection and tracking
approaches have been developed, such as KCF (Henriques et
al., 2014), STRUCT (Hare et al., 2015), and deep learning-
based approaches (Wojke et al., 2017; Wang et al., 2020).
Namitha et al. (2022) adopted Yolov3 (Redmon & Farhadi,
2018) for object detection and then Deep-SORT (Wojke et al.,
2017) for object tracking across video frames. In this paper,
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circulation conflict problem, we add a pseudo occlusion point to the bot-
tom tube. e We synchronize the segments specified by the green (blue)
arrows and update them simultaneously using the depth-first traversal
algorithm. f The conflict artifact is avoided (Color figure online)

we use the deep-learning tracker of Wang et al. (2020) for
tube extraction, obtaining tracked bounding boxes of objects.

Preventing False Collisions. Many approaches aim at
reducing false collisions between rearranged object tubes
(Pritch et al., 2008; Xu et al., 2008; Nie et al., 2012; Li et al.,
2015; Nie et al., 2019; He et al., 2017; Ruan et al., 2019).
The work of Pritch et al. (2008) rearranged objects in the
temporal domain. Nie et al. (2012) and Zhang et al. (2023)
extended the synopsis space into the x and y spatial space.
Li et al. (2015) scaled down the size of objects. Nie et al.
(2019) changed both speed and size of objects. All the above
methods optimize an energy function containing a term mea-
suring the amount of false collisions. Minimizing the energy
function thus reduces the false collisions. Instead of perform-
ing an optimization, works of He et al. (2016, 2017); Ruan
et al. (2019); Pappalardo et al. (2019) pre-computed poten-
tial collisions between objects, and build a potential collision
graph based on which the video synopsis task is formulated
as a graph coloring problem. In this paper, we mainly follow
the method of Nie et al. (2019). Our method is different in
that the method of Nie et al. (2019) treats occlusion objects
as a single tube, and all the objects in the tube are strictly
synchronized. In contrast, we synchronize as few as possible
segments, while the remaining segments can be manipulated
flexibly.

Preserving Object Interactions. Since one of our goals is
to maintain occlusions, our method is related to recent synop-
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sis works on preserving object interactions (Li et al., 2018;
Yang et al., 2021; Narayanan, 2020; Namitha et al., 2022;
Zhang & Zheng, 2023). These approaches adopt sophisti-
cated ways to identify object interactions. For example, Yang
et al. (2021) considered depth of objects and scene complex-
ity, Tian et al. (2021) exploited the use of face orientations,
Namitha et al. (2022) synthesized bird-eye view, etc. In this
paper, we aim at preserving “occlusions” between objects,
similar to Ruan et al. (2019); Feng et al. (2012); Zhu et al.
(2014); Ahmed et al. (2017). With modern object tracking
approaches, occlusions are simple and robust to detect. Since
occlusions are very common in videos, maintaining original
occlusions is of great importance to the understandability of
the synopsis results. After interaction detection, the above
approaches group objects to preserve interactions, not sup-
porting manipulation of each of the objects separately. Our
method supports flexible operations on individual objects.

Multi-Objective Optimization. Similar to Pritch et al.
(2008); Nie et al. (2012, 2019), our method needs to solve
an energy function composed of three energy terms. Different
algorithms have been used to minimize the energy function.
For example in Pritch et al. (2009); Rodriguez (2010), the
simulated annealing algorithm is adopted. In Ghatak et al.
(2020), a hybrid algorithm using simulated annealing and
teaching learning optimization is proposed. In Moussa and
Shoitan (2021), the particle swarm optimization method is
used. Nie et al. (2019) used the MCMC algorithm to sample
solutions. All the above methods minimize the multiple-
objective energy function as a whole. Differently, we achieve
the multiple objectives step by step. At each step, our method
focuses on optimizing the current objective, while maintain-
ing the previously optimized objectives.

There are also work studying online video synopsis (Feng
et al., 2012; Zhu et al., 2014; Ra & Kim, 2018; Fu et al.,
2014; Thirumalaiah & Immanuel Alex Pandian, 2023), gen-
erating synopsis videos according to user queries (Pritch et
al., 2009; Ahmed et al., 2019; Lin et al., 2015; Namitha et
al., 2022; Shoitan et al., 2023; Priyadharshini & Mahapa-
tra, 2023b), and multi-view video synopsis (Zhu et al., 2015;
Hoshen & Peleg, 2015; Mahapatra et al., 2016; Zhang et
al., 2019; Priyadharshini & Mahapatra, 2023a; Ingle & Kim,
2023; Priyadharshini & Mahapatra, 2023b), etc. Please refer
to the survey (Baskurt & Samet, 2019; Ingle & Kim, 2023)
for detailed review.

3 Methodology

Figure 4 illustrates the basic idea of this paper. In (a), we illus-
trate the 3D view of an example with 6 tubes interacting in 6
occlusion points. For convenience, we transform the 3D view
to the 2D view in (b) where a row of horizontal rectangles
represent an object tube. The tubes are naturally divided into

segments by occlusion intervals. The pair of segments with
the same color and connected by a black bidirectional arrow
indicates an occlusion between two tubes. Note that the graph
in (b) is not naturally a FOG. When there are circulations in
(b), we propose a circulation conflict resolving algorithm to
enhance (b) to the FOG in (c) by further dividing segments
and adding pseudo occlusion relationships (indicated by the
gray bidirectional arrows). With the FOG, we can manipulate
the segments flexibly while preserving the occlusion relation-
ships. Please see (d) to (g) for several examples. Figure 4 (h)
illustrates the synopsis result (3D view) corresponding to the
FOG in (g).
In the following, we introduce our method step by step.

3.1 Extracting Tubes, Identifying Occlusions, and
Building Occlusion Graph

Object Tube Extraction. As buildingblocks, object tubes
are extracted from videos at first. We adopt the deep-learning
approach of Wang et al. (2020) to detect and track objects.
An object tube is a sequence of bounding boxes enclosing
the object. The method of Wang et al. (2020) can help extract
most of the tubes, but sometimes produces wrong detection
and tracks. For example, a tube may disappear abruptly (lost
tracking) at somewhere of the scene. We remove such tubes.
Some tubes may first disappear and then reappear with the
same ID. We adopt linear interpolation to fill in the missing
bounding boxes of these trajectories. Formally, we assume
N object tubes {O;|i € [1, N]} are extracted from a given
video. We denote a tube as O; = (s;, ¢;) starting from frame
s; and stopping at frame e;.

Occlusions and Segment Splitting. We determine whether
two objects occlude each other by checking if they appear
in the same frame and whether their bounding boxes over-
lap. We use (O;, Oj, a;j, b;j) to indicate that object i and
J occlude each other from frame a;; to b;;. The occlusions
naturally split the object tubes into segments. Sometimes,
e.g., in Fig. 5a, two objects may occlude each other dur-
ing multiple time intervals. We merge them together with a;;;
denoting the earliest occlusion frame and b;; the latest frame,
as shown in Fig. 5b. In Fig. 5¢, object O; occludes both O
and Oy, and the occlusion segments overlap. We split the
occlusion segments at the overlapping boundaries to obtain
finer-grained occlusion segments in (d). If multiple objects
occlude at the same location, we apply the way in Fig. 5d
multiple times. Recall that we have N tubes. Here, we define
{Sl-pli e [1, N1, p € [1, P;]} be the divided segments of all
the tubes, where Sip is the p'" segment of the i’ tube, and
P; is the total number of segments of the i’ tube.

Building Occlusion Graphs. According to the occlusion
relationships, we divide all the tubes {O;|i € [1, N]} in the
source video into M groups, where objects in the same group
are connected by occlusions. We build a graph for each group

@ Springer
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Fig.4 Overview of the proposed method. a Original video (3D view)
with 6 tubes interacting in 6 occlusion intervals. b Occlusion graph (2D
view) of (a), where a tube (a row of horizontal rectangles) are divided
into segments (i.e., rectangles). The same color rectangles from dif-
ferent tubes connected by a black bidirectional arrow indicate a pair
of occlusion segments. ¢ The FOG is generated based on b by a cir-
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culation conflict resolving algorithm which further divides segments
when necessary and adds pseudo occlusion connections (indicated by
gray arrows). d—g The FOG can be manipulated by operations includ-
ing scaling up or slowing down segments, or shifting the whole FOG,
without destroying occlusions. h The synopsis result corresponding to
the FOG in (g) (Color figure online)
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Fig.5 a Objects O; and O; occlude in multiple intervals. b We merge them into a single interval. ¢ Object O; occludes both O; and Oy, and the
occlusion intervals overlap. d We further split the occlusion segments into finer-grained ones at the overlapping boundaries

and call it an occlusion graph. The way to build an occlusion
graph is straightforward. We treat each segment as a node of
the graph. Then, we add edges between adjacent nodes of the
same tube, and also add edges between occlusion segments
of different tubes. Finally, we use {G|k € [1, M]} to denote
all the occlusion graphs.

3.2 Depth-First Traversal Algorithm

We adopt a depth-first traversal algorithm to manipulate an
occlusion graph, i.e., change its position so that it can be
placed at the appropriate place in the synopsis video. Our
strategy is to shift the occlusion graph globally along the
time axis and also adjust the length of segments locally. For
this, we define global shifting variables for occlusion graphs,
denoted by T = {xxlk € [1, M]}. We also define scal-
ing variables for segments. Recall that {Sl.p|i e[l,N],p e
[1, P;]} are the segments. We use I' = {yipli e[l,N],p e

@ Springer

[1, P;]} to denote the scaling variables of the corresponding
segments.

Now, we introduce how the depth-first traversal algorithm
works. First, we designate the temporally earliest segment of
G as the root node of the graph (see Fig. 3e for an example).
Let O, be the object containing the root node, Srl be the root
node, and (a,1 , brl) be the time interval of 8,1 in the source
video. The new position of the root node in the synopsis video
is calculated as:

~1 1
a, =a, + xi,

- o)
bi=ay+y! i1,

where l,1 is the original length of segment Srl. The above
equation computes the new start time &rl by adding the global
shifting variable xj; of Gy to the original start time. The new
end time is obtained by adding the new length yrl X lr] to the
new start time.
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Next we update the positions of all the other segments by
applying the following depth-first traversal algorithm (please
refer to Alg. s1 of the supplementary material for the pseu-
docode). Assume the current segment is Sl.p and its position

has already been updated to (&lp , 511) ).

1. For any segment Sy that occludes with Slp and has not
yet been visited, its duration is updated to (&ip , l;lp ) which
is exactly the same as Sl.p .

2. 1£ 87" (the segment after S”) exists and has not yet been

visited, we update its position to (b + 1, b7 + v’ o

lip H ). That is, we simply append Sl.p o Sip and change
the length of Sl.p + according to its scaling variable.
3.IF S/ ~! (the segment before S’ exists and has not yet
been visited, we update its position to (a — y;” 1
7=t ar — ).
We first update occlusion segments, and then adjacent seg-
ments. The order cannot be reversed, otherwise the occlusion
segments cannot be synchronized. The above procedure is
called recursively until all nodes of the occlusion graph are
updated.

3.3 Circulation Conflict Problem and Greedy-based
Resolving Algorithm: Improving Occlusion
Graph to FOG

When there is no circulation in occlusion graph, the depth-
first traversal algorithm works very well. However, when
there exist circulations, the algorithm may lead to circulation
conflicts. Figure 6a illustrates an occlusion graph in which
a circulation (indicated by the arrow from segment A to B)
exists. Figure 6b illustrates the circulation conflict problem,
in which we extend the length of A to the dashed portion
by setting the scaling variable of A to be greater than 1. This
triggers the depth-first traversal algorithm to update the posi-
tions of all the other segments, which finally yields an overlap
between segment A and B which we call a “circulation con-
flict”.

One can solve the conflict problem by properly setting
scaling variables in a way that the lengthenings and short-
enings of segments exactly cancel out each other, making
the last frame of B just placed before the first frame of A.
However, this is very challenging to achieve. We propose
a different strategy to solve the problem, as shown from
Fig. 6¢c—e. The idea comes from the observation that the con-
flict can be avoided when all the objects are synchronized.
However, this reduces manipulation flexibility. We propose
a method to resolve conflicts by synchronizing as few object
contents as possible. To this end, we further divide segments
in a circulation into finer-grained synchronizable segments

(see Fig. 6¢) and then add pseudo occlusion edges in a greedy
manner (see the gray bidirectional arrows in Fig. 6e).

Figure 6c¢ illustrates how we perform the further segment
dividing. We draw vertical lines at the boundaries of occlu-
sion segments, and cut the segments of other objects along the
vertical lines. Note that only segments within the circulation
are divided, while those outside the circulation (i.e., “Not in
cir”’) are not affected. With this procedure, we obtain pairs
of synchronizable segments from different objects with the
same time interval. Figure 6d shows the occlusion graph after
the further dividing. There are 12 conflicts in the graph. The
number is obtained by the procedure COUNTNUMBEROF-
CONFLICTS of Alg. s2 in the supplemental material. The idea
behind COUNTNUMBEROFCONFLICTS is simple. For each
segment of a circulation, we increase its length and use the
depth-first traversal algorithm to update other segments. If
there is a conflict, we increase the number of conflicts by 1.

The remaining problem is how to add pseudo edges into
the occlusion graph. We propose a method that adds edges
between synchronizable segments in a greedy manner (see
Alg. s3 in the supplemental material). For each pair of syn-
chronizable segments, we temporarily add an edge between
them and then count the number of conflicts. Among all the
edges, we choose the one that yields the largest drop in the
number of conflicts and add it into the occlusion graph. After
adding one edge, we add the next one using the same greedy
procedure. This process proceeds until there is no conflict in
the circulation. Figure 6e shows the first pseudo edge added
into the occlusion graph. After adding the pseudo edge, the
conflict number is decreased from 12 to 10. Figure 6f shows
all the pseudo edges added into the occlusion graph, where
the circled numbers on each edge indicate the order in which
they were added. The bottom of (f) shows how the number
of conflicts decreases after adding each pseudo edge. The
finally obtained occlusion graph in (f) is called a Flexible
Object Graph (FOG) with no conflict problem.

3.4 FOG-based Video Synopsis

As stated above, we have extracted N tubes: {O;|i € [1, N1},
and established M FOGs: {G|k € [1, M]}. With the global
shifting variables Y = {xi|k € [1, M]} and local length
scaling variables I' = {yip|i e [1, N1, p € [1, P;]}, we can
manipulate all the FOGs by using of the above depth-first
traversal algorithm. Let {é,- li € [1, N1} be the objects after
manipulation. Following energy terms in Pritch et al. (2008),
our FOG-based video synopsis method is going to minimize
the following objective function:

N N
E(Y.T)=Y Ea(0)+ Y Er(0;, 0)) + Ec(0;. 0)).
i=1 i,j

@)
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(e) Occlusion Graph after Adding
One Pseudo Occlusion Edge (10 Conflicts)
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(b) Contflict (d) Occlusion Graph after Further (f) FOG after Adding Six Pseudo

Dividing (12 conflicts)

Fig. 6 a An example consisting of four objects with complex occlu-
sions. The arrow from segment A to B shows a circulation. b Slightly
extending the length of segment A to the dashed portion results in a
conflict between segments A and B. ¢ Further dividing the segments in
the circulation along the vertical timelines at the boundaries of these
segments. d The occlusion graph after the further dividing. There are
12 possible conflict positions in the graph. e Greedily adding the first

The activity term E4 measures how many objects are not in
the synopsis video:

N

EA(Y,T) =% "8k < Oork > Lyn)¢(0i(k),  (3)

i=1 k=1

where § is a function returns 1 if its input is true and 0 oth-
erwise, Lyy, is the length of the synopsis video, k indexes
the frame of éi that corresponds to the frame k of O;, and
¢ (0;(k)) denotes the amount of activity of O; at frame k.

The chronological term E7 measures the degree of cor-
ruption of chronological order between FOGs. Let G, and
G, be two FOGs in the input video, and a,, and a,, denote
the frontmost frames of them. Let Gm and én be the corre-
sponding FOGs in the synopsis video, and &, and a,, be the
corresponding frames. We define E7 as:

M
Er(Y.T) =Y "8 ((am — an) - (@m — a) < 0)

m,n

"5(|&m_&n|>7)n'|&m_&n|v (4)

where the first § checks whether the chronological order of
two FOGs is reversed and the second § checks if the reversal
is larger than t frames. Only when both of the two conditions
are met, we increase the energy loss by 1 - |a, — an|, where
n = 100.
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Occlusion Edges (No Conflict)

pseudo edge (the gray bidirectional arrow) decreases conflict number
from 12 to 10. f Six pseudo occlusion edges are added into the occlu-
sion graph (see the circled numbers on the edges for the order in which
they were added), yielding a FOG with no conflict problem. The blue
numbers at the bottom show how the number of conflicts decreases as
the number of pseudo edges increases (Color figure online)

The collision term E¢ measures the amount of false col-
lisions between objects:

N
Ec(T,T) =Y 3" 8 =koyw (0uth), 0,(2)) . 5)

i,j kikz

where k1 € [1,/;]and k; € [1, [;] traverse frames of O; and
0, respectively, ki and k> index the corresponding frames
of éi and O i, and éi (121) and O i (122) are the occurrences of
éi and O ; at frames 121 and 122 in the synopsis video, finally
¥ () computes the collision area between the two objects.

3.5 Stepwise MCMC Solver

The energy function defined in Eq. 2 combines three sub-
objectives that contradict each other. It is not easy to strike
a balance when simultaneously optimizing the three sub-
objectives. We propose a stepwise algorithm to optimize
them one by one.

Step 1: Preserving all objects. In the first step, we only
optimize the activity term E 4. Previous approaches usually
require E 4 to be as small as possible. Differently, we assume
all objects are important (e.g., when the objects are obtained
by anomaly detection method (Liu et al., 2021)) and put all of
them into the synopsis video, i.e., minimizing E 4 to zero. To
achieve this, we move FOGs ahead along the time axis to the
very beginning of the synopsis video. Then, we uniformly
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scale all the segments of the FOGs to compress them into the
synopsis video.

Step 2: Recovering chronological order of objects. In
the second step, while keeping all FOGs staying in the syn-
opsis video, we attempt to optimize the FOGs to recover
the chronological order between them. Specifically, we use
the Metropolis-Hastings (MH) algorithm (Metropolis et al.,
1953; Hastings, 1970) to sample from the following Boltz-
mann density function defined over the variables ® = {1, I'}
of FOGs (please refer to the pseudocode Alg. s4 in the sup-
plemental material):

1
p(©) = —exp(=BE7(8)), (6)

where B is the temperature and Z is the partition function.
MH algorithm samples from the distribution of p(®) by con-
structing a Markov chain composed of a set of states of FOGs
whose equilibrium distribution is p(®). Let © be the cur-
rent state. To obtain the next state of the Markov chain, we
first change ®' to a new state ©®* by a proposal distribution
q(©*|®"). Then, we compute the probability a:

* 1 @*
2(®' — ©*) = min (1 w) . %)

" p(©)q(©*[6")

Let u ~ [0, 1]. The original MH algorithm accepts the new
state and sets 't = O* if u < a(®' — O*). We modify
the acceptance condition, i.e., we accept the new state only
ifu <a(® — O and E4(O©*) = 0. Otherwise, we reject
the proposal and set ©F! to the old state ®'. The second
condition help ensure that all the objects are still maintained
in the synopsis video while recovering chronological order.
For the proposal function ¢(©*|©") that modifies © to
a new state @, it is usually designed to be reversible, i.e.,
q(©*|0") = q(©'|®*) which simplifies Eq. 7 to:

a(® — ©*) = min (1, f,((—((:);))> . ®)

Specifically, we modify the old state ®' to a new state ©*
using one of the following two ways that are reversible: (1)
Randomly choose two FOGs and exchange their positions.
(2) Randomly choose a segment, perturb its scaling variable
by a Gaussian distribution A/(0, o2). We constrain the scal-
ing variable to be in the range of [Vinin, Ymax]. That is, when
ascaling variable is smaller than yi,,, we setit to yin, and if
it is greater than yy,4x, We set it to ¥;,;4x. The MH algorithm
stops when E7 = 0, i.e., when the chronological order of
FOGs are all recovered. We find this is easy to achieve as the
false collision term E¢ is not considered at this time.

Step 3: Reducing false collisions between objects. In this
step, we optimize FOGs to reduce the false collisions between
objects as much as possible. We use another MH algorithm

(see Alg. s5 in the supplemental material) to sample from the
following Boltzmann density function:

1
p(®) = Zexp(=fEc(®)). €))

We use the same way to propose a new state ®* and compute
a(®' — ©*) according to Eq. 8. We accept the new state
only when the following three conditions are met: (1) u <
a(0" - 0%), (2) E4(©*) = 0, and (3) E7(©*) = 0. The
MH algorithm stops when E¢ is reduced to zero or after T
iterations.

Determining y,,;, and y,,., adaptively. y,,i» and V4«
determine the range of speed scaling variables. We determine
the two parameters adaptively according to the original speed
of objects. The original speed v of an object is defined as the
average number of pixels moved by the upper-left corner of
the object’s bounding box between two consecutive frames.
We compute y,,i, by:

v

Vmin = Min (1.0, —) , (10)
Al

where A1 with the default value of 4.5 is a user-defined param-

eter which controls the maximum speed of an object. ¥4

is computed by:

Vmax = Max (1.0, — ) , (11)

B+€

where [ is the original length of the object, A, is a user-
defined parameter and its default value is 100.0, and € is set
to 1.0 to prevent y,,,, from being too large when [ is small.
When calculating ;. , we take into account the length of the
object, such that a long object will not become very longer.

4 Experiments

We implement our method in C++, and run it on an AMD
Ryzen™ 52600 CPU and 16 G memory. In the following, we
introduce experimental settings, compare our method with
previous approaches, and conduct ablation studies about the
key components of our method. Please see the supplemental
materials for more results.

4.1 Experimental Settings
4.1.1 Dataset
Since the resolution of experimental videos in Huang et al.

(2014) are too low to extract tubes and the works of Ruan
et al. (2019) and SSOcT (Yang et al., 2021) do not make
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Table 1 Information of test

videos, including video name, Name Org. Len fps Obj. Num Res

original length (Org. Len.), video-entry1 110326 (1h1°177) 30 819 1280x720

frame rate (Fps), number of . .

objects (Obj. Num.), and video-entry2 111645 (1h2°17) 30 693 1280x720

resolution (Res.) of the video-entry3 30795 (20°317) 25 456 640x368

corresponding video video-gogo 20026 (2°477) 120 20 1024x576
video-st 10109 (6°44”) 25 91 640x368
video-lib 3068 (1°42”) 30 17 1920x 1080
video-zgf 1038 (417) 25 19 960x 540
video-al 1846 (1°137) 25 49 960x 540

their experimental videos public, we capture § videos by our-
selves whose information is shown in Table 1. We also use
videos from MOT17 (Dendorfer et al., 2021), MOT20 (Den-
dorfer et al., 2020), and DanceTrack (Sun et al., 2022) for
the comparison which are put into the supplemental mate-
rial. The scenes captured include parking lot, square, road,
etc., which are common in a city. All videos contain busy
activities of pedestrians or cars. Two videos among them are
longer than 1 h, containing up to 819 objects. In these videos,
occlusions between objects occur frequently, especially in
MOT20-03 (Dendorfer et al., 2020), MOT20-05 (Dendorfer
et al., 2020) and DanceTrack (Sun et al., 2022). The tube
extraction method we used for ours and compared methods
is always JDE (Wang et al., 2020).

4.1.2 Evaluation Metrics

We evaluate a video synopsis method using the following
four metrics. (1) Compression Ratio (CR). Let L, . be the
number of frames of the input video, and Ly, be the length
of a synopsis video. CR is defined as CR = Ly, /Lgyc. (2)
Outside Activity (OA). We use OA to represent the amount
of activities that are not condensed into the synopsis video.
(3) Chronological Disorder Number (CDN). We count the
number of object pairs whose temporal order is reversed by
at least 7 frames. (4) Collision Artifact (CA). CA measures
the amount of false collisions in a synopsis video. We use the
method defined in Eq. 5 to compute CA.

4.1.3 Parameter Setting

There are three parameters in our method. One is t that con-
trols the tolerance of the user about the degree of reversal
of chronological order between objects. It is set as 7 = 400
unless otherwise specified. Another parameter is Ly, which
is the length of the synopsis video in frames. For example, we
can set Ly, to be 1/10 of the input video length, achieving a
compression ratio (CR) of 10%. Finally, there is a parameter
T denoting the maximum MCMC iteration number of step 3
in Sec. 3.5. We set T = 20, 000 unless otherwise specified.
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4.2 Comparison with Previous Approaches

We compare our method with recent approaches including
SSOcT (Yang et al., 2021), PCCVA (Namitha et al., 2022),
and FSF (Zhang & Zheng, 2023). We also compare our
method with (Nie et al., 2019) in the ablation study section.

SSOcT (Yang et al., 2021) uses a global octree structure
to represent the synopsis space and views each tube as an
tube octree to perform fast and accurate collision detection of
tubes. The rearrangement of tubes is completed by repeatedly
calling the "insert" and "refine" process. PCCVA (Namitha et
al., 2022) divides the synopsis space into cubes and groups
tubes. The start time of each tube group in the synopsis is
determined by cube voting. FSF (Zhang & Zheng, 2023) also
divides tubes into tube sets and then adopts a frame sequence
fusion algorithm which takes tube set as the processing unit
to rearrange tubes. All the three methods do not provide code.
We implement them by ourselves in C++, and conduct the
comparisons on the same computer under the same running
environment.

Table 2 gives the comparisonal results. There are some
points to note. First, the first three videos are very long and
contain a large number of tubes. For long videos, instead of
processing them as a whole, we split them into clips, process
clips one by one, and finally combine the summary results
of clips together. The other videos are not that long, so we
process them as a whole.

Second, the parameters used in the comparisons are given
in the table. SSOcT (Yang et al., 2021), PCCVA (Namitha
et al.,, 2022) and FSF (Zhang & Zheng, 2023) do not
have parameter 7. We view them as having the parameter
because for fair comparison the evaluation of CDN of these
approaches is based on 7 too, i.e., only when the start time
of two objects are reversed by at least t frames, we increase
the number of CDN by 1. For the compared methods, their
parameters 8*, d* and ¢* are also shown, where B8* is the key
parameter of SSOCT (Yang et al., 2021) denoting the maxi-
mum number of collisions allowed when inserting a tube, d*
is the key parameter of PCCVA (Namitha et al., 2022) which
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Table 2 Comparisons between SSOcT (Yang et al., 2021), PCCVA
(Namitha et al., 2022), FSF (Zhang & Zheng, 2023), and our method.
"-org. speed" and "-speed up" indicate with and without speed change

of tubes, respectively. 8*, d* and ¢* are parameters of SSOcT (Yang et

al., 2021), PCCVA (Namitha et al., 2022), and FSF (Zhang & Zheng,
2023), respectively. OA, CDN, and CA are three metrics measuring the
quality of the synopsis results, which are the smaller the better

Data Method Parameters OA| CDNJ CA|
T Ly, (CR)
video-entryl SSOcT Yang et al. (2021)-org. speed (8*=342) 400 11016 (10.0%) 0 22000 3.75e+08
SSOCT Yang et al. (2021)-speed up (8*=13) 0 20436 6.44e+06
PCCVA Namitha et al. (2022)-org. speed (d*=30) 0 34772 4.25e+08
PCCVA Namitha et al. (2022)-speed up (d*=35) 0 32263 9.06e+07
FSF Zhang and Zheng (2023)-speed up (£ *=2.2e—04) 0 1435 8.20e+07
Our 0 0 2.77e+06
video-entry2 SSOCT Yang et al. (2021)-org. speed (8*=291) 400 11160 (10.0%) 0 12935 1.45e+08
SSOcCT Yang et al. (2021)-speed up (B*=11) 0 12269 3.40e+06
PCCVA Namitha et al. (2022)-org. speed (d*=29) 0 13125 3.36e+08
PCCVA Namitha et al. (2022)-speed up (d*=40) 0 11443 9.94e+07
FSF Zhang and Zheng (2023)-speed up (¢*=1.12e—04) 0 410 2.81e+07
Our 0 0 3.28e+06
video-entry3 SSOCT Yang et al. (2021)-org. speed (B8*=2043) 400 3110 (10.0%) 0 2580 2.05e+08
SSOCT Yang et al. (2021)-speed up (B*=65) 0 4948 9.83e+06
PCCVA Namitha et al. (2022)-org. speed (d*=5) 0 10494 4.77e+07
PCCVA Namitha et al. (2022)-speed up (d*=10) 0 16773 7.38e+06
FSF Zhang and Zheng (2023)-speed up (¢ *=2.47e—03) 0 7958 1.45e+07
Our 0 0 396031
video-gogo SSOCT Yang et al. (2021)-org. speed (8*=21) 500 1500 (7.5%) 0 0 58037
SSOCT Yang et al. (2021)-speed up (8*=2) 0 1 500
PCCVA Namitha et al. (2022)-org. speed (d*=14) 0 0 54362
PCCVA Namitha et al. (2022)-speed up (d*=14) 0 26 40079
FSF Zhang and Zheng (2023)-speed up (£ *=1e-05) 0 6 3736
Our 0 0 0
video-st SSOCT Yang et al. (2021)-org. speed (8*=700) 200 800 (7.9%) 0 63 4.21e+07
SSOCT Yang et al. (2021)-speed up (8*=10) 0 179 312985
PCCVA Namitha et al. (2022)-org. speed (d*=5) 0 1311 2.83e+07
PCCVA Namitha et al. (2022)-speed up (d*=14) 0 1668 2.13e+06
FSF Zhang and Zheng (2023)-speed up (¢ *=4.40e—04) 0 47 2.06e+06
Our 0 0 0
video-lib SSOCT Yang et al. (2021)-org. speed (8*=150) 160 500 (16.3%) 0 2 1.65e+06
SSOCT Yang et al. (2021)-speed up (8*=13) 0 14 223740
PCCVA Namitha et al. (2022)-org. speed (d*=5) 0 0 1.87e+06
PCCVA Namitha et al. (2022)-speed up (d*=5) 0 21 231575
FSF Zhang and Zheng (2023)-speed up (¢ *=4.50e—04) 0 6 344558
Our 0 0 0
video-zgf SSOCT Yang et al. (2021)-org. speed (8*=165) 70 220 (21.2%) 0 0 618145
SSOCT Yang et al. (2021)-speed up (8*=13) 0 3 139473
PCCVA Namitha et al. (2022)-org. speed (d*=5) 0 5 1.90e+06
PCCVA Namitha et al. (2022)-speed up (d*=5) 0 23 370043
FSF Zhang and Zheng (2023)-org. speed (¢ *=1.10e—03) 0 10 1.62e+06
FSF Zhang and Zheng (2023)-speed up (£*=3.00e—04) 0 4 109253
Our 0 0 0
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Table2 continued

Data Method Parameters OA| CDNJ CA|
T Lgyn (CR)

video-al SSOCT Yang et al. (2021)-org. speed (8*=300) 120 400 (21.7%) 0 5 9.41e+06
SSOCT Yang et al. (2021)-speed up (8*=60) 0 19 1.95e+06
PCCVA Namitha et al. (2022)-org. speed (d*=5) 0 44 2.35e+06
PCCVA Namitha et al. (2022)-speed up (d*=5) 0 97 948056
FSF Zhang and Zheng (2023)-org. speed (£*=9.00e—04) 0 143 8.75e+06
FSF Zhang and Zheng (2023)-speed up (£ *=5.00e—04) 0 33 2.73e+06
Our 0 0 0

Bold indicates the best result among all the others

is the cube size, and ¢* is from FSF (Zhang & Zheng, 2023)
which is the maximum mean collision ratio in each frame.

Third, our method speeds up objects adaptively, while the
compared approaches do not. To be fair, we compare with two
versions of previous approaches: an original-speed version
and speed-up version. For the speed-up version, we compute
the average speed of the objects in our result and then use
this speed to accelerate all the objects uniformly which are
then processed by previous approaches. For FSF (Zhang &
Zheng, 2023), we only provide the speed-up results for the
first six testing videos, as the original-speed method cannot
achieve the high compression ratio of 10%, 7.5%, 7.9% and
16.3%.

As seen in Table 2, all methods reduce OA to zero, but our
method produces much fewer CA and CDN than the com-
pared approaches. First of all, speed is critical. For example,
the results generated by “SSOcT (Yang et al., 2021)-speed
up” contain much less CA and CDN than “SSOcT (Yang
et al., 2021)-org. speed”, as do “PCCVA (Namitha et al.,
2022)-speed up” and “PCCVA (Namitha et al., 2022)-org.
speed”. The main reason is that the length of tubes is short-
ened in “SSOCT (Yang et al., 2021)-speed up” and “PCCVA
(Namitha et al., 2022)-speed up”. Second, in this fair man-
ners of comparison, i.e., when the speed of tubes is set to be
equal to the average one in our method, “SSOcT (Yang et
al., 2021)-speed up”, “PCCVA (Namitha et al., 2022)-speed
up” and “FSF (Zhang & Zheng, 2023)-speed up” generate
higher CDN and CA than ours. Taking “video-entry2” as an
example, FSF (Zhang & Zheng, 2023) obtains 2.81e+07 CA,
while our proposed method achieves 3.28e+06 CA, which is
approximately 1/8 of that of FSF (Zhang & Zheng, 2023).
More importantly, our method reduces chronological disor-
der number (CDN) to 0, which means that our method is able
to preserve appearance orders of objects perfectly. Instead,
the CDN of FSF (Zhang & Zheng, 2023) on “video-entry2”
is 410, which means that the synopsis video generated by
FSF (Zhang & Zheng, 2023) contains 410 object pairs that
are reversed temporally. The higher CDN of FSF (Zhang
& Zheng, 2023) indicates that the sequence of events of
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objects in the synopsis video does not follow the original
timeline, which severely disrupt the natural flow and rela-
tionships between objects of the input video, increasing the
difficulty of understanding the synopsis result.

As can be seen in Table 2, our method reduces CDN to
0 on all test videos. This is because, in step 2 of the step-
wise MCMC solver, the MH algorithm stops only when E7
= 0, i.e., when the chronological orders of objects are all
recovered. This is easily to achieve since we do not take the
false collision term E¢ (Eq. 5) into account and allow the
chronological order of objects to be reversed within a speci-
fied threshold t. Moreover, by dividing objects into segments
and manipulating object segments in the FOG, our method
reduces CA significantly compared to other methods. Besides
lower CDN and CA, another advantage of our method is that
it can preserve original occlusions between objects, while the
compared three methods are not always able to achieve this.
This characteristic of our method greatly increases the read-
ability of our results, and avoid annoying visual artifacts.
Figure 7 shows images demonstrating this advantage, and
more results are shown in our provided supplemental video.

Through the above comparisons, the effectiveness of our
method on both long and short videos is validated. More
comparisons on three MOT datasets (MOT17 (Dendorfer et
al., 2021), MOT20 (Dendorfer et al., 2020) and DanceTrack
(Sun et al., 2022)) can be seen in the supplemental material.

4.3 Ablation Study On FOG

Our work improves (Nie et al., 2019) by proposing the FOG
data structure. Both our method and (Nie et al., 2019) groups
originally occluded objects into the same tube, and there-
fore we can both preserve original occlusions in the synopsis
video. The difference is that we rely on FOG to adaptively
adjust the speed of each object. In contrast, Nie et al. (2019)
synchronizes all segments of occlusion objects, thus hav-
ing lower flexibility. We conduct the following comparisons
between our method and (Nie et al., 2019) to validate the
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Fig. 7 Comparisons between SSOcT Yang et al. (2021)-speed up,
PCCVA Namitha et al. (2022)-speed up, FSF Zhang and Zheng (2023)-
speed up and our method on preserving original occlusion relationships
between objects. From left to right: video-entryl, video-entry2, and
video-entry3. Results by SSOcT Yang et al. (2021)-speed up, PCCVA

Namitha et al. (2022)-speed up and FSF Zhang and Zheng (2023)-speed
up contain artifacts (indicated by blue arrows). Our results preserve orig-
inal occlusion relationships between objects (orange arrows). See the
supplemental video for dynamic results (Color figure online)

Table 3 Comparison with Nie

et al. (2019), demonstrating that };arameﬁrnsv Ymax] Ly (CR) OAl DNy CAL
our method with FOG e Fmax sy
outperforms Nie et al. (2019) video-entryl  Nieetal. (2019) 400 adaptively — 11016 (10.0%) 0 33 3.39e+0.6
Our 0 0 2.77e+06
video-entry2  Nieetal. (2019) 400 adaptively — 11160 (10.0%) 0 13 7.86e+06
Our 0 0 3.28e+06
video-entry3  Nieetal. (2019) 400 adaptively — 3110 (10.0%) 0 87 1.77e+06
Our 0 0 396031
video-gogo  Nieetal. (2019) 500  [0.1, 10] 1500 (7.5%) 0 4 404651
Our 0 0 0
video-st Nieetal. 2019) 200  [0.1, 10] 800 (7.9%) 0 0 111652
Our 0 0 0
video-lib Nieetal 2019) 160  [0.2, 5] 500 (163%) 0 0 13157
Our 0 0 0
video-zgf Nieetal. 2019) 70  [0.2,5] 20(212%) 0 8 126523
Our 0 0 0
video-al Nieetal 2019) 120  [0.2,5] 400 21.7%) 0 25 76136
Our 0 0 0

Bold indicates the best result among all the others

effectiveness of the core contribution of this paper, i.e, the
FOG data structure.

Originally in Nie etal. (2019), a MCMC strategy is used to
minimize an objective function composed of multiple terms.
Differently, we propose a stepwise MCMC solver. Besides,
the definition of objective functions in Nie et al. (2019) and
our method are slightly different. For fair comparison, we
re-implement (Nie et al., 2019) using the same energy terms
defined in this paper, and use our stepwise MCMC solver
to compute results for (Nie et al., 2019). Besides modifying
motion speed, the method of Nie et al. (2019) additionally

modifies object size. We set the size adjustment range of
Nie et al. (2019) to [0.7, 1], though this is slightly unfair to
our method as our method does not change object size. The
method of Nie et al. (2019) also adopts parameters y,,i, and
Ymax as the range of segment scaling variables. They are set
in the same way as ours.

The ablation results are shown in Table 3. For the first
three long videos, Viuin and ymq, are adjusted dynamically,
and the compression ratio is 1/10. Although our method and
(Nie et al., 2019) have similar CA, our method can reduce
CDN to zero, while the method of Nie et al. (2019) produces
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Fig. 8 Comparisons with Nie et al. (2019). From left to right: video-
zgf, video-gogo. For each video, synopsis results of different lengths
are generated. Curves of CA (the smaller the better) of the two methods
with respect to the synopsis length are plotted

much higher CDN. For the other short videos, we manually
set T, Ly, and [Vmin, Ymax] to make our method generate
perfect synopsis results, i.e., OA=0, CDN=0, and CA as few
as possible. For all these videos, the OA of Nie et al. (2019)
is also reduced to zero, but we observe temporal order cor-
ruption or false collision artifacts in the results of Nie et al.
(2019). For example for video-al, the CDN and CA of Nie et
al. (2019) are 25 and 76136 respectively, while ours are both
zero. We observe that the CDN of Nie et al. (2019) is some-
times reduced to zero, but there is always a certain amount
of CA, which demonstrates the challenging of avoiding false
collision by Nie et al. (2019). In contrast, our method can
better reduce false collision, mainly attributed to the pro-
posed FOG-based segment adaptive adjustment algorithm.
An additional point worthy noting from the experiments in
Table 3 is that our method can achieve very high compres-
sion ratios. For example, CR for video-gogo of our method
is 7.5%, and CR for video-st is 7.9%. These are very high
CRs, considering there is no artifact in our results.

In Fig. 8, we compare our method with Nie et al. (2019)
by checking how each method performs as Ly, decreases
(i.e., the CR increases). We test both methods multiple times,
and the shaded area indicates variance of CA. With FOG, our
method consistently outperforms (Nie et al., 2019). In most
cases, our worst result is better than the best result of Nie et
al. (2019).

In Fig. 9, we show how our method preserves chronologi-
cal order of objects better than (Nie et al., 2019). In each row,
there are three frames selected from the synopsis result gen-
erated by the corresponding method, and the index of each
frame is displayed above the corresponding frame. In the first
row, an exception in chronological order is that objects 41,
42 and 43 (see frame 88) appear too earlier than objects 17,
18, and 19 (see frame 251). In contrast, the second row show
that objects in our results generally appear in their original
chronological order.

@ Springer

4.4 Comparison on Running Time

Table 4 compares between the time used by SSOcT (Yang
et al., 2021), PCCVA (Namitha et al., 2022), FSF (Zhang
& Zheng, 2023) and our method. When compressing long
videos, PCCVA (Namitha et al., 2022) needs to divide the
synopsis video space into a large number of cubes, and then
calculate the vote of each cube on each tube group, so it
takes much more time than other three methods. Since SSOcT
(Yang et al., 2021) introduces octree structures to accelerate
collision detection, it takes less time than PCCVA (Namitha
et al., 2022) and our method. The collision detection of FSF
(Zhang & Zheng, 2023) is based on the tube sets which
means the number of collision detection units it processes
is fewer, thus it takes the least amount of time. Our method
reduces false collisions through an iterative MCMC opti-
mization algorithm, and needs to perform depth-first traversal
algorithm many times in each iteration. Therefore, the time
spent depends on the number of iterations and the number
of objects in the input video. Under the premise of ensuring
that synopsis videos have fewer artifacts, our method takes
a reasonable amount of time between SSOcT (Yang et al.,
2021) and PCCVA (Namitha et al., 2022).

Table 5 compares between the time used by our approach
at different optimization steps. The first and second steps are
very efficient, since the first step simply puts FOGs into the
synopsis video, while the second step allows the existence
of false collisions. In the third step, since the chronological
order must be preserved, it is not easy to reduce the false
collision artifacts, and the optimization algorithm needs more
MCMC iterations to sample a good result, thus costing more
time.

Detailed time complexity analysis can be found in the sup-
plemental material. The conclusion is that the more objects,
the more time our method takes. For example, the total time
used for “video-st” with 91 (see Table 1) objects is 482.732s,
while for “video-lib” with only 17 objects the time used is
45.440s. Splitting long videos into clips with fewer objects
is a way to solve this problem.

4.5 Limitations

The proposed method can generate high-compression syn-
opsis results with fewer artifacts. A shortfall is that it is a
little time-consuming to compute these results. Our currently
implemented MCMC algorithm for reducing false collisions
costs most of the time, which makes our method can only be
used in an offline manner. In the future, we can accelerate
the optimization process by simplifying the computation of
the collision term defined in Eq. 5, e.g., using more high-
level proxy of objects instead of bounding boxes. Or, we can
implement the MCMC sampling in parallel. In addition, our
method is sensitive to the quality of the extracted object tubes.
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Fig.9 Comparison with Nie et
al. (2019) on preserving
chronological order of objects of
video-al. We show frame index
on the top of each image. The
number in the yellow box on top
of each person indicates the
order of that person appears in
the input video. For Nie et al.
(2019), frame 88 contains the
43th object, while frame 251
contains the 17th object, which
is a large corruption of
chronological order. In contrast,
our method does not show such
problem (Color figure online)

Fr@me 38

'u§ »

Frame 251

Table 4 Time comparisons between SSOcT Yang et al. (2021), PCCVA Namitha et al. (2022), FSF Zhang and Zheng (2023), and our method

Data SSOcT Yang et al. (2021) PCCVA Namitha et al. (2022) FSF Zhang and Zheng (2023) Our

video-entryl (1h1°17”) 981.6s 17049.7s 47.3s 1791.7s
video-entry2 (1h2°1”) 2840.4s 16202.7s 58.4s 2856.4s
video-entry3 (20°31”) 97.0s 26285.0s 21.1s 2175.4s

Bold indicates the best result among all the others

Table 5 Time used by our method at different optimization steps

Data Stepl Step2 Step3 Total
video-gogo 0.005s 0.055s 71.140s 71.200s
video-st 0.041s 0.523s 482.168s 482.732s
video-lib 0.005s 0.014s 45.421s 45.440s
video-zgf 0.039s 0.006s 186.080s 186.125s
video-al 0.041s 0.076s 333.274s 333.391s

Some of the tubes used in this paper are post-processed man-
ually. This problem is possible to be solved with the advance
of object detection and tracking algorithms.

Finally, due to space limit, we put intermediate results
of the stepwise optimization process into the supplemental
material. We also analyze the difference between our pro-
posed stepwise solver and prior optimizers at there.

5 Conclusion and Future Work

This paper presents a novel video synopsis approach. When
generating synopsis videos, how to handle the interac-
tions/occlusions between moving objects is a key challenge.
We have addressed this challenging problem with the main
contribution of the novel data structure called “FOG” that
supports flexible object manipulation while preserving the
interaction relationships between them. With FOG, we can
remove redundancy among objects with complex occlusion
relationships. As far as we know, no previous approach can

achieve that. Based on FOG, this paper presents an effective
FOG-based video synopsis approach, which in its essence is
a multi-objective optimization problem. In order to solve the
optimization problem, our second contribution is the step-
wise MCMC optimization strategy by which we achieve
each objective step by step. Our FOG-based video synopsis
approach, together with the stepwise optimization method,
rewards us with impressive synopsis results better than those
of previous approaches. In the future, we will accelerate the
current implementation, exploring the possibility of making
our method work online.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-024-02302-
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