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Abstract. Video Shadow Detection (VSD) is an important computer
vision task focusing on detecting and segmenting shadows throughout
the entire video sequence. Despite their remarkable performance, existing
VSD methods and datasets mainly focus on the dominant and isolated
shadows. Consequently, VSD under complex scenes is still an unexplored
challenge. To address this issue, we built a new dataset, Complex Video
Shadow Dataset (CVSD), which contains 196 video clips including 19,757
frames with complex shadow patterns, to enhance the practical applica-
bility of VSD. We propose a two-stage training paradigm and a novel
network to handle complex dynamic shadow scenarios. Regarding the
complex video shadow detection as conditioned feature adaption, we pro-
pose temporal- and spatial-adaption blocks for incorporating temporal
information and attaining high-quality shadow detection, respectively.
To the best of our knowledge, we are the first to construct the dataset
and model tailored for the complex VSD task. Experimental results show
the superiority of our model over state-of-the-art VSD methods. Our
project will be publicly available at: https://hizuka590.github.io/CVSD.

Keywords: Video Shadow Detection · Video Understanding ·
Large-Scale Complex Video Shadow Dataset · Conditioned Feature
Adaption

1 Introduction

Shadows can be commonly observed in digital images or videos, which can pro-
vide a variety of visual properties, including depth relations [1,2,41], object
shapes [32,54], light direction [6,30,51], and spatial layout [36,49]. On the
other hand, misunderstanding shadows may fail many computer vision tasks
such as object detection [8,45,59], tracking [29], and interpretation of visual
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data [14,17,33]. Hence, detecting shadows in static or dynamic scenes accu-
rately [12,13,16,23,37,38,54] is a fundamental and challenging task.

Several shadow detection methods have been developed, including estimat-
ing shadow masks from a single image [15,18,21,23,27,47,55,58,65] and from
temporal-related video sequences [4,11,24,25,40,42,53,69], while the state-of-
the-art learning-based Video Shadow Detection (VSD) methods [4,11,35,40,66]
have demonstrated their remarkable performance primarily on the ViSha
dataset [4]. Nonetheless, it is important to acknowledge that placing exclusive
emphasis on achieving a numerical score on a single shadow detection dataset
may lack meaningfulness in practical applications. This leads us to question
whether machines can truly perceive shadows like humans in real-world scenar-
ios.

Fig. 1. Visual comparison between ViSha [4], VISAD [40] and our CVSD with mag-
nified local details. Compared with isolated and dominant shadows in others, shadow
patterns in our CVSD are much more complex and diverse.

To answer this question, we first revisit existing shadow detection datasets.
While the majority of these datasets are single image-based [22,52,58,60,62,65],
Chen et al. [4] construct the first video shadow dataset and Lu et al. [40]
introduce another partially annotated video shadow dataset for semi-supervised
learning. Nevertheless, existing video shadow datasets primarily consist of iso-
lated and dominant shadow instances, which do not represent real-world and
complex scenes. To facilitate the exploration of video shadow detection in the
wild, we build a new dataset named Complex Video Shadow Dataset (CVSD).
It comprises 196 video clips featuring diverse scenarios encompassing various
shadow patterns across 149 categories, resulting in a wide range of challeng-
ing cases and shadow characteristics. Within the dataset, we carefully annotate
309,183 disjoint shadow areas, yielding a collection of 19,757 frames with high-
quality shadow masks for training and evaluating video shadow detection meth-
ods in real-world and complex scenarios. Figure 1 illustrates the visual compar-
ison between existing ViSha dataset [4] (Fig. 1a), VISAD dataset [40] (Fig. 1b)
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and our CVSD (Fig. 1c). Our CVSD enjoys notable features including complex
and diverse shadow patterns, which pose more opportunities and challenges for
video shadow detection.

Detecting shadows in complex dynamic scenes presents two main challenges.
The first is temporal consistency modeling since shadows are deformative making
them even harder to track over time. The second is the detection of shadows with
intricate local details further complicating the task. We consider our complex
video shadow detection task as a conditioned feature adaptation prob-
lem in both temporal and spatial domains. We introduce a novel two-stage
training paradigm that enables the direct transfer from a pre-trained image-level
model to a detail-preserving video-level model. Specifically, to address the tempo-
rally correlated shadow modeling, we propose a Temporal-Adaption Block, which
emphasizes deformable parts of the shadows while preserving consistent features.
With this design, we condition the extracted feature embedding of other refer-
ence frames with the given main frame feature in the temporal domain, resulting
in a high correlation with the main frame feature while preserving temporal dis-
engagement. For accurately localizing intricate details of shadows in each frame,
we utilize low-resolution context features as guidance and spatially condition
high-resolution local shadow details on it. We develop a Spatial-Adaption Block
that obtains a high-quality mask by integrating high-resolution local patch infor-
mation into global low-resolution context features.
Our main contributions can be summarized as follows:

– We build a new dataset named Complex Video Shadow Dataset (CVSD)
which features more diverse shadow patterns and challenging cases in real-
world scenarios.

– We design a two-stage paradigm for video shadow detection which adapts the
image-level model to the video-level with local detail concentration using our
proposed Temporal-Adaption Block and Spatial-Adaption Block.

– We conduct comprehensive comparisons with SOTA shadow detection meth-
ods on the ViSha [4] and our CVSD dataset, demonstrating the complexity
of our CVSD and the superiority of our proposed model.

2 Related Work

Shadow Dataset. Existing datasets for image shadow detection [19,22,52,60–
62,65] have been extensively used recently. Among them, one notable exam-
ple [60] was delivered for high-resolution image shadow detection. Another
dataset [22] was specially crafted for complex real-world scenes. We should note
that there is currently a lack of emphasis on high-resolution or real-world set-
tings in video shadow datasets. The most extensively used and fully annotated
dataset in the video domain was ViSha [4], while Lu et al. [40] introduced another
partially annotated video shadow dataset VISAD for a semi-supervised setting.
The existing video shadow detection methods commonly underperform when
facing complex real-world scenes due to the data limitations of current datasets.
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One notable drawback is the low resolution of the current dataset. This reduc-
tion in resolution might lead to erroneous results and affect the reliability of the
trained models. Furthermore, the current datasets only cover a limited range of
scenes, which may not adequately represent the diverse circumstances encoun-
tered in real-world shadow detection scenarios. This narrow scope restricts the
ability of the models to generalize and perform well in different contexts. Most
importantly, current datasets primarily address shadows in dominant and iso-
lated patterns, which are not as applicable to real-world scenes. To overcome
these limitations, it is crucial to create larger, more diverse, and more challeng-
ing datasets. Our complex Video Shadow Dataset (CVSD) aims to establish a
more practical foundation and advance research in the field of video shadow
detection.

Video Shadow Detection. Research on shadow detection of single images [5,
16,20,60,63,73,75] has been prevailing. However, shadow detection in dynamic
scenes was less successful. The primary challenge lies in temporal modeling,
which involves managing redundant and complementary information across mul-
tiple frames. Previous methods typically employed a shared encoder [4,11,40,48,
66] to extract multi-frame information. These methods often required an auxil-
iary feature fusion module, such as optical flow [11], LSTM [66], or attention [48]
to assist feature extraction. So it necessitates careful design in the feature fusion
part, and performance can easily be compromised if the extracted features are
not properly managed [50]. To mitigate this issue, some methods introduced
implicit loss, such as contrastive loss [4] or consistency regularization [11] to
help manage complementary information across multiple frames. An alterna-
tive approach was to directly extract spatio-temporal features [35]. Different
from the above two types of solutions, we introduce a novel two-stage paradigm
that enables direct adaption from a pre-trained image-level model to a detailed-
preserving video-level model.

Other Video Processing Tasks. Video object segmentation aims to segment
a video into semantically meaningful objects [7,34,67,68,72], while video saliency
detection aims to identify primary foreground objects from their background in
all frames of a video. These tasks are closely related to our work on video shadow
detection, as they involve the extraction of meaningful information from video
data. Unlike single-image segmentation, video objects are correlated in the tem-
poral domain, which poses a greater challenge for detection. Some researchers
addressed temporal consistency by propagating information from neighboring
frames using optical flow [31] or feature matching modules [39,56]. Another app-
roach involved using external memory to retain past information [48]. However,
such methods focused on designing auxiliary modules or feature fusion strategies
to achieve temporal consistency, which may result in error accumulation due to
inaccurate motion estimation or feature fusion. Additionally, they often neglect
the rich constraints provided by image-level information.
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3 Complex Video Shadow Dataset

In this section, we introduce our Complex Video Shadow Dataset (CVSD). We
first present the video collection and annotation process in Sect. 3.1 and then
give the dataset statistics and comparisons in Sect. 3.2.

3.1 Building the Dataset

Video Collection. To ensure the representativeness and robustness of the col-
lected video shadow dataset, we source video data from various origins, encom-
passing diverse lighting conditions, scenes, and viewpoints. To accurately reflect
the typical distribution of real-world shadows, we select videos with crowded
objects to ensure they represent complex scenarios. For this purpose, we manu-
ally select intricate shadow videos from well-known video processing benchmarks
such as DAVIS [3], UAV123 [44], VSPW [43], MOT [10], TAO [9], Kinetics [26],
Inter4k [57], and REDS [46]. Originally, these video datasets are intended for
purposes other than shadow detection, such as object tracking, motion recogni-
tion, and video deblurring. We curate diverse video samples, highlighting various
items, scenarios, artifacts, and shadows of different scales. This comprehensive
selection accurately represents the complexities of the real world and the inter-
actions between shadows and objects.

Shadow Annotation. Once all the videos for our CVSD are collected, we
follow existing preprocessing algorithms [4] to generate video sequences. In com-
plex scenes, shadows can be numerous and ambiguous, particularly when objects
interact with each other. Therefore, we only annotate cast shadows in our dataset
which is also in line with previous works [4,40]. We employ an annotation team
consisting of well-trained annotators to label all the cast shadows. Subsequently,
we carefully inspect and validate the labeled results one by one, by overlaying
them onto the original RGB image. During the review process, we focus on the
labeling quality of shadow boundary. We return labels with poor quality or mis-
labeled self-shadows to the annotation team for refinement. After three rounds of
annotation and refinement, our dataset comprises a total of 196 video sequences,
consisting of 19,757 frames. Our CVSD is the first dataset that holds the title
of being the most extensive collection of video shadow data and it encompasses
the most diverse range of scenarios encountered in real-world situations.

3.2 Statistics and Comparisons

Diverse Shadow Pattern. Unlike prior datasets that offer a uniform represen-
tation of shadow patterns, our dataset encompasses a broad spectrum of shadow
features. This diversity is attributed to factors such as different types of motion,
changes in viewpoint, and a wide range of objects and scene types.

As demonstrated in Table 1 and Fig. 2, our dataset not only includes more
shadow instances but also incorporates shadows generated by multiple light
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sources. This extends the original illumination scenarios beyond the conven-
tional indoor, outdoor, day, and night categories to more diverse types, such
as stage lighting, overcast lighting, and dusk lighting. For instance, overcast
scenarios depict scenes with uniform and diffuse lighting conditions caused by
heavy cloud cover, resulting in soft shadows. In contrast, stage lighting produces
sharp shadows and induces rapid changes in illumination color. Furthermore,
we expand the original 60 shadow categories in ViSha [4] to 149 types, as illus-
trated in Fig. 2a. Unlike previous datasets, which primarily consist of footage
from handheld or standard cameras, our collection includes examples captured
using a diverse array of camera types, thereby providing dynamic viewpoints,
vivid motion patterns, and motion blur.

Table 1. Comparison of dataset characteristics, including shadow instances, shadow
motion, viewpoint, motion blur, object type, and scene type. This table illustrates how
our CVSD dataset surpasses ViSha [4] and VISAD [40] in diversity and complexity.

Dataset Shadow Instances Shadow Motion Viewpoint Motion Blur Object Type Scene Type

1–4 5–10 11–15 16+ Stable Moving - - - -

ViSha [4] 6,792 3,625 743 525 16.7% 83.3% Single No 60 4

VISAD [40] 308 2,381 1,076 423 19.4% 80.6% Single No 33 2

CVSD 2,8185,3744,5836,98211.2% 88.8% Multiple Yes 149 12

(a) Shadow Categories (b) Count of Disjointed Shadow Areas

Fig. 2. Detailed statistics of our proposed CVSD. The CVSD comprises 7 main classes
with 149 sub-classes. (a) provides a detailed breakdown of these categories. (b) presents
a distribution disjointed shadow areas across three datasets.

Improved Resolution. According to the comparison presented in Table 2,
it is evident that available datasets suffer from poor resolution, which makes
it challenging to identify small or distant shadows. In contrast, our dataset is
specifically designed to facilitate precise and accurate shadow identification, pri-
marily due to its significantly higher resolution. To ensure superior quality, we
handpicked high-resolution base videos from the most recent video benchmark
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dataset, achieving an average resolution of (1, 358×2, 412) pixels in our dataset.
This deliberate choice guarantees that our dataset matches the resolution of
modern cameras, thus enabling high-quality shadow detection. The utilization of
high-resolution datasets provides several advantages. Firstly, it leads to improved
visualization of shadow textures and details, enhancing the model quality based
on it. Additionally, our dataset is more compatible with contemporary cameras
and screens, making its integration into real-world applications much more seam-
less. Lastly, the availability of high-resolution datasets opens up greater potential
for future research and development in the field of shadow detection.

Table 2. Comparison of training and testing sets on ViSha [4], VISAD [40], and CVSD
datasets. Our CVSD dataset exceeds the others in the number of frames, meanwhile
boasts a significantly higher average of disconnected shadow area and mean resolution.

Dataset Training Set Testing Set

Frames Avg Num Avg Ratio Mean Resolution Frames Avg Num Avg Ratio Mean Resolution

ViSha [4] 4,788 4.7 15.1% 681 × 825 6,897 6.2 9.6% 701 × 905

VISAD [40] 1,125 8.1 22.0% 700 × 1, 208 3,063 8.8 19.1% 820 × 1, 458

CVSD 8,026 13.6 7.5% 1,405 × 2,493 11,73116.5 7.7% 1,334 × 2,358

Count of Disjointed Shadow Areas. We measure the number of distinct
shadow regions by counting the disjoint shadow areas in each frame. We dis-
regard any shadow region that occupies less than 0.01% of the total image
and set the maximum number to 66. As shown in Table 2, our average num-
ber of shadows significantly exceeds that of other datasets. Reflecting real-world
complex shadow patterns where shadows are present but not dominating, our
average ratio of shadows is 8.3% for training and 7.3% for testing. The distribu-
tion of shadow instances (Fig. 2b) further supports our findings. The majority
of frames in the ViSha and VISAD datasets contain fewer than 10 dominant
shadow instances per frame. In contrast, our dataset exhibits a much higher
number of shadow instances, demonstrating our superior ability to represent
real-world complex shadow patterns.

4 Method

4.1 Overview

In this work, we formulate the task of complex video shadow detection as a
conditioned feature adaption problem in both temporal and spatial domains.
We propose a novel two-stage training paradigm including the first stage (Fig. 3)
involves training an image-level model, and the second stage (Fig. 4) transfers the
pre-trained image-level model to dynamic video-level with detail concentration.
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4.2 First Pre-training Stage

In the first pre-training stage (Fig. 3), by following [70], the network takes a
single image X as input. Similar to traditional image-level models, it generates
hierarchical feature maps Fi and learns to create a shadow mask Y .

Y = I(X), Fi = ET (X). (1)

Here, encoder E (marked gray) which consists of Conv2D, flatten, and layer norm
operations, together with transformer block T (marked blue) of the image-level
model I, transform the input image into multi-level feature maps Fi, i ∈ 1, 2, 3, 4
represents feature at the level i.

Fig. 3. Image-domain pre-training stage for image shadow detection. Once trained on
individual images, the encoders acquire the basic shadow feature extraction ability.

4.3 Second Feature Adaption Stage

The target of the second training stage (Fig. 4a) is to transfer the image-level
model I to the video-level model V, which is capable of reasoning about temporal
sequences in videos and spatially detailed information. We apply the encoder E
of the pre-trained image-level model I to incorporate both temporal and spatial
auxiliary information. The pre-trained encoder E (marked gray) and its trainable
copy E ′ (marked red) are embedded in our proposed Temporal-Adaption Block
(Fig. 4b) and Spatial-Adaption Block (Fig. 4c).

Y = I(X) → Y = V(X,R,Chr), (2)

where X is main frame, R is reference frame and Chr is the cropped high-
resolution local patch.

As depicted in Fig. 4, reference frames are progressively fused using our
Temporal-Adaption Block during the encoding phase. A low-resolution mask
Mlr is generated using the intermediate feature F4, which serves as a guide
to pinpoint potential shadow locations. With this position hint, the original
main frame X̂ is locally cropped into several high-resolution patches Chr. These
patches are then integrated into the low-resolution global feature Flg using our
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Fig. 4. We transfer the pre-trained image-level model to video-level model (a) using
Temporal-Adaption Block (b) which emphasizes deformable parts of the shadows while
preserving consistent features and Spatial-Adaption Block (c) that obtains a high-
quality mask by integrating high-resolution local patch information into global low-
resolution context features. (Color figure online)

proposed Spatial-Adaption Block during the decoding phase. By incorporating
temporal information from neighboring frames and integrating high-resolution
local patches, our model is capable of generating a high-quality mask Mhq. The
optimization goal is given by

L = LBCE(Mhq, G) + LHinge(Mhq, G) + λ1LBCE(Mlr, Ĝ) + λ2LHinge(Mlr, Ĝ),
(3)

where LBCE(·) and LHinge(·) denote the BCE loss and the lovász-hinge loss. Mlr

and Mhq denote low-resolution mask and high-quality mask. G is a ground-truth
mask and Ĝ is a down-sampled ground-truth mask.

Temporal-Adaption Block. We employ a pre-trained image-level encoder E
to estimate cross-frame information progressively. It takes input as reference
frame Ri+1 in level i + 1 and context feature Fi in level i, to output a fused
global feature F̃i+1. Inspired by ControlNet [74], we freeze the parameters Θ of
the E and concurrently create a trainable copy E ′. The frozen parameter helps
to preserve the original redundant context of the main frame. And E ′ helps to
capture discriminative features across different reference frames. We formulate
the cross-frame feature fusion process of our Temporal-Adaption Block as:

F̃i+1 = E(Fi;Θ) + Z(E ′(Fi + Z(Ri+1);Θ′)). (4)

In this step, we follow a progressive fusion protocol, where frames near/farther
away the main frame contribute more/less. Therefore, reference frames are not
fed in the same resolution. When the reference image undergoes encoding, it
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is scaled into different sizes to match the dimensions of Fi with resolutions of
H

2i+1 × W
2i+1 . Context feature is faithfully preserved using the frozen encoder E . The

trainable copy E ′ outputs a temporal discriminative feature. Here, Z represents
zero convolution. Finally, the context feature and temporal discriminative feature
are added together to obtain the fused global feature F̃i+1.

As shadows deform across time, directly applying self-attention leads to sub-
optimal solutions and heavy computation. Therefore, we incorporate modified
self-attention with channel-wise attention to achieve deformable feature match-
ing. This is done by generating query Q, downscaled key K/α, and downscaled
value V/α mapped from the fused global feature. Additionally, we compute the
channel-wise attention by reshaping the queries and key projections, resulting in
a transposed-attention map Â of size R

C×C . The final output Fi+1 of Temporal-
Adaption Block is given by the sum of fused global feature F̃i+1, self-attention
output, and channel-wise attention output:

Fi+1 = F̃i+1 + SA(Q,K/α, V/α) + CA(Q̂, K̂, F̂i+1). (5)

Mask-Guided Cropping. Shadows in complex real-world settings are intri-
cate. A simple upscale from a downgraded feature may result in the loss of local
details. Therefore, it is crucial for a model to integrate non-downscaled informa-
tion. However, directly inputting all non-downscaled patches into the network
is computationally demanding and unfeasible. To maximize the preservation of
local details, we propose a mask-guided cropping strategy that selectively crops
areas of the original main frame X̂ that truly contain shadows. With the low-
resolution shadow mask Mlr generated using the intermediate feature F4, we
identify potential shadows and calculate their bounding boxes. By cropping the
original resolution image X̂ accordingly and resize operation We obtain high-
resolution local patches Chr ∈ R

N×512×512×3. N represents the patch num-
ber. Please note those box crops are directly taken from the original size (e.g.,
3, 840 × 2, 160), preserving high-resolution local details.

Spatial-Adaption Block. We resort to a pre-trained image encoder E with
the ability to process high-resolution local patch information. Similar to the
Temporal-Adaption Block, we freeze the parameters Θ of the pre-trained image-
domain encoder and simultaneously create a trainable copy E ′. The cross-
resolution feature fusion of our Spatial-Adaption Block can be formally expressed
as:

F̃cr = E(F0;Θ) + Z(E ′(F0 + Z(Chr);Θ′)), (6)

where F̃cr is cross-resolution feature and Chr represents high-resolution local
patches. By simply repeating the main frame F0 along a batch dimension, we
can match the dimension of local patches Chr ∈ R

N×512×512×3. The frozen
parameter Θ is used to preserve the original low-resolution context of the main
frame. While the trainable copy E ′ captures high-resolution local features.

The positions of cropped patches are represented with B ∈ R
128×128×64,

following the prompt encoding strategy [28]. We add position encoding (PE) to
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the low-resolution global feature Flg. To embed Flg with the position of high-
resolution local details, we enable localization ability by:

Flg = Flg + Cross(PE(Flg),SA(B)) + Cross(SA(B),PE(Flg)). (7)

We then direct the model’s attention to critical local regions with the cross-
attention to get a high-quality main frame feature Fhq, which can be written
as:

Fhq = Conv(F̃cr) + Cross(Conv(F̃cr), Flg). (8)

5 Experimental Results

5.1 Implementation Details

We utilize the PyTorch and PyTorch-Lighting frameworks to construct our net-
work. In the first stage, we employ Segformer [70] as our image-level model and
pre-train it on both training set separately. It is important to note that each sam-
ple is treated as an independent image, disregarding any temporal information
in the first stage. In the second stage, we transfer the pre-trained image-domain
model to incorporate temporal correlation and local high-resolution information.
Each image is fed empirically in a resolution of 512 × 512 along with 4 neigh-
boring frames. For optimization, we employ the Adan [71] optimizer with an
initial learning rate of 1.5 × 10−5 and a weight decay of 0.02. All experiments
are trained on a single NVIDIA GeForce RTX 3090 GPU.

5.2 Datasets and Evaluation Metrics

We conduct evaluations on both the ViSha [4] dataset and our CVSD dataset.
We adopt the same data preprocessing strategy as outlined in [4]. To provide a
quantitative comparison of the effectiveness of various video shadow detection
methods, we utilize four commonly used evaluation metrics: MAE, Fβ , IoU, and
BER [4,36]. A lower MAE and BER score, along with higher Fβ and IoU scores,
indicate superior video shadow detection performance.

5.3 Comparison with SOTA Methods

Comparative Methods. We compare our method with existing Video Object
Segmentation (VOS), Image Shadow Detection (ISD), and Video Shadow Detec-
tion (VSD) methods. We directly download available results on the ViSha dataset
from [4,35]. We retrain the public codes of FDRNet [35] and SDCM [4] for a fair
comparison, as there are no reported results on the ViSha dataset. We should
note that the reason we report a lower result of the DAS [66] is because it requires
the first-frame ground-truth bounding box as input. To ensure a fair compari-
son, we replace the first-frame ground-truth bounding box with the bounding box
generated by an image shadow detection model. We also train all these methods
on public codes with the same settings on our CVSD dataset. This adjustment
ensures consistency in the evaluation process and allows for a reliable comparison
between our method and the existing state-of-the-art methods.
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Table 3. Quantitative comparison between our method with the existing SOTA meth-
ods on the ViSha dataset and our CVSD dataset.

Tasks Methods ViSha [4] CVSD

MAE ↓ F β ↑ IoU ↑ BER ↓ MAE ↓ F β ↑ IoU ↑ BER ↓
VOS STM [48] 0.068 0.597 0.408 25.69 0.085 0.519 0.401 20.74

COSNet [39] 0.040 0.705 0.514 20.50 0.089 0.554 0.417 22.52

FEELVOS [64] 0.043 0.710 0.512 19.76 0.081 0.496 0.385 23.13

ISD BDRAR [76] 0.050 0.695 0.484 21.29 0.071 0.538 0.416 29.26

DSD [75] 0.043 0.702 0.518 19.88 0.086 0.502 0.408 22.16

MTMT [5] 0.043 0.729 0.517 20.28 0.074 0.550 0.402 20.17

FSDNet [22] 0.057 0.671 0.486 20.57 0.091 0.475 0.334 24.99

FDRNet [77] 0.044 0.612 0.497 20.23 0.079 0.531 0.376 28.14

SDCM [78] 0.053 0.643 0.485 21.20 0.098 0.497 0.355 30.31

VSD TVSD [4] 0.033 0.757 0.567 17.70 0.099 0.539 0.369 27.28

STICT [40] 0.046 0.702 0.545 16.60 0.073 0.608 0.447 23.27

SC-Cor [11] 0.042 0.762 0.615 13.61 0.070 0.573 0.476 19.94

SCOTCH and SODA [35] 0.029 0.793 0.640 9.07 0.082 0.585 0.426 23.27

DAS [66] 0.032 0.788 0.613 16.47 0.087 0.561 0.435 19.15

� Ours 0.027 0.801 0.684 8.96 0.046 0.638 0.515 18.32

Quantitative Comparison. Table 3 reports a quantitative comparison
between our proposed method and SOTA methods on the ViSha dataset [4] and
our CVSD dataset. Our approach outperforms all other SOTA methods across
all evaluation metrics on both datasets, demonstrating its superior performance.
However, it is crucial to acknowledge that despite our significant achievements
in video shadow detection on previous benchmarks, there are still unresolved
challenges when dealing with complex scenes. For instance, the performance
on our CVSD dataset still has a lot of room for improvement, which calls for
more efficient and real-world applicable models. Moreover, it is noteworthy that
all video shadow detection methods exhibit relatively better performance com-
pared to their image-domain counterparts on both datasets. This emphasizes the
importance of considering the temporal aspect in video shadow detection tasks.

Qualitative Comparison. Figure 5 presents a qualitative comparison of the
video shadow detection masks generated by our method and other SOTA meth-
ods. The first four rows of the comparison are derived from the ViSha dataset [4]
(marked blue), while the remaining rows are obtained from our CVSD dataset
(marked red). It is worth noting that we choose results of DSD [75] that show
the best performance as a representative of ISD methods. The results demon-
strate that our method, shown in the 3rd column, outperforms the compared
methods in accurately identifying shadow pixels. Our method effectively detects
various types of shadows against different backgrounds and successfully identi-
fies shadows in video frames containing crowded objects, as observed in the fifth
and sixth rows. In contrast, the compared methods tend to miss or incorrectly
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classify small shadow regions. Additionally, the compared methods often fail to
obtain local shadow details, whereas our method performs better in such sce-
narios. This is evident in row 7, where our method produces highly accurate
detection results with clear shadow boundaries. This indicates that our method
is well-suited for complex real-world video shadow detection task.

Fig. 5. Qualitative comparison of shadow masks generated by our method and other
SOTA methods. The top four rows (labeled in blue) display generated masks using the
ViSha [4] dataset, while the remaining rows (labeled in red) display results using our
CVSD dataset. (Color figure online)

5.4 Ablation Study

Table 4. Ablations on two-stage training paradigm.
Variants of Ours T S ViSha [4] CVSD
- - - MAE ↓ F β ↑ IoU ↑ BER ↓ MAE ↓ F β ↑ IoU ↑ BER ↓
Baseline ✗ ✗ 0.044 0.660 0.532 18.94 0.074 0.445 0.375 24.58
directly train ✗ ✗ 0.175 0.231 0.216 38.38 0.189 0.197 0.183 40.14
directly transfer ✗ ✗ 0.053 0.620 0.487 23.83 0.101 0.429 0.355 28.31

Two-Stage Train-
ing Paradigm. We
present the results
of an ablation study
aimed at evaluating
the effectiveness of
our proposed two-
stage training paradigm. Initially, we obtain the performance of the baseline
network, referred to as the Baseline, which is a stage-1 model trained on individ-
ual images. We examine our paradigm through two different approaches. First,
we experiment with a randomly initialized encoder and train the stage-2 model
directly (referred to as direct train, i.e., the model extracts shadow features with-
out the guidance of a pre-trained encoder.), resulting in model collapse as shown
in the second row of Table 4.

Next, we examine the results of directly transferring the pre-trained image-
level model to the video-level, without introducing our proposed Temporal-
Adaption Block and Spatial-Adaption Block (referred to as direct transfer), as
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shown in the third row of Table 4. We feed reference frames and local patches
into a shared encoder following the two-stage training paradigm with weights
initialized from stage-1. This direct transfer can work to some extent, but the
performance is compromised with the introduction of auxiliary information, as
it does not contribute positively but rather acts as noise.

Table 5. Ablation study on T-Block and S-Block. ‘T’ denotes Temporal-Adaption
Block, and ‘S’ denotes Spatial-Adaption Block. The baseline is the first-stage image-
domain model. � shows only with both our proposed T and S block, the model can
achieve domain transfer from the image domain to the detail-preserving video domain.

Variants of Ours T S ViSha [4] CVSD

- - - MAE ↓ F β ↑ IoU ↑ BER ↓ MAE ↓ F β ↑ IoU ↑ BER ↓
Baseline ✗ ✗ 0.044 0.660 0.532 18.94 0.074 0.445 0.375 24.58

Ours w/o T ✗ ✓ 0.029 0.789 0.675 11.98 0.056 0.629 0.509 22.01

Ours w/o S ✓ ✗ 0.031 0.767 0.636 12.36 0.070 0.541 0.463 19.03

� Our Method ✓ ✓ 0.027 0.801 0.684 8.96 0.046 0.638 0.515 18.32

T-Block and S-Block. Subsequently, we investigate the impact of solely inte-
grating our S block into the network (referred to as “Ours w/o T”), as is shown
in Table 5. We observe that the S block provides more benefits when dealing with
complex shadow structures. This is evident from the greater performance gains
achieved on our CVSD dataset compared to the ViSha dataset. Furthermore, we
explore the effects of adding the T block to our network (referred to as “Ours
w/o S”). It is observed that the T block successfully integrates reference infor-
mation, resulting in a performance boost. Finally, we present the full version
of our second-stage model (referred to as “� Our method”), which incorporates
both the T and S blocks. This model achieves the highest performance on both
datasets, demonstrating the effectiveness of combining our proposed blocks.

Number of Reference Images. We add extra ablations by removing all/3/2/1
reference frames, denoted as 0,1,2,3 to check the integration of reference frames
indeed contributes to the final performance. As is shown in Table 6.

Table 6. Ablation study for varying numbers of
the reference image.
Num of Ref ViSha CVSD

MAE F β IoU BER MAE F β IoU BER
0 0.045 0.657 0.537 17.63 0.072 0.428 0.395 23.58
1 0.033 0.764 0.643 11.76 0.053 0.618 0.481 19.17
2 0.031 0.766 0.645 11.07 0.054 0.633 0.488 18.58
3 0.029 0.787 0.673 10.22 0.051 0.632 0.491 18.47
4(Original) 0.027 0.801 0.684 8.96 0.046 0.638 0.515 18.32

Adding more reference frames
generally enhances overall per-
formance, with the inclusion
of the most neighboring frame
resulting in the highest perfor-
mance gain, which is in line with
our progressive fusion strategy.
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6 Conclusion

In this paper, we introduce CVSD, the first large-scale dataset specifically
designed for complex video shadow detection. This dataset encompasses a wide
range of challenging shadow patterns, aiming to stimulate further research in
detecting complex real-world video shadows. High-quality, complex real-world
video shadow datasets are essential for exploring and improving detection meth-
ods in real-world settings. Our contribution with CVSD is intended to facilitate
progress in this important research area.

We also introduce a novel two-stage paradigm, equipped with the Temporal-
Adaption Block and Spatial-Adaption Block, for complex video shadow detec-
tion. By considering the complex video shadow detection task as a conditioned
feature adaptation problem, we tackle temporally correlated shadow modeling
using the Temporal-Adaption Block, which emphasizes deformable parts of the
shadows while preserving consistent features. Subsequently, we accurately local-
ize intricate shadow details using the Spatial-Adaption Block, which fuses high-
resolution local patch information with global context features. The experimen-
tal comparisons showcase the superior performances of our proposed method on
public and our constructed datasets.
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