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Abstract

Camouflaged Object Detection (COD) seeks to distinguish

objects from their highly similar backgrounds. Existing

work has essentially focused on isolating camouflaged ob-

jects from the environment, demonstrating ever-improving

performance but at the cost of extensive annotations and

complex optimizations. In this paper, we diverge from

this paradigm and shift the lens to isolating the salient

environment from the camouflaged object. We introduce

EASE, an Environment-Aware unSupErvised COD frame-

work that identifies the environment by referencing an envi-

ronment prototype library and detects camouflaged objects

by inverting the retrieved environmental features. Specifi-

cally, our approach (DiffPro) uses large multimodal mod-

els, diffusion models, and vision-foundation models to

construct the environment prototype library. To retrieve

environments from the library and refrain from confus-

ing foreground and background, we incorporate three re-

trieval schemes: Kernel Density Estimation-based Adap-

tive Threshold (KDE-AT), Global-to-Local pixel-level re-

trieval (G2L), and Self-Retrieval (SR). Our experiments

demonstrate significant improvements over current unsu-

pervised methods, with EASE achieving an average gain

of over 10% on the COD10K dataset. When integrated

with SAM, EASE surpasses prompt-based segmentation ap-

proaches and performs competitively with state-of-the-art

fully-supervised methods. Code is available at https:

//github.com/xiaohainku/EASE.

1. Introduction

Camouflaged Object Detection (COD) [15] focuses on

identifying objects that blend in with their surroundings,

making them visually challenging to detect, as indicated by
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Figure 1. (Left) Feature visualization from DINOv2 [55] shows

that objects blend seamlessly with their surroundings, making it

extremely challenging to distinguish foreground solely based on

feature similarity due to a lack of clear boundaries. (Right) EASE

offers a solution by shifting focus from direct feature comparison.

Instead of relying on inter-feature similarity alone, EASE identi-

fies background regions by comparing features against predefined

environment prototypes. Camouflaged objects are then isolated by

inverting this background detection.

the left part of Fig. 1. Existing COD methods focus on iden-

tifying hidden cues within the environment to detect the

concealed. Fully-supervised learning approaches in COD

tackle the challenge by designing architectures that capture

fine camouflage details in complex settings, using bottom-

up/top-down [15, 16, 53] or multi-stream [76, 82] struc-

tures to leverage dense annotations. In a similar vein, semi-

supervised learning [79] seeks to maximize the learning of

camouflage features with minimal annotation. To further re-

duce the reliance on extensive labeling, weakly-supervised

learning relies on sparse annotations, like points [8], scrib-

bles [26], boxes [79] or pseudo-labels [23], to guide mod-

els in distinguishing camouflaged objects from their back-

grounds.

Another line of research revolves around prompt-based

segmentation, devoid of reliance on annotations. A typ-

ical paradigm involves using Large Multimodal Mod-
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els (LMMs) to identify categories [28, 29] or bounding

boxes [34, 70] of camouflaged objects. These outputs then

serve as prompts within SAM [39] to achieve accurate seg-

mentation.

The above approaches focus on improving the detection

of non-salient camouflaged objects from the salient envi-

ronment—similar to discerning a glass ball within a bottle

of water. Supervised methods have shown notable progress,

yet striking the ideal balance between performance and an-

notation expense warrants further exploration. For prompt-

based segmentation, the hallucination [31, 43] originating

from LMMs leaves a large performance gap with supervised

learning ascribed to the high similarity between the camou-

flaged objects and the environment.

If finding the glass ball is so complicated, we would like

to ask: why don’t we just pour off the water?

When humans cannot immediately locate camouflaged

objects, they often rely on their prior knowledge about the

environment, systematically filtering out extraneous details

until the target emerges. Inspired by this cognitive strategy,

we introduce EASE. As illustrated in Fig. 1, rather than

directly targeting camouflaged objects, EASE emphasizes

the surrounding environment, retrieving from a specially

crafted environment prototype library. It then identifies the

camouflaged object by inverting the retrieved details. To

unleash the potential of EASE, we consider the key to be ➊

the prototype library and ➋ retrieval schemes.

Instead of relying on the laborious manual collec-

tion of environmental prototypes from online sources or

datasets—which may also risk revealing camouflaged ob-

ject information—our proposed DiffPro utilizes foundation

models to automatically build an environment-focused pro-

totype library. First, we employ Large Multimodal Models

(LMMs) such as LLaVA-1.5 [50] to define a set of envi-

ronment categories. Recognizing broad environmental con-

texts is a simpler task for LMMs than identifying camou-

flaged objects. To create diverse prototypes that exclude

camouflaged objects, we take advantage of the powerful

conditional generation abilities of diffusion models like Sta-

ble Diffusion [61] to efficiently generate a range of envi-

ronmental images. Finally, self-supervised vision founda-

tion models, such as DINOv2 [55], are used to extract both

global (average-pooled) and local (pixel-level) feature vec-

tors from these images.

The prototype library enables us to assess whether a tar-

get belongs to the environment or is a camouflaged object

by retrieving the top-N prototypes and setting a similarity

threshold based on their average. However, fixed thresh-

olds are unsuitable given the variability across camouflage

scenarios, and they also add extra hyperparameters, com-

plicating the model. To resolve this, we introduce KDE-AT,

which uses kernel density estimation to model the similar-

ity distribution, allowing the minimum value to function as

a flexible, adaptive threshold that reduces complexity and

enhances detection reliability.

For effective and efficient retrieval, we propose Global-

to-Local retrieval (G2L). G2L first identifies the top-K im-

ages using global prototypes and then performs pixel-level

retrieval on these selected images. This two-step approach

sharpens retrieval precision to a pixel-by-pixel level while

reducing the number of prototypes needed, eliminating re-

dundant retrievals, and enhancing overall efficiency.

To address the distribution gap between camouflaged

and generated images that may impact retrieval accuracy,

we introduce a Self-Retrieval (SR) approach. Unlike G2L

that relies on external prototype libraries, SR uses its

own features as the prototype reference. SR includes two

prototypes—foreground and background—derived through

mask-averaged pooling over target features, guided by G2L

masks. The similarity of each pixel is determined by the

contrast between these prototypes. By incorporating inter-

feature similarity, SR effectively refines retrieval accuracy,

reducing false positives and negatives.

Extensive experiments conducted across multiple

datasets showcase that our EASE substantially outperforms

the SOTA unsupervised methods. Our contributions are

summarized as follows:

• We introduce a new perspective to understand COD, i.e.,

stripping the environment from the camouflaged rather

than finding the camouflaged from the environment. The

proposed approach EASE segments camouflaged objects

through retrieving from the prototype library in a training-

free manner, substantially reducing the expense of anno-

tation and training.

• To construct the environment prototype library, we pro-

pose DiffPro, an automatic and efficient pipeline that mit-

igates issues where camouflaged objects in the environ-

ment library could obscure retrieval decisions. DiffPro

addresses this by leveraging multiple foundation models

in a collaborative framework.

• We devise multifaceted retrieval schemes (including

KDE-AT, G2L, and SR) to effectively and efficiently iso-

late environments from camouflaged objects. Extensive

experiments speak to the efficacy of our method.

2. Related Work

2.1. Camouflaged Object Detection

Camouflaged Object Detection [15, 77] is attracting in-

creasing research attention because of its distinct challenges

and real-world applicability. Existing efforts have pri-

marily focused on disentangling camouflaged objects from

the environment, and can be categorized into supervision-

based [7, 16, 20, 21, 24, 25, 30, 32, 33, 41, 47, 48, 51, 53,

56, 67, 68, 75, 76, 82–84] and prompt-based [28, 29, 70]

segmentation depending on whether supervision signals are
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required or not. Supervision-based methods can be further

divided into fully-supervised and weakly-supervised learn-

ing, where fully-supervised learning employs dense anno-

tations as signals while weakly-supervised learning utilizes

sparse supervision to ease the labeling burden. Another line

of research, prompt-based segmentation, extracts insights

on camouflaged objects from LMMs by drawing on cate-

gory [28, 29] or localization [29, 70]. These insights are

then processed to generate prompts compatible with SAM,

which then performs the segmentation.

Similar to prompt-based segmentation, our method

is also supervision-free and foundation model-dependent.

However, instead of searching for camouflaged objects di-

rectly from the environment, we eliminate the environment

and let the camouflaged objects reveal themselves.

2.2. Unsupervised Object Segmentation

Unsupervised Object Segmentation [1, 54, 71] aims to seg-

ment objects without any supervision signals. Current pre-

vailing unsupervised methods revolve around segmenting

objects using features from self-supervised learning mod-

els [6, 55]. LOST [64] utilizes the activation features of a

pre-trained self-supervised visual Transformer, DINO [6],

selecting regions with low similarity as seeds and expand-

ing them to identify object boundaries, thereby achieving

object localization. TokenCut [73] adopts features as ver-

tices of the graph, cosine similarity between features as

the weights of edges, and then employs Normalized Cut

(Ncut) [63] to segment the target into foreground and back-

ground parts. Based on this, CutLER [72] proposes Mask-

Cut, which can generate multiple masks compared to To-

kenCut. CuVLER [1] leverages features from multiple

DINO and DINOv2 to perform Ncut and derive the final

mask by clustering and voting. DiffCut [10] utilizes fea-

tures from the diffusion model for Ncut instead of DINO.

The most similar philosophy to our approach is

FOUND [65], which also discovers objects by looking for

the background rather than the foreground. FOUND utilizes

the less weighted features in the DINO self-attention maps

as seed patches and obtains the coarse background mask by

similarity matching. The reversed background masks are

further regarded as supervision in the self-supervised re-

finement stage for fine segmentation. However, the high

similarity between camouflaged objects and the environ-

ment leads to a remarkable decrease in self-supervised fea-

ture differentiation (see Tab. 1). Therefore, effective sep-

aration of background and foreground cannot be achieved

solely based on the similarity between features (Fig. 1 left).

We propose prototype library-based retrieval to address this

problem. Our starting point, as illustrated in Fig. 1, is that

even though two features are similar, they may not maintain

consistent similarity with the third party.

2.3. Retrieval­Augmented Generation

In NLP, Retrieval-Augmented Generation (RAG) [4, 19, 44]

aims to compensate for the deficiencies of language models

on knowledge-intensive tasks, while illuminating their de-

cisions and updating their world knowledge. This paradigm

has recently catalyzed popularity in the vision community

and spawned promising applications in a growing number

of domains, such as long-tailed recognition [57], video cap-

tioning [78], continual learning [58], image retrieval [69]

and object detection [38].

The most related to our method is retrieval-based seg-

mentation [3, 36, 74]. These methods generate a series of

category prototypes using diffusion models and then em-

ploy pre-trained segmentation models [74], unsupervised

segmentation methods [36], or superpixel segmentation al-

gorithms [3] to generate optimized mask proposals, which

are assigned semantic class through retrieval. For these

methods, generating an image of a dog may be accompa-

nied by other undesirable ones, such as grass or trees, which

would dilute the prototype semantics. However, our method

focuses not on the foreground category but on the back-

ground. Our DiffPro generates target-only prototypes and

excludes potential interferences. To obtain fine segmenta-

tion, we design a series of retrieval schemes instead of using

existing segmentation methods.

3. Method

Given an image, unsupervised camouflaged object detection

aims to generate a binary mask containing camouflaged ob-

jects without any supervision as well as training. Unlike

previous approaches [15, 70] that focused on painstakingly

searching for camouflaged objects from the environment,

our approach focuses on detecting the obvious environment

and then inverting it to obtain foreground objects. Building

on a series of methods for discovering objects using self-

supervised features [64, 65, 72, 73], our approach accom-

plishes object segmentation through retrieval, utilizing the

similarity distribution of features to a third party rather than

the similarity between features.

The overview of our proposed EASE is illustrated in

Fig. 2. First, we propose DiffPro to craft the environ-

ment prototype library leveraging various foundation mod-

els (Sec. 3.1). Second, for effective and efficient re-

trieval, we propose G2L to implement global-to-local re-

trieval (Sec. 3.2). Third, we propose SR to supplement

G2L retrieval by utilizing the similarity between features,

where the features themselves serve as the prototype li-

brary (Sec. 3.3). Finally, we introduce KDE-AT, which pro-

vides adaptive similarity thresholds for each image instead

of fixed thresholds via hyperparameter search (Sec. 3.4).
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Figure 2. EASE consists of two main components: DiffPro and Retrieval. In DiffPro, LMMs establish an environmental category set based

on existing datasets. With these categories, Stable Diffusion generates corresponding environmental images. Using DINO, these images

are processed to extract both global and local features, forming a comprehensive environment prototype library. During Retrieval, DINO

generates a set of patch embeddings from the target images. In the first stage, G2L retrieval, the top-K images in the prototype library

that are most similar to the environment of the target image are retrieved. Next, a more detailed retrieval is conducted on a subset of local

features from the top-K images. To enhance retrieval precision and mitigate potential noise, Self-Retrieval (SR) uses coarse masks from

the G2L process. These masks are employed to create global average pooling features for both foreground and background regions, which

are then retrieved again for refinement. All retrieval thresholds are adaptively set using KDE-AT, ensuring optimal results across varied

scenarios.

3.1. Environment Prototype Library

We propose DiffPro (left in Fig. 2) to build a prototype li-

brary that contains only environments.

The first step is to get the environment category set. In-

spired by the power of LMMs demonstrated on VQA [2,

11, 45, 49], we utilize LMMs to derive the environment

set. Although previous works [29, 70] have shown that the

imperceptibility of camouflaged objects can cause poten-

tial hallucinations in LMMs, our approach enables LMMs

to recognize the salient environment rather than the camou-

flaged object and therefore bypasses the potential for erro-

neous output. Given the image datasets {Ii}ni=1 where n

denotes the total number of images, the environment cate-

gory could be derived by Ci = LMM(Ii, Pc). Pc denotes

the prompt. We use “What is the environment of this photo?

Answer the question using a single word or phrase” for it.

By removing repeated and irrelevant categories, all Ci con-

stitute the set of environment categories {Cj}mj=1, where m

denotes the total categories.

The second step is to get the environment image set. An

intuitive idea is to retrieve images from the Web via the

search engine or from an existing dataset such as COCO-

Stuff [5]. However, retrieval via the Web takes a significant

amount of time, even without labeling the images. In addi-

tion, both retrieved images and images in existing datasets

suffer from serious object-environment coexistence issues.

For example, flowers are often accompanied by bees or but-

terflies. The presence of objects in the environment library

will significantly distort the similarity distribution and af-

fect the separation of the environment.

To address these issues, we turn to the powerful condi-

tional generation capabilities of diffusion models [27, 61]

to automatically generate images containing only the envi-

ronment. For each category Cj in the environment category

set {Cj}mj=1, we leverage Stable Diffusion [61] to gener-

ate l images, Gi,Cj
= SD(Cj , Ps), where Ps denotes the

prompt. In this paper, we adopt “a photo of [class]” for Ps.

All generated images make up the environment image set
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{Gi,Cj
}i=1:l,j=1:m.

The third step is to obtain the final environment proto-

type library. We adopt self-supervised models, DINO [6,

55], as the feature extractor. Given the generated image G

in the environment image set {Gi,Cj
}i=1:l,j=1:m, we em-

ploy DINO to extract the patch embeddings E from the last

layers, E = DINO(Gi,Cj
), E ∈ R

h×w×d, where h × w

denotes the resolution of the features and d the embedding

dimension.

For each generated image, local prototypes could be de-

rived as P
l
i,j = Ei,j ∈ R

d. By employing global average

pooling, we get the global feature as

P
g =

1

hw

h∑

i=1

w∑

j=1

P
l
i,j =

1

hw

h∑

i=1

w∑

j=1

Ei,j. (1)

We denote the final environment prototype library as

{(Pg,Pl)}.

3.2. Global­to­Local Retrieval

We propose G2L to efficiently retrieve the environment

from coarse to fine. As illustrated in Fig. 2 (right), given

the test image T ∈ R
H×W×3, we adopt DINO to extract

the patch embeddings F ∈ R
h×w×d. We first perform a

global retrieval. For each global feature P
g ∈ R

d in the

prototype library {(Pg,Pl)}, the cosine similarity between

Fi,j ∈ R
d and P

g could be formulated as

Si,j =
Fi,j ·Pg

∥Fi,j∥∥Pg∥ . (2)

For each Fi,j, we retrieve the top-N global features and

adopt the average cosine similarity to replace Si,j,

Si,j =
1

N

N∑

f=1

Fi,j ·Pg
f

∥Fi,j∥∥Pg
f ∥

. (3)

By setting an adaptive threshold (see Sec. 3.4) for S, we

could get the coarse mask Mc ∈ R
h×w.

We then perform local retrieval on local features P
l to

get the finer mask. However, the number of local features is

h×w times larger than that of global features. The retrieval

time will also increase by a corresponding factor compared

to the global retrieval. To enhance retrieval efficiency, we

focus on local features with high similarity to the target,

which are often concentrated within a limited set of images.

By selecting local features from the top-K (note that top-K

is different from the previously mentioned top-N) similar

images, we construct a streamlined sub-library for retrieval.

This approach significantly optimizes the retrieval process.

Given the coarse mask Mc ∈ R
h×w, we could get the

mask average pooling feature for F,

Fmap =

∑
i,j Mc ⊙ F
∑

i,j Mc

. (4)

We calculate the similarity between Fmap and all global

features and retrieve the top-K images to form the sub-

library. A similar retrieval is conducted for the sub-library.

We then get the fine mask Mf ∈ R
h×w for local retrieval.

3.3. Self­Retrieval

The distribution gap between the camouflaged and gener-

ated images may result in some pixels being misrecognized.

To mitigate this, we propose Self-Retrieval (SR), where the

embedding F itself acts as the prototype. Given the mask

M1 = Mc+Mf

2
from the G2L stage, we obtain the back-

ground and foreground prototypes as

P
b =

∑
i,j M1 ⊙ F
∑

i,j M1

, (5)

P
f =

∑
i,j(1−M1)⊙ F
∑

i,j(1−M1)
. (6)

It is notable that while M1 may contain noise, mask aver-

aging pooling mitigates this issue and enables prototypes to

roughly characterize the foreground and background.

For each Fi,j, we compute its cosine similarity to the

background and foreground prototypes and characterize the

environment similarity using the difference between them.

S
b
i,j =

Fi,j ·Pb

∥Fi,j∥∥Pb∥ , (7)

S
f
i,j =

Fi,j ·Pf

∥Fi,j∥∥Pf∥ , (8)

S
s
i,j = S

b
i,j − S

f
i,j. (9)

After normalizing S
s, we apply KDE-AT again to obtain the

environment mask M2 ∈ R
h×w for the SR stage.

The final mask could be derived by reversing the envi-

ronment mask,

M = 1− M1 +M2

2
. (10)

3.4. Kernel Density Estimation­based Adaptive
Threshold

In this section, we introduce the aforementioned Kernel

Density Estimation-based Adaptive Threshold (KDE-AT).

We propose KDE-AT to provide an adaptive threshold for

each similarity distribution instead of setting a fixed thresh-

old for all distributions via hyperparameter search.

Taking the similarity S ∈ R
h×w in G2L stage for exam-

ple, we first reshape it to R
hw. The kernel density estimator

could be formulated as

KDE(x) =
1

hw

hw∑

i=1

Kb(x− xi) =
1

hwb

hw∑

i=1

K(
x− xi

b
),

(11)
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Method Feat. Extra.
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓
FreeSOLO DenseCL-ResNet101 0.659 0.730 0.503 0.101 0.534 0.600 0.333 0.177 0.630 0.725 0.421 0.093 0.611 0.781 0.441 0.128

DiffCut SD-XL-SSD-1B 0.537 0.592 0.374 0.245 0.630 0.683 0.491 0.166 0.591 0.628 0.379 0.160 0.671 0.727 0.531 0.134

LOST DINO-ViT-S/16 0.581 0.732 0.406 0.141 0.573 0.701 0.431 0.173 0.631 0.742 0.438 0.095 0.634 0.755 0.505 0.128

Spectral DINO-ViT-S/8 0.622 0.678 0.471 0.178 0.603 0.673 0.487 0.210 0.588 0.614 0.391 0.169 0.679 0.733 0.559 0.143

MaskCut DINO-ViT-B/8 0.616 0.653 0.473 0.191 0.593 0.640 0.456 0.218 0.594 0.616 0.393 0.189 0.655 0.693 0.524 0.178

MaskCut DINOv2-ViT-L/14 0.687 0.719 0.531 0.115 0.630 0.658 0.494 0.194 0.574 0.572 0.352 0.190 0.646 0.668 0.503 0.177

TokenCut DINO-ViT-S/16 0.652 0.742 0.508 0.134 0.641 0.714 0.506 0.160 0.661 0.739 0.474 0.100 0.721 0.802 0.608 0.101

TokenCut DINOv2-ViT-L/14 0.682 0.705 0.494 0.088 0.620 0.655 0.439 0.144 0.619 0.649 0.373 0.088 0.664 0.699 0.492 0.108

FOUND DINO-ViT-S/8 0.552 0.602 0.381 0.218 0.526 0.578 0.397 0.277 0.488 0.487 0.264 0.248 0.569 0.605 0.410 0.218

FOUND DINOv2-ViT-L/14 0.659 0.745 0.490 0.104 0.558 0.622 0.373 0.172 0.605 0.675 0.386 0.100 0.621 0.693 0.455 0.131

VoteCut DINOv2-ViT-B/14 0.707 0.748 0.567 0.103 0.633 0.693 0.495 0.163 0.641 0.706 0.439 0.104 0.688 0.751 0.555 0.114

VoteCut DINOv2-ViT-L/14 0.657 0.677 0.474 0.112 0.526 0.522 0.303 0.196 0.619 0.646 0.389 0.103 0.609 0.623 0.412 0.140

VoteCut DINO(v2) Ensemble 0.674 0.735 0.546 0.145 0.637 0.702 0.522 0.170 0.690 0.782 0.534 0.092 0.739 0.818 0.649 0.097

EASE DINO-ViT-S/8 0.676 0.765 0.550 0.105 0.653 0.737 0.563 0.166 0.673 0.732 0.514 0.109 0.728 0.790 0.633 0.108

EASE DINOv2-ViT-S/14 0.754 0.848 0.651 0.074 0.692 0.763 0.604 0.138 0.720 0.804 0.582 0.079 0.752 0.832 0.661 0.085

EASE DINOv2-ViT-L/14 0.819 0.899 0.741 0.044 0.749 0.831 0.684 0.098 0.773 0.866 0.656 0.040 0.800 0.884 0.735 0.056

Table 1. Quantitative comparisons of unsupervised segmentation with eight unsupervised methods on four commonly used COD datasets.

“↑ / ↓”: the higher/lower the better. The best and second-best results are bolded and underlined to highlight.

where K denotes the kernel function and b the bandwidth.

In this paper, we adopt the gaussian kernel. So we have

KDE(x) =
1√
2π

1

hwbσ

hw∑

i=1

e
−

(x−xi)
2

2b2σ2 . (12)

σ denotes the standard deviation. For the bandwidth, we

follow Scott’s Rule [62] and set it as

b = (hw)−
1

d+4 , (13)

where d denotes the data dimension.

As shown in Fig. 1, the probability density estimation

of S has a bimodal-like shape, so we adopt the inter-peak

minima as the threshold to isolate the environment from the

camouflaged objects. For more visualizations, please see

Supplementary Fig. 1.

4. Experiment

4.1. Experimental Settings

Datasets and Evaluation Metrics. We evaluate our

method on four commonly used benchmarks, including

CHAMELEON (76 test images) [66], CAMO (250 test im-

ages) [42], COD10K (2,026 test images) [15] and NC4K

(4,121 test images) [51]. Following previous works,

we adopt structure measure (Sα) [13], mean E-measure

(Eφ) [14], weighted F-measure (Fω
β ) [52] and mean abso-

lute error (M ) [59] for evaluation.

Implementation Details. LLaVA-1.5-7b [50] and Stable

Diffusion V1-5 [61] are adopted as the LMM and diffu-

sion model, respectively. We choose DINOv2-ViT-L14 [55]

as the self-supervised model and images are resized to

476 × 476. We generate l = 32 images for each environ-

ment category. For the top-N prototypes and top-K images

during retrieval, we set N = 1024 and K = 64, respec-

tively. Experiments are conducted on an L20. The FAISS

library [35] is leveraged for efficient retrieval.

4.2. Comparison with the SOTAs

Comparison Methods. We conduct comparison exper-

iments in two settings: unsupervised segmentation and

prompt-based segmentation. For unsupervised segmenta-

tion, we compare EASE with six DINO-based methods, in-

cluding LOST [64], TokenCut [73], Spectral [54], Mask-

Cut [72], FOUND [65] and VoteCut [1], one DenseCL-

based method FreeSOLO [71] and a diffusion-based

method DiffCut [10]. We adopt the official codes to imple-

ment these methods for COD. For DINO-based methods,

following CuVLER [1], images are resized to 480×480 for

DINO [6] and 476×476 for DINOv2 [55]. Post-processing,

such as Conditional Random Field (CRF) [40], is discarded

for all methods. For prompt-based segmentation, we ex-

tract bounding boxes from masks and prompt SAM [39] or

HQSAM [37] to implement segmentation. We compare our

method with four prompt-based methods (MMCPF [70],

GenSAM [28], WS-SAM [23] and ProMaC [29]). We

also provide seven SOTA fully-supervised methods (FD-

Net [82], ZoomNet [56], SegMaR [33], HitNet [30], Pop-

Net [76], FSPNet [32] and FEDER [22]) for reference.

Quantitative comparisons. For unsupervised segmenta-

tion, as shown in Tab. 1, our method essentially outper-

forms previous methods under different configurations. Es-

pecially, the best results of our method achieve a ∼10% lead

on all metrics across all datasets compared to the previous

SOTAs. As indicated in Tab. 2, for prompt-based segmen-

tation, EASE incorporated with SAM substantially outper-

forms its SAM-based counterparts. On the more challeng-

ing COD10K and NC4K datasets, our method even com-

pares favorably with fully-supervised methods. These re-

sults demonstrate the effectiveness of our concept of “sepa-

rating the environment”.

Qualitative comparisons. As shown in Fig. 3, compared

to other methods, EASE enables better localization and seg-

mentation of objects, especially for those small and imper-
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Method SAM
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓
Fully-Supervised

FDNet - 0.895 0.951 0.849 0.027 0.840 0.896 0.782 0.063 0.838 0.921 0.747 0.030 0.832 0.895 0.759 0.052

ZoomNet - 0.902 0.943 0.845 0.023 0.820 0.877 0.752 0.066 0.838 0.888 0.729 0.029 0.853 0.896 0.784 0.043

SegMaR - 0.906 0.951 0.860 0.025 0.815 0.874 0.753 0.071 0.833 0.899 0.724 0.034 0.841 0.896 0.781 0.046

HitNet - 0.921 0.967 0.897 0.019 0.849 0.906 0.809 0.055 0.871 0.935 0.806 0.023 0.875 0.926 0.834 0.037

PopNet - 0.917 0.965 0.875 0.020 0.808 0.859 0.744 0.077 0.851 0.910 0.757 0.028 0.861 0.909 0.802 0.042

FSPNet - 0.908 0.943 0.851 0.023 0.856 0.899 0.799 0.050 0.851 0.895 0.735 0.026 0.879 0.915 0.816 0.035

FEDER - 0.887 0.946 0.834 0.030 0.802 0.867 0.738 0.071 0.822 0.900 0.716 0.032 0.847 0.907 0.789 0.044

Prompt-based Segmentaion

WS-SAM-P SAM-ViT-H 0.805 0.868 0.700 0.056 0.718 0.757 0.602 0.102 0.791 0.856 0.663 0.039 0.813 0.859 0.734 0.057

WS-SAM-S SAM-ViT-H 0.820 0.887 0.723 0.048 0.759 0.814 0.667 0.092 0.803 0.877 0.680 0.038 0.829 0.886 0.757 0.052

MMCPF HQSAM-ViT-H - - - - 0.749 0.820 0.680 0.101 0.733 0.803 0.592 0.066 0.767 0.826 0.681 0.083

GenSAM SAM-ViT-H 0.767 0.827 0.673 0.075 0.738 0.803 0.674 0.106 0.773 0.832 0.667 0.065 0.810 0.866 0.751 0.065

ProMaC* SAM-ViT-H 0.833 0.899 - 0.044 0.767 0.846 - 0.090 0.805 0.876 - 0.042 - - - -

EASE SAM-ViT-H 0.853 0.912 0.812 0.044 0.777 0.841 0.748 0.099 0.856 0.914 0.801 0.028 0.849 0.902 0.815 0.051

EASE HQSAM-ViT-H 0.864 0.916 0.827 0.037 0.807 0.865 0.771 0.078 0.866 0.918 0.811 0.023 0.866 0.915 0.833 0.039

Table 2. Quantitative comparisons of prompt-based segmentation. “-”: Not available. “*”: Results from the paper. The best and second-

best results are bolded and underlined to highlight.

Image GT EASE LOST FreeSOLO TokenCut Spectral MaskCutVoteCutFound

Figure 3. Qualitative comparisons with unsupervised methods.

ceptible ones.

4.3. Ablation Study

Effectiveness of DiffPro. Instead of obtaining environment

prototypes from the Web or existing annotated datasets, our

proposed DiffPro leverages a series of foundation models

to automatically craft high-quality, environment-only pro-

totypes, avoiding the time-consuming and laborious web

collection or utilizing annotated data. To validate the effec-

tiveness of DiffPro, we compare it with two methods: one

(Web) crawling images from the Web following keywords,

and the other (GT) using the COD training sets directly, i.e.,

the training sets of COD10K and CAMO, to obtain proto-

types by masking the foreground. As indicated by Tab. 3,

DiffPro keeps on par or outperforms these two methods.

Effectiveness of Retrieval Schemes. We set the base-

line to be the global retrieval and its optimal threshold is

determined by hyperparameter search with an interval of

0.1. Our KDE-AT assigns a distribution-related threshold

to each image, avoiding additional hyperparameters while

achieving a lead of ∼1%, as illustrated by rows a and b of

Tab. 4. While global retrieval portrays the profile of the

environment, it may get confused when dealing with local

details. Our proposed G2L remedies this and delineates ob-

jects and regions at a finer level, bringing about a perfor-

mance gain, as indicated in rows b and c. Finally, consid-

ering that there may be prototypes that are similar to both

the environment and the object, SR retrieves the features

themselves as prototypes, further stretching the similarity

distribution to achieve the best results (row d).

4.4. Further Analysis

Sensitivity of Hyperparameters. We conduct hyper-

parameter sensitivity analysis on CAMO, CHAMELEON,

and COD10K. For simplicity, we adopt score = Sα+Eφ+
Fω
β to indicate the overall performance. As shown in Fig. 4,

EASE is robust to different hyper-parameter settings. We

believe this stems from the fact that we discard the most in-

fluential threshold hyperparameter as well as the design of

multifaceted retrieval schemes.

Different Foundation Models. For feature extractors,

we experiment DINO [6], DINOv2 [55], MoCoV3 [9],

MAE [59], and generative models [18, 61]. For diffusion

models, we conduct experiments on SD-V1-5 [61], SD-V2-

1 [61], SD-XL [60], and SD-3.5-L-Turbo [12]. For SAM,

we adopt HQ-SAM [37] and the vanilla SAM [39]. Our

experiments show that: a). DINOv2 outperforms other

self-supervised models; b). Different diffusion models per-
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Method
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓
GT 0.816 0.893 0.740 0.042 0.749 0.822 0.683 0.109 0.759 0.846 0.641 0.058 0.793 0.873 0.724 0.066

Web 0.821 0.895 0.741 0.043 0.747 0.822 0.679 0.104 0.770 0.862 0.654 0.044 0.806 0.886 0.741 0.055

DiffPro 0.819 0.899 0.741 0.044 0.749 0.831 0.684 0.098 0.773 0.866 0.656 0.040 0.800 0.884 0.735 0.056

Table 3. Ablation experiments of DiffPro.

index baseline KDE-AT G2L SR
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓
a ✔ ✘ ✘ ✘ 0.793 0.877 0.704 0.056 0.720 0.808 0.638 0.099 0.737 0.830 0.600 0.048 0.749 0.832 0.666 0.074

b ✔ ✔ ✘ ✘ 0.806 0.891 0.722 0.048 0.729 0.807 0.648 0.096 0.749 0.838 0.615 0.045 0.763 0.842 0.679 0.067

c ✔ ✔ ✔ ✘ 0.812 0.894 0.729 0.047 0.741 0.826 0.672 0.103 0.763 0.857 0.639 0.043 0.788 0.875 0.716 0.062

d ✔ ✔ ✔ ✔ 0.819 0.899 0.741 0.044 0.749 0.831 0.684 0.098 0.773 0.866 0.656 0.040 0.800 0.884 0.735 0.056

Table 4. Ablation experiments of retrieval schemes.
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Figure 4. Hyperparameter sensitivity analysis. (a) Number of generated images for each environment category; (b) Average similarity of

Top-N prototypes; (c)Top-K environment images for local retrieval.

Method
MAS3K RMAS500

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓
LOST 0.646 0.753 0.490 0.107 0.566 0.672 0.358 0.132

FreeSOLO 0.613 0.693 0.403 0.111 0.552 0.670 0.283 0.102

TokenCut 0.714 0.790 0.570 0.089 0.575 0.655 0.366 0.152

Spectral 0.653 0.687 0.497 0.143 0.548 0.571 0.354 0.212

MaskCut 0.684 0.714 0.537 0.145 0.543 0.563 0.347 0.231

FOUND 0.557 0.580 0.370 0.205 0.483 0.491 0.261 0.253

DiffCut 0.513 0.628 0.314 0.218 0.436 0.537 0.200 0.265

VoteCut 0.633 0.685 0.450 0.127 0.550 0.567 0.288 0.140

EASE 0.780 0.868 0.682 0.048 0.720 0.822 0.585 0.049

Table 5. Quantitative comparisons on marine animal segmenta-

tion.

form comparably; c). HQ-SAM outperforms SAM, and

the segmentation performance does not tend to saturate as

the model parameters increase. Please see Supplementary

Tab. 1, 2, and 3 for more details.

Different Layers. For the best-performing feature extractor

DINOv2, we experiment with features from different lay-

ers. Our experiments show that features from the last layer

capture the most valuable information. Please refer to Sup-

plementary Fig. 2, Tab. 4 and 5.

Generalization. We apply our method to marine ani-

mal segmentation [80], which is also quite challenging

due to varying environmental conditions [81]. Two com-

monly used datasets, MAS3K [46] (1,141 test images) and

RMAS [17] (500 test images), are adopted for evaluation.

As indicated by Tab. 5, our approach delivers consistent

performance advancements, which further demonstrates the

effectiveness of EASE in isolating the environment.

5. Conclusion

In this paper, unlike previous COD work that focuses on

mining camouflaged objects from the environment, we shift

the paradigm by removing the salient environment and thus

obtaining the target. We isolate environments and high-

light camouflaged objects by retrieving from a library of

environment prototypes. This is accomplished by the “pro-

totype production line” DiffPro and multifaceted retrieval

schemes, including kernel density estimation-based adap-

tive threshold, global-to-local retrieval and inter-feature

similarity-based self-retrieval. We conduct extensive exper-

iments to validate the effectiveness of our method.
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[64] Oriane Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin,

Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud Mar-
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