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Abstract

Although randomized smoothing has demonstrated high certi-
fied robustness and superior scalability to other certified de-
fenses, the high computational overhead of the robustness cer-
tification bottlenecks the practical applicability, as it depends
heavily on the large sample approximation for estimating the
confidence interval. In existing works, the sample size for the
confidence interval is universally set and agnostic to the input
for prediction. This Input-Agnostic Sampling (IAS) scheme
may yield a poor Average Certified Radius (ACR)-runtime
trade-off which calls for improvement. In this paper, we pro-
pose Input-Specific Sampling (ISS) acceleration to achieve the
cost-effectiveness for robustness certification, in an adaptive
way of reducing the sampling size based on the input char-
acteristic. Furthermore, our method universally controls the
certified radius decline from the ISS sample size reduction.
The empirical results on CIFAR-10 and ImageNet show that
ISS can speed up the certification by more than three times at a
limited cost of 0.05 certified radius. Meanwhile, ISS surpasses
IAS on the average certified radius across the extensive hy-
perparameter settings. Specifically, ISS achieves ACR=0.958
on ImageNet in 250 minutes, compared to ACR=0.917 by
IAS under the same condition. We release our code in https:
//github.com/roy-ch/Input-Specific-Certification.

Introduction
Neural networks are known susceptible to adversarial attacks
(Szegedy et al. 2014; Goodfellow, Shlens, and Szegedy 2015).
A line of empirical defenses (Buckman et al. 2018; Song et al.
2018) have been proposed to defend adversarial attacks, but
are often broken by the newly devised stronger attacks (Atha-
lye, Carlini, and Wagner 2018). Existing certified defenses
(Wong et al. 2018; Raghunathan, Steinhardt, and Liang 2018;
Cohen, Rosenfeld, and Kolter 2019) provide the theoretical
guarantees for their robustness. In particular, Randomized
smoothing (Cohen, Rosenfeld, and Kolter 2019) is one of the
few certified defenses that can scale to ImageNet-scale classi-
fication task, showing its great potential for wide application.
Moreover, randomized smoothing has shown high robustness
against various types of adversarial attacks, including norm-
constrained perturbations (e.g. `0, `2, `∞ norms) and image
transformations (e.g. rotations and image shift).
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Figure 1: ISS achieves a better ACR-time trade-off than IAS.
ISS− c1 − c2 denotes that ISS accelerates IAS− c1 at the
controllable certified radius decline (≤ c2). IAS− c1 denotes
that IAS accelerates IAS − 10, IAS − 20 by reducing the
sample size to c1 × 10, 000. ISS always surpasses IAS on
ACR in the same time cost. The results are evaluated on the
ImageNet (σ = 1.0) model trained by (Jeong and Shin 2020).

Despite these advances, randomized smoothing suffers
the costly robustness certification. Specifically, computing
a certified radius close to the exact value needs a relatively
tight lower bound of the top-1 label probability, which re-
quires running forward passes on a large number of samples
(Salman et al. 2019; Jeong and Shin 2020). Such expensive
overheads make them less applicable to the real-world scenar-
ios. Some works (Jia et al. 2020; Feng et al. 2020) proposed
to leverage the runner-up label probability in the certification,
but their performances may suffer from the inevitable loss
in the simultaneous confidence intervals. Traditionally, the
robustness certification is accelerated by reducing the sample
size used for estimating the lower bound (Cohen, Rosenfeld,
and Kolter 2019; Jia et al. 2020), but the vanilla sample size
reduction will lead to a poor ACR-runtime trade-off. It is
critical to develop a cost-effective certification method.

In this paper, we propose Input-Specific Sampling (ISS) to
speed up the certification for randomized smoothing, with-
out hurting too much on the certification performance. The
idea behind ISS is to minimize the sample size for the given
input at the bounded cost of the certified radius decline, in-
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stead of directly applying the same sample size to all inputs.
The idea is realized by precomputing a mapping from the in-
put characteristics to the sample size. Consequently, ISS can
accelerate the certification at a controllable cost. Empirical re-
sults validate that ISS consistently outperforms IAS (Cohen,
Rosenfeld, and Kolter 2019) on ACR. As shown in Fig. 1,
ISS−10−0.05 (ACR=0.958) accelerates the standard certifi-
cation IAS−10, shortening the certification time 962→ 250
mins at the controllable decline (≤ 0.05). Furthermore, ISS
is compatible with all the randomized smoothing works that
need confidence interval, since ISS has no additional con-
straint on the base classifier or the smoothing scheme.

Our contributions can be summarized as follows;

1. We propose Input-Specific Sampling (ISS) to adaptively
reduce the sample size for each input. The proposed input-
specific sampling, for the first time to our best knowledge,
can significantly reduce the cost for accelerating the ro-
bustness certification of randomized smoothing.

2. ISS can universally control the difference between the cer-
tified radii before and after the acceleration. In particular,
the sample size computed by ISS is theoretically tight for
bounding the radius decline.

3. The results on CIFAR-10 and ImageNet demonstrate that:
1) ISS significantly accelerates the certification at a con-
trollable decline in the certified radii. 2) ISS consistently
achieves a higher average certified radius when compared
to the mainstream acceleration IAS.

Related Works
Certified defenses. Neural networks are vulnerable to ad-
versarial attacks (Athalye, Carlini, and Wagner 2018; Eykholt
et al. 2018; Kurakin, Goodfellow, and Bengio 2017; Eykholt
et al. 2018; Jia and Gong 2018). Compared to empirical de-
fenses (Goodfellow, Shlens, and Szegedy 2015; Svoboda et al.
2019; Buckman et al. 2018; Ma et al. 2018; Guo et al. 2018;
Dhillon et al. 2018; Xie et al. 2017; Song et al. 2018), certified
defenses can provide provable robustness guarantees for their
predictions. Recently, a line of certified defenses have been
proposed, including dual network (Wong et al. 2018), convex
polytope (Wong and Kolter 2018), CROWN-IBP (Zhang
et al. 2019), Lipschitz bounding (Cisse et al. 2017). However,
those certified defenses suffer from either the low scalability
or the hard constraints on the neural network architecture.

Randomized smoothing. In the seminal work (Cohen,
Rosenfeld, and Kolter 2019), the authors for the first time
propose randomized smoothing to defend the `2-norm pertur-
bations, which significantly outperforms other certified de-
fenses. Recently, series of works further extend randomized
smoothing to defend various attacks, including `0, `1, `2, `∞-
norm perturbations and geometric transformations. For in-
stance, (Levine and Feizi 2020) introduce the random abla-
tion against `0-norm adversarial attacks. (Yang et al. 2020)
propose Wulff Crystal uniform distribution against `1-norm
perturbations. (Awasthi et al. 2020) introduce∞ → 2 ma-
trix operator for Gaussian smoothing to defend `∞-norm
perturbations. (Fischer, Baader, and Vechev 2020; Li et al.
2020) exploit randomized smoothing to defend adversarial

translations. Remarkably, almost all the randomized smooth-
ing works (Salman et al. 2019; Cohen, Rosenfeld, and Kolter
2019; Zhai et al. 2020; Jeong and Shin 2020; Yang et al. 2020;
Jia et al. 2020) have achieved superior certified robustness to
other certified defenses in their respective fields.

Robustness certification in randomized smoothing. De-
spite its sound performance, the certification of randomized
smoothing is seriously costly. Unfortunately, accelerating the
certification is a fairly under-explored field. The mainstream
acceleration method (Jia et al. 2020; Feng et al. 2020), which
we call IAS, is to apply a smaller sample size for certifying
the radius. However, IAS accelerates the certification at a
seriously sacrifice ACR and the certified radii of specific
inputs. Therefore, it calls for approaches to achieve a better
time-cost trade-off, which is the main purpose of this paper.

Preliminaries
Randomized smoothing The basic idea of randomized
smoothing (Cohen, Rosenfeld, and Kolter 2019) is to generate
a smoothed version of the base classifier f . Given an arbitrary
base classifier f(x) : Rd → Y where Y = {1, . . . , k} is the
output space, the smoothed classifier g(·) is defined as:

g(x) := arg max
c∈Y

Pr[f(x′) = c], x′ ∼ N (x, σ2Id) (1)

g(x) returns the most likely predicted label of f(·) when
input the data with Gaussian augmentation x′ ∼ N (x, σ2Id).
The tight lower bound of `2-norm certified radius (Cohen,
Rosenfeld, and Kolter 2019) for the prediction cA = g(x) is:

σΦ−1(pA)

where pA := Pr[f(x′) = cA], x′ ∼ N (x, σ2Id)
(2)

where Φ−1 is the inverse of the standard Gaussian CDF. We
emphasize that computing the deterministic value of g(x)
is impossible because g(·) is built over the random distribu-
tionN (x, σ2Id). Therefore, we use Clopper-Pearson method
(Clopper and Pearson 1934) to guarantee Pr[f(x′) = cA] >

Pr[f(x′) = c], ∀c 6= cA with the confidence level 1−α, and

then we have g(x) = cA with the confidence level 1− α.

Robustness certification In practice, the main challenge
in computing the radius σΦ−1(pA) is that pA is inaccessi-
ble because iterating all possible f(x′) : x′ ∈ Rd is im-
possible. Therefore, we estimate pA, the standard one-sided
Clopper-Pearson confidence lower bound of pA instead of pA
and certify a lower bound σΦ−1(pA). Estimating a tight pA
needs a large size of samples for f(x′) : x′ ∼ N (x, σ2Id).
Generally, the estimated pA increases with the sample size1.

1The seminal work (Cohen, Rosenfeld, and Kolter 2019) de-
rives the certified radius: σ

2
[Φ−1(pA)−Φ−1(pB)] where pB is the

runner-up label probability. Currently, most works (Cohen, Rosen-
feld, and Kolter 2019; Zhai et al. 2020; Jeong and Shin 2020; Jia
et al. 2020) compute the certified radius by Eq. (2), which substitutes
pB with 1− pA, to avoid doing interval estimation twice.
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Standard certification and vanilla acceleration: IAS
The standard certification algorithm (Cohen, Rosenfeld, and
Kolter 2019) can be summarized in two steps:
1. Sampling: Given the input x, sample k (e.g. k =

100, 000) iid samples {x′i : i = 1, . . . , k} ∼ N (x, σ2Id)
and run k times forward passes {f(x′i) : i = 1, . . . , k}.

2. Interval estimation: Count kA =
∑k
i=1 I{f(x′i) = cA}

(I denotes the indicator function) where cA is the label
with top-1 label counts. Compute the confidence lower
bound pA with the confidence level 1 − α. Return the
certified radius σΦ−1(pA).

The high computation is mainly due to the k times forward
passes in Sampling. The certification is accelerated by the
vanilla sample size reduction, which we call input-agnostic
sample size reduction (IAS). This acceleration is at the cost
of unpredictable radius declines, which yields a poor ACR-
runtime trade-off since it reduces the sample size equally for
each input, without considering the input characteristics.

Methodology
We first introduce the notions of Absolute Decline and Rela-
tive Decline. Then we propose Input-Specific Sampling (ISS),
which aims to use the minimum sample size with the con-
straint that the radius decline is less than the given bound.

Overview and Main Idea
The key idea of ISS is to appropriately reduce the sample size
for each input, instead of applying the same sample size to the
certifications for all inputs. Since the sample size reduction
will inevitably cause the decline in the certified radius, thus
we aim to quantify the radius decline and bound the decline
to be less than the pre-specified value. First we define the
radius decline as follows:
Definition 1 (Absolute Decline AD(k; k, p)). Given the
input x and the pre-specified desired sample size k (e.g.
k = 100, 000), suppose we know pA of x, Absolute Decline
AD(k; k, p) is the gap between the radius certified at the
sample size k and the radius certified at k : k ≤ k:

AD(k; k, pA) := σΦ−1(p1)︸ ︷︷ ︸
Desired radius

− σΦ−1(p2)︸ ︷︷ ︸
Estimated radius

where p1 = B(α; pAk, k − pAk + 1),

p2 = B(α; pAk, k − pAk + 1)

(3)

where B(α; kA, k − kA + 1) denotes the one-sided Clopper-
Pearson lower bound (Clopper and Pearson 1934) with the
confidence level 1−α, which is equal to the αth quantile from
a Beta distribution with shape parameters kA, k − kA + 1.

Definition 2 (Relative Decline RD(k; k, pA)). Similar to
absolute decline, Relative Decline RD(k; k, pA) is

RD(k; k, pA) :=
σΦ−1(p1)− σΦ−1(p2)

σΦ−1(p1)

where p1 = B(α; pAk, k − pAk + 1),

p2 = B(α; pAk, k − pAk + 1)

(4)

Algorithm 1: Compute ISS mapping ψISS(·)
Input: The maximum decline U, the decline type, the desired
sample size k, the noise level σ, the confidence level 1− α,
the length of the subinterval δ
Output: the ISS mapping ψISS(·)

1: for N = 0, 1, 2, . . . , 1δ do
2: p← N · δ;
3: Compute r = σ · Φ−1

(
B(α; pk, k)

)
;

4: Compute the minimum required certified radius:
If the decline type is AD: r̃ ← r −UAD or
If the decline type is RD: r̃ ← (1−URD)r;

5: if r̃ ≤ 0 then
6: ψISS(p)← 0;
7: else
8: ψISS(p)← arg min

k
σ · Φ−1 (B(α; pk, k)) ≥ r̃;

9: end if
10: end for
11: Return ψISS(p) : p = δ, 2δ, . . . , 1;

Remark 1. The absolute (or relative) decline is the expected
gap between the radius certified at the sample size k and k
when fixing kA/k ≡ pA where kA :=

∑k
i=1 I{f(x′i) = cA}.

It connects the expected radius decline to the sample size
when given pA. In particular, when k = ∞, the absolute
(or relative) decline measures the gap between the optimal
certified radius that randomized smoothing can provide and
the radius certified at the sample size k.

Formulate our key idea Given the input x and the pre-
specified upper bound of the decline UAD ∈ R+ (or URD ∈
R+), our idea for AD (or RD) is formulated as follows:

1. find min k with the constraint AD(k; k, p) ≤ UAD.
2. find min k with the constraint RD(k; k, p) ≤ URD.

In practice, solving the above two problems is non-trival
because pA of x is inaccessible. Simply treating the estimated
kA/k as pA is obviously unreasonable. We propose ISS, a
practical solution to the above two problems.

Certification with Input-Specific Sampling
Fig. 2 shows an overview. Given the input x, we first estimate
a relatively loose two-sided Clopper-Pearson confidence in-
terval pA ∈ [plow, pup] by k0 samples where k0 < k is a
relatively small sample size. Given k,UAD (or UAD), ISS
assigns the sample size k̂ for certifying g(x) where k̂ is:

k̂ = max (ψ(plow), ψ(pup)) (5)

For Absolute Decline : ψ(p) := arg min
k

AD(k; k, p) ≤ UAD

For Relative Decline : ψ(p) := arg min
k

RD(k; k, p) ≤ URD

Formally, we present the following two propositions to
theoretically prove that k̂ (AD) computed from Eq. (5) is
optimal. Prop. 1 guarantees that the sample size k̂ computed
from Eq. (5) must satisfy the constraint AD(k̂; k, pA) ≤
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Figure 2: Overview of the robustness certification with ISS. In Stage 1, we compute ψISS(·), a mapping from pA to k̂. In Stage
2, given the image x, we first loosely estimate the confidence interval for pA and determine the sample size for x with ψISS(·).

Algorithm 2: Certification with input-specific sampling (ISS)
Input: The input x, the base classifier f , the maximum sam-
ple size k, the sample size k0 : k0 ≤ k, the confidence level
α, the ISS mapping ψISS(·)
Output: Prediction pred, radius r

1: Sample k0 noisy samples x′1, . . . , x
′
k ∼ N (x, σ2Id);

2: Compute the prediction:
pred← arg maxy∈Y

∑k0
i=1 I{f(x′i) = y};

3: Count k0A ← maxy∈Y
∑k0
i=1 I{f(x′i) = y};

4: Compute the two-sided confidence interval:
plow ← B(α/2; k0A, k0 − k0A + 1)
pup ← B(1− α/2; k0A + 1, k0 − k0A);

5: Compute k̂ ← max(ψISS(plow), ψISS(pup));
6: Sample max(k̂ − k0, 0) noisy samples:
x′k0+1, . . . , x

′
k̂
∼ N (x, σ2Id);

7: Count kA ← maxy∈Y
∑k̂
i=1 I{f(x′i) = y};

8: Compute the one-sided confidence lower bound:
pA ← B(α; kA, k̂ − kA + 1);

9: if pA < 1
2 then

10: pred← ABSTAIN, r← 0;
11: else
12: Compute the radius r ← σΦ−1(pA);
13: end if
14: Return pred and r;

UAD. Prop. 2 guarantees that k̂ is the minimize sample size
that can guarantee AD(k̂; k, pA) ≤ UAD.

Proposition 1. [Bounded absolute radius decline] Suppose
pA ∈ [plow, pup] with 1− α confidence level, then we guar-
antee that there is at least 1− α probability that k̂ computed
from Eq. (5) satisfies AD(k; k̂, pA) ≤ UAD.

Proposition 2. [Tightness for k̂] Suppose pA ∈ [plow, pup]

and k̂ is computed from Eq. (5), then for an arbitrary sample
size k : k < k̂, there exists pA ∈ [plow, pup] that breaks the
constraint AD(k; k̂, pA) ≤ UAD.

Implementation
In the practical algorithm of ISS, we substitute ψ(·) in Eq. (5)
with a piecewise constant function approximation ψISS(·).
The advantage of ψISS(·) over ψ(·) is that we can compute
ψISS(p) : p ∈ [0, 1] previously before the certification to
save the cost in computing ψ(plow), ψ(pup) in Eq. (5) when
certifying the radius for the testing data. ConstructingψISS(·)
is feasible because that the value of ψ(p) only depends on
p when fixing k, regardless of the testing set or the base
classifier architecture. Specifically, ψISS(p) is

ψISS(p) =

{
ψ(p) p/δ ∈ N
max(ψ(N1δ), ψ(N2δ)) p/δ ∈ (N1, N2)

(6)

where N1, N2 ∈ N. Obviously, ∀p ∈ [0, 1], ψISS(p) ≥
ψ(p), thus Prop. 1 still holds for the substitution ψISS(·).
Prop. 2 holds for ψISS(·) when plow/δ ∈ N, pup/δ ∈ N.

The practical algorithm can summarized into two stages:
Stage 1: prepare ψISS(·). Given k and the decline upper
bound UAD (or URD), compute ψISS(p) by Eq. (5) and Eq.
(6). The detailed algorithm is shown in Alg. 1.
Stage 2: certify the radius with ψISS(·). Given x, we first
estimate a loose confidence interval pA ∈ [plow, pup] by k0
samples. With [plow, pup] and ψISS(·), we compute k̂. Then
we estimate the certified radius by sampling k̂ noisy samples.
The algorithm is shown in Alg. 2.

Compare ISS(AD) to IAS We compare ISS to IAS in
Fig. 3a, Fig. 3b where R̂(k, pA;σ) := σΦ−1(B(α; pAk, k −
pAk+1)). As presented, IAS assigns 50, 000 for both x1, x2,
while ISS assigns 35, 000 and 65, 000 for x1, x2 respec-
tively. The sample size of ISS are computed by solving
AD(k; 100, 000, pA) ≤ 0.0042. For each certified radius, the
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(a) R̂-k curve of x1 (pA = 0.51). (b) R̂-k curve of x2 (pA = 0.99).

Figure 3: ISS certifies higher ACR on x1, x2 than IAS.

(a) R̂ISS − R̂IAS w.r.t. pA (b) pA distribution (ImageNet).

Figure 4: ISS fits the practical smoothed classifiers.

decline in x2 certified radius is up to 0.0075 due to the sample
size reduction 100, 000→ 50, 000 , which is 1.78× UAD of
ISS. For the average certified radius, ISS trades 0.002 radius
of x1 for 0.003 radius of x2, thus ACR of ISS improves IAS
0.0005 under the same average sample size. The improve-
ment is because ISS tends to assign larger sample sizes to
the high-pA inputs, which meets the property of R̂(k, pA;σ).
Namely, R̂(k+ ∆k, pA;σ)− R̂(k, pA;σ) increases with pA,
meaning that assigning larger sample sizes to the high-pA
inputs is more efficient than input-agnostic sampling.

ISS fits the well-trained smoothed classifiers Fig. 4a re-
ports R̂ISS − R̂IAS where R̂ISS denotes the radius certified
by ISS of k = 100, 000,UAD = 0.05 and R̂IAS denotes
the radius certified by IAS at k = 30, 0002. We observe that
ISS certifies higher certified radius when pA > 0.94. Fig.
4b reports the pA distribution of the test set 3 on the real
ImageNet base classifier (σ = 0.5) trained by Consistency
(Jeong and Shin 2020). We found that the probability mass
of pA distribution is concentrated around pA = 1.0, which

2Here we choose to compare ISS to IAS (k = 30, 000) is be-
cause that the average sample size of ISS (k = 100, 000,UAD =
0.05) on the ImageNet model trained by Consistency (Jeong and
Shin 2020) (σ = 0.5) is roughly 30, 000.

3We sample k = 1000, 000 Monte Carlo samples and approxi-
mately regard kA/k as the exact value of pA.

is the interval where R̂ISS − R̂IAS > 0. Furthermore, ISS
is expected to outperform IAS on the smoothed classifiers
trained by other algorithms, since their pA distributions have
the similar property (see appendix).

Experiments
We evaluate our proposed method ISS on two benchmark
datasets: CIFAR-10 (Krizhevsky 2009) and ImageNet (Rus-
sakovsky et al. 2015). All the experiments are conducted on
CPU (16 Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz)
and GPU (one NVIDIA RTX 2080 Ti). We observe that the
certification runtime is roughly proportional to the average
sample size when fixing the model architecture. The hyper-
parameters are listed in Table 2. For clarity, ISS − c1 − c2
denotes ISS at k = c1 · 10, 000,UAD = c2, and IAS − c1
denotes IAS at k = c1 · 10, 000. The overhead of computing
ψISS is reported in Table 3.

Evaluation Metrics

Our evaluation metrics include average sample size, runtime,
MAD, ACR and certified accuracy, where MAD denotes the
maximum absolute decline between the radius certified be-
fore and after the acceleration among all the testing data4.
ACR and certified accuracy CA(r) at the radius r are com-
puted as follows:

ACR :=
1

|Dtest|
∑

(x,y)∈Dtest

R(x; g) · I(g(x) = y) (7)

CA(r) :=
1

|Dtest|
∑

(x,y)∈Dtest

I(R(x; g) > r) · I(g(x) = y) (8)

where R(x; g) denotes the estimated certified radius of g(x).

Overall Analysis of ACR and Runtime

Fig. 5c, Fig. 5d, Fig. 5a, Fig. 5b present the overall empir-
ical results of ISS and IAS on CIFAR-10 and ImageNet.
As presented, ISS significantly accelerates the certifica-
tion for randomized smoothing. Specifically, on ImageNet
(σ = 0.5, 1.0), ISS−10−0.05, ISS−10−0.1 reduce the orig-
inal time cost 962 minutes (the green dotted lines) to roughly
300, 200 respectively at UAD = 0.05, 0.1 respectively. Over-
all, the speedups of ISS are even higher on CIFAR-10. We
also compare ISS to IAS on two datasets. We found that ISS
always achieves higher ACR than IAS in the similar time
cost. For ImageNet (σ = 1.0), ISS− 20− 0.05 even further
improves IAS − 20 by a moderate margin, while the time
cost of ISS− 20− 0.05 is only 0.56× of IAS− 20. The full
results are reported in the supplemental material.

4Note the speedup of ISS deterministically depends on the pA
distribution of the testing set. Since the smoothed classifiers trained
by different training algorithms, including SmoothAdv (Salman
et al. 2019), MACER (Zhai et al. 2020) and Consistency (Jeong and
Shin 2020), report the similar pA distributions, ISS will perform
similarly on the models trained by other algorithms.
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(a) ImageNet (σ = 0.5). (b) ImageNet (σ = 1.0).

(c) CIFAR-10 (σ = 0.5). (d) CIFAR-10 (σ = 1.0).

Figure 5: Overall analysis on ImageNet and CIFAR-10.

σ Method Avg Time (min) MAD ACR 0.00 0.50 1.00 1.50 2.00 2.5 3.0 3.5 4.0

0.50

ISSAD−10−0.05 32992 317 0.05 0.794 54.6 49.8 42.4 33.2 0.0 0.0 0.0 0.0 0.0
IAS− 3.3 33000 317 0.14 0.77 54.8 50.2 43.4 32.8 0.0 0.0 0.0 0.0 0.0

ISSAD−10−0.10 22144 213 0.10 0.775 54.6 49.8 42.0 33.0 0.0 0.0 0.0 0.0 0.0
IAS− 2.2 22200 213 0.19 0.752 54.8 50.2 43.4 32.6 0.0 0.0 0.0 0.0 0.0

ISSAD−50−0.05 144220 1385 0.05 0.856 54.8 50.2 42.8 34.2 29.8 0.0 0.0 0.0 0.0
IAS− 14.4 144400 1386 0.15 0.831 54.8 50.2 43.4 33.4 0.0 0.0 0.0 0.0 0.0

ISSAD−50−0.10 95381 916 0.10 0.839 54.8 50.2 42.8 34.2 0.0 0.0 0.0 0.0 0.0
IAS− 9.5 95400 916 0.20 0.815 54.8 50.2 43.4 33.2 0.0 0.0 0.0 0.0 0.0

1.00

ISSAD−10−0.05 25987 250 0.05 0.958 40.6 36.8 31.8 28.0 24.0 20.2 17.4 13.4 0.0
IAS− 2.6 26000 250 0.35 0.917 41.0 37.2 32.6 28.0 24.0 20.0 16.6 0.0 0.0

ISSAD−10−0.10 19209 185 0.10 0.943 40.2 36.8 31.8 27.4 24.0 20.0 17.4 13.4 0.0
IAS− 1.9 19400 186 0.43 0.903 41.0 37.0 32.2 28.0 24.0 20.0 16.2 0.0 0.0

ISSAD−50−0.05 104037 999 0.05 1.015 40.6 36.8 32.2 28.0 24.0 20.4 17.4 13.4 13.4
IAS− 10.4 104200 1000 0.37 0.976 41.4 37.4 32.6 28.0 24.0 20.4 17.4 13.4 0.0

ISSAD−50−0.10 82899 796 0.10 1.005 40.6 36.8 32.2 28.0 24.0 20.0 17.4 13.4 13.4
IAS− 8.3 83000 797 0.43 0.967 41.4 37.4 32.6 28.0 24.0 20.4 17.4 13.4 0.0

Table 1: ImageNet: compare ISS to IAS on average sample size (Avg), certification runtime, maximum absolute decline (MAD),
verage certified radii (ACR) and certified accuracies (%) on the models trained by Consistency (Jeong and Shin 2020). Results
are evaluated on 500 trials by id = 0, 100, . . . , 49800, 49900. The bold denotes better performance under the similar setting.

Results of ISS (AD) on ImageNet
Table 1 reports the results of ISS5. Remarkably, ISS reduces
the average sample size to roughly 3

10×,
1
5× at the cost of

5Here we only report the results at σ = 0.5, and σ = 1.0
because the work (Jeong and Shin 2020) only releases the training

UAD = 0.05, 0.10 respectively, meaning the speedups are
roughly 10

3 ×, 5×. We found that the MADs of IAS are higher

hyperparameters at σ = 0.5, 1.0 for consistency training algorithm.
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Figure 6: Ablation studies. Upper: k-pA curves w.r.t. AD, k (Upper Left) and RD, k (Upper Right). Lower: ACR-k curves and
Time-k curves w.r.t. k0/k on ImageNet σ = 0.5 (Lower Left) and ImageNet σ = 1.0 (Lower Right).

Dataset CIFAR-10 ImageNet
Model ResNe-110 ResNet-50
Training by MACER Consistency
k 100,000, 500,000
k0 0.01k
σ 0.25, 0.5, 1.0 0.5, 1.0

Table 2: Experiment setting.

than ISS, meaning that IAS will cause a large radius decline
on the specific inputs. Namely, the MAD of IAS − 10.4 is
more than 7× ISSAD−50−0.05. ISS consistently surpasses
IAS on ACR. ISSAD−50−0.10(σ = 1.0) achieves ACR =
1.005 in 796 minutes while IAS only achieves ACR = 0.976
in 1, 000 minutes. We also observe that ISS slightly lower
than IAS on the low-radius certified accuracies. It is because
ISS tends to assign the small sample sizes to those inputs
with low pA, which inevitably sacrifices the certified radii of
low-pA inputs. Meanwhile, ISS significantly improves the
high-radius certified accuracies and ACR in return.

Results of ISS (RD) on ImageNet
Table 4 reports the results of ISS (RD) on ImageNet at
URD = 0.05, 0.10. ISS reduces the average sample size to
roughly 7

10×,
7
20× at controllable cost of RD = 1%, 5% re-

AD Time (s) RD Time (s)
0.01 0.70 0.01 39.47
0.05 0.65 0.05 13.52
0.10 0.57 0.10 7.50

Table 3: Runtime for computing ψISS .

spectively. Compared to IAS, ISS (RD) also improves ACR.

Results of ISS (AD) on CIFAR-10
Table 5 reports the results of ISS (OF AD) on CIFAR-10.
ISS reduces the average sample size to roughly 1

5×,
1
10× at

UAD = 0.05, 0.10. Remarkably, ISS still improves ACRs
and MADs, high-radius certified accuraries by a moderate
margin on CIFAR-10. These empirical comparisons suggest
that ISS is a better acceleration.

Ablation Study
Choice on AD or RD As shown in Fig. 6, when pA :
pA ∈ [0.5, 1.0] increases, the sample size of ISS (AD) mono-
tonically increases, while the sample size of ISS (RD) first
decreases and then increases around pA = 1.0. ISS (AD) can
greatly improve ACR, but tends to sacrifice the certified radii
of low-pA inputs a relatively larger proportion. ISS (RD)
sacrifices all inputs the same proportion of radius.
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σ Method Avg Time ACR 0.00 0.50 1.00 1.50 2.00 2.5 3.0 3.5

0.50

ISSRD−10−0.01 70919 682 0.809 54.8 50.2 43.4 33.2 0.0 0.0 0.0 0.0
IAS− 7.1 71000 682 0.803 54.8 50.2 43.4 33.2 0.0 0.0 0.0 0.0

ISSRD−10−0.05 34591 333 0.781 54.8 50.2 42.2 33.0 0.0 0.0 0.0 0.0
IAS− 3.5 34600 332 0.772 54.8 50.2 43.4 32.8 0.0 0.0 0.0 0.0

1.00

ISSRD−10−0.01 67207 646 0.966 41.4 37.4 32.6 28.0 24.0 20.4 17.4 13.4
IAS− 6.7 67400 647 0.959 41.2 37.4 32.6 28.0 24.0 20.4 17.4 13.4
ISSRD−10−0.05 32515 313 0.935 41.2 37.0 31.8 27.6 23.8 20.0 17.2 13.4
IAS− 3.3 32600 313 0.927 41.0 37.2 32.6 28.0 24.0 20.0 16.8 13.4

Table 4: ImageNet: comparison on average sample size (Avg), certification runtime (in minutes), average certified radii (ACR)
and certified accuracies (%) on models trained by Consistency (Jeong and Shin 2020).

σ Method Avg Time MAD ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.0

0.25

ISSAD−10−0.05 22237 39 0.05 0.492 76.8 68.0 49.4 38.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IAS− 2.2 22400 39 0.10 0.483 77.8 68.6 52.0 37.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISSAD−10−0.10 10945 19 0.10 0.473 76.8 68.0 48.8 37.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IAS− 1.1 11000 19 0.15 0.462 77.4 68.4 51.6 36.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISSAD−50−0.05 98984 172 0.05 0.529 77.4 68.4 51.6 39.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IAS− 9.9 99000 171 0.10 0.518 77.8 69.0 52.2 39.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISSAD−50−0.10 46509 81 0.10 0.512 77.4 68.4 51.6 39.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IAS− 4.7 46600 81 0.14 0.501 77.8 68.8 52.0 38.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

ISSAD−10−0.05 21836 38 0.05 0.647 60.6 53.0 46.8 39.8 32.4 26.0 19.8 13.0 0.0 0.0 0.0 0.0 0.0
IAS− 2.2 22000 38 0.20 0.633 61.8 54.0 47.8 40.2 32.8 26.0 19.4 0.0 0.0 0.0 0.0 0.0 0.0

ISSAD−10−0.10 14620 26 0.10 0.634 60.6 53.0 46.8 39.4 31.0 26.0 19.6 11.2 0.0 0.0 0.0 0.0 0.0
IAS− 1.5 14800 26 0.25 0.621 61.8 54.0 47.8 40.2 32.6 26.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0

ISSAD−50−0.05 91293 158 0.05 0.68 61.8 54.0 47.6 40.0 32.6 26.0 20.2 14.2 10.2 0.0 0.0 0.0 0.0
IAS− 9.1 91400 158 0.20 0.667 62.2 54.4 48.0 40.2 33.0 26.6 19.8 13.4 0.0 0.0 0.0 0.0 0.0

ISSAD−50−0.10 61567 107 0.10 0.673 61.8 54.0 47.6 40.0 32.6 25.2 20.0 13.8 0.0 0.0 0.0 0.0 0.0
IAS− 6.2 61600 107 0.25 0.659 62.2 54.4 47.8 40.2 33.0 26.4 19.8 12.4 0.0 0.0 0.0 0.0 0.0

1.00

ISSAD−10−0.05 21153 37 0.05 0.78 42.6 40.2 37.2 33.4 30.4 27.0 24.4 21.2 18.4 14.6 13.4 10.4 8.8
IAS− 2.1 21200 37 0.40 0.763 42.8 40.6 37.4 34.0 31.0 27.4 24.8 21.4 18.4 14.6 12.8 9.8 8.0

ISSAD−10−0.10 14751 26 0.10 0.766 42.4 39.6 36.8 32.8 30.0 26.4 24.0 20.6 18.2 14.4 12.8 10.2 8.8
IAS− 1.5 14800 26 0.50 0.754 42.8 40.4 37.4 33.8 30.8 27.4 24.8 21.4 18.4 14.4 12.8 9.6 7.2

ISSAD−50−0.05 70204 123 0.05 0.803 42.8 40.4 37.4 33.8 30.4 27.4 24.6 21.4 18.4 14.6 13.4 10.4 9.2
IAS− 7.0 70400 123 0.47 0.79 42.8 40.6 37.4 34.4 31.0 27.6 25.0 21.4 18.4 14.8 13.6 10.2 8.8

ISSAD−50−0.10 54102 94 0.10 0.797 42.8 40.4 37.4 33.8 30.4 27.4 24.6 21.2 18.4 14.4 13.0 10.0 9.2
IAS− 5.4 54200 94 0.53 0.785 42.8 40.6 37.4 34.4 31.0 27.6 25.0 21.4 18.4 14.8 13.4 10.0 8.6

Table 5: CIFAR-10: comparison on average sample size (Avg), certification runtime (in minutes), maximum absolute decline
(MAD), average certified radii (ACR) and certified accuracies (%) on the models trained by MACER (Zhai et al. 2020). Results
are evaluated on 500 testing data of id = 0, 20, . . . , 9960, 9980. The bold denotes better performance.

Impact of pA and k We investigate the impact of pA and
k in Fig. 6 (Upper). For both AD and RD, the sample size
is 0 when pA ≤ 0.5. It is because the certified radius is 0
when pA ≤ 0.5. As expected, the sample size monotonically
increases with k and decreases with AD (or RD).

Impact of k0/k We investigate the impact k0/k on the
runtime and ACR in Fig. 6 (Lower). Too small k0/k results
in a loose confidence interval [plow, pup], which can cause
the ISS sample size k̂ to be much larger than required. Too
large k0/k may waste too much computation in estimating
[plow, pup]. Our choice k0/k = 0.01 performs well across
various noise levels on CIFAR-10 and ImageNet.

Conclusion

Randomized smoothing has been suffering from the long
certification runtime, but the current acceleration methods
are low-efficiency. Therefore, we propose input-specific sam-
pling, which adaptively assigns the sample size. Our work
establishes an initial step towards a better performance-
time trade-off for the certification of randomized smoothing.
Specifically. Our strong empirical results suggest that ISS
is a promising acceleratio. Specifically, ISS speeds up the
certification by more than 4× only at the controllable cost of
0.10 certified radius on ImageNet. An interesting direction
for future work is to make the confidence interval estimation
method adapt to the input.
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