
1 Time-Capturing Dynamic Graph Embedding for
2 Temporal Linkage Evolution
3 Yu Yang , Jiannong Cao , Fellow, IEEE, Milos Stojmenovic , Senzhang Wang ,Member, IEEE,

4 Yiran Cheng, Chun Lum, and Zhetao Li ,Member, IEEE

5 Abstract—Dynamic graph embedding learns representation vectors for vertices and edges in a graph that evolves over time. We aim

6 to capture and embed the evolution of vertices’ temporal connectivity. Existing work studies the vertices’ dynamic connection changes

7 but neglects the time it takes for edges to evolve, failing to embed temporal linkage information into the evolution of the graph. To

8 capture vertices’ temporal linkage evolution, we model dynamic graphs as a sequence of snapshot graphs, appending the respective

9 timespans of edges (ToE). We co-train a linear regressor to embed ToE while inferring a common latent space for all snapshot graphs

10 by a matrix-factorization-based model to embed vertices’ dynamic connection changes. Vertices’ temporal linkage evolution is

11 captured as their moving trajectories within the common latent representation space. Our embedding algorithm converges quickly with

12 our proposed training methods, which is very time efficient and scalable. Extensive evaluations on several datasets show that our

13 model can achieve significant performance improvements, i.e., 22.98 percent on average across all datasets, over the state-of-the-art

14 baselines in the tasks of vertex classification, static and time-aware link prediction, and ToE prediction.

15 Index Terms—Dynamic graph embedding, graph evolution, edge timespan, graph mining

Ç

16 1 INTRODUCTION

17 GRAPHS are one of the most widely used data representa-
18 tions which naturally exist in the real world in the form
19 of social networks, biological networks, information diffu-
20 sion networks, road networks etc. Static graphs represent
21 immutable connections among vertices; however, many real
22 world applications of graphs are dynamic and evolve over
23 time. Vertices could join quickly or slowly, leave at their
24 own pace, and even re-join the graph, thereby making their
25 connections dynamically malleable over time. Efficiently
26 extracting meaningful knowledge from the evolution of ver-
27 tex connections in dynamic graphs is an open research
28 problem in graph mining.
29 Dynamic graph embedding draws from and builds upon
30 the great success of graph representation learning, also
31 referred to as graph embedding or network embedding [1].
32 Dynamic graph embedding captures and encodes the

33evolution of vertex properties and connections as low
34dimensional representation vectors in order to benefit
35downstream machine learning applications. Existing works
36model the dynamic graph as either a sequence of static
37snapshot graphs [2], [3], [4], [5], [6], [7], [8], [9], [10] or neigh-
38borhood formation sequence sampled from the temporal
39random walk [11], [12], [13]. These approaches merely cap-
40ture the sequential changes of static graph structure
41throughout the snapshot graph sequence as well as the
42sequential linkage evolution among vertices for embedding.
43However, the time it takes for vertex connections to evolve
44is also dynamic and it is neglected by the above approaches.
45Here, we tackle the problem of embedding the temporal
46linkage evolution of vertices in a dynamic graph, while
47simultaneously preserving their dynamic connection
48changes and timespans of edge formation (ToE).
49ToE preserves important duration of edge formation
50information as well as the temporal dependencies of vertices
51while the dynamic graphs evolve. For example, in a dynamic
52transaction network, buyers could appear at any time to
53trade with sellers and disappear afterward, thereby forming
54an edge. The ToE in this case represents how long the buyer
55takes to complete the transaction after the seller posts a sell
56order, which carries important trading behavior and may be
57used to form trading strategies. Cautious traders may prefer
58to spend a significant amount of time looking for the best
59price of an item. Thus, the edges they construct may have a
60relatively long ToE. Other traders may complete a transac-
61tion as soon as goods appear on the market, therefore result-
62ing in a significantly shorter ToE. It is possible for buyers to
63complete the transaction with one of multiple sell orders
64posted by the same seller at different times, in which the ToE
65serves as discriminative information. Should ToE be
66neglected and merely reduced to the dynamic connectivity
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67 changes among vertices, the above trading patterns and
68 strategies would be totally lost.
69 There are two major challenges in jointly embedding the
70 dynamic linkage evolution and ToE for preserving the tem-
71 poral evolutionary patterns of a dynamic graph. The first
72 challenge is capturing and learning the structural evolution-
73 ary patterns of a dynamic graph from their local dynamic
74 instances, which is the snapshot graph, in an interpretable
75 manner. The vertices’ connections and ToEs in every snap-
76 shot graph are highly dynamic, therefore making it difficult
77 to reconstruct the global evolution process of a dynamic
78 graph from the snapshot graph sequence in an interpretable
79 manner. Another challenge is preserving the temporal
80 dependency among vertices while embedding ToE. If the
81 ToEs are aggregated for each vertex directly and appended
82 with other vertex attributes, which is a common approach
83 for embedding vertex attributes in static graphs [14], [15],
84 the temporal dependency among vertices will gradually be
85 lost due to information loss through aggregation [16].
86 Therefore, the embedding algorithm should maximally pre-
87 vent vanishing temporal dependency while embedding
88 ToE.
89 To address the above challenges, we first model the
90 dynamic graph as a sequence of snapshot graphs with ToE
91 for every edge. We then propose a matrix factorization
92 based Time Capturing Dynamic Graph Embedding algo-
93 rithm named TCDGE, which infers a common latent space
94 for capturing the structural and temporal evolution of the
95 dynamic graph and encodes them into representation vec-
96 tors. Our approach differs from TNE [2], which embeds the
97 snapshot graphs into separate latent spaces, since we learn
98 a common latent space from every snapshot graph for rep-
99 resenting the vertices’ dynamic connections. When vertex

100 connections evolve, their projected positions in the latent
101 space will change accordingly. Therefore, vertices’ moving
102 trajectories within the common latent space reflects their
103 evolutionary patterns in the dynamic graph.
104 In order to embed ToE into the representations and pre-
105 serve the temporal dependencies among vertices, we first
106 concatenate the representation of every two vertices that
107 form an edge as features for representing their temporal
108 dependency. We then regard the ToE as discriminative
109 information and co-train a linear regressor using the above
110 features while learning the common latent space. The opti-
111 mization algorithm we present in this paper is generic for
112 any linear regressor such as the LASSO regression, the ridge
113 regression, and the elastic net regression. Finally, vertices’
114 temporal dependency and ToE will be gradually embedded
115 into the representations as well as the latent space during
116 co-training.
117 To overcome the bottleneck of time efficiency in factoriz-
118 ing large-scale matrices, we optimize the latent space and
119 the representation of the vertices by a projected gradient
120 approach. Meanwhile, we propose a singular value decom-
121 position (SVD) based approach to initialize our embedding
122 algorithm. It not only helps boost the convergence speed for
123 our algorithm but also prevents it from converging to a
124 meaningless local optimal. Inspired by negative sampling,
125 we introduce negative samples to co-train the regression
126 model. Negative samples are constructed as any two verti-
127 ces without any edges between them and we set their ToE

128to zero. This indicates that these two vertices have no tem-
129poral dependencies in the snapshot graph. Consequently,
130our TCDGE algorithm is very time efficient and scalable,
131even though the model is complicated with high-order
132polynomials.
133Our contributions are highlighted as follows:

134� We propose a matrix factorization based dynamic
135graph embedding algorithm to embed the temporal
136linkage evolution by learning a common latent space
137for capturing the global evolutionary patterns
138throughout the sequence of snapshot graphs while
139co-training a linear regressor, i.e., LASSO, to embed
140ToE for preserving vertices’ temporal dependency.
141Our approach differs from end-to-end embedding
142algorithms, which usually are black boxes, by inter-
143pretively capturing vertices’ temporal linkage evolu-
144tion as their moving trajectories within the latent
145space.
146� We initialize our embedding algorithm by an SVD-
147based method and introduce negative samples to co-
148train the linear regressor. Thus, our embedding algo-
149rithm is very time efficient and scalable.
150� We propose a new task, namely time-aware link pre-
151diction, to validate the effectiveness of dynamic
152graph embedding algorithms in preserving the tem-
153poral dynamics.
154� We conduct experiments on three public datasets
155over four machine learning applications. The experi-
156mental results show that our model achieves perfor-
157mance improvements of 17.00, 22.91 and 11.88
158percent, respectively, over the state-of-the-art base-
159lines in vertex classification, ToE prediction, static
160and time-aware link prediction.
161The remainder of this paper is organized as follows.
162Related work is reviewed in the next section, followed by
163the problem definition in Section 3. We present the intuition
164of capturing the temporal linkage evolution in Section 4 and
165propose TCDGE and the optimization algorithm in Sec-
166tion 5. Experimental results will be reported in Section 6
167before we conclude the paper in the last section.

1682 RELATED WORK

169Starting with DeepWalk [1], numerous static graph embed-
170ding methods have been proposed to encode the graph
171structure and attributes such as high-order proximities [17],
172[18], vertices’ centrality [19], vertex and edge attributes [15],
173[16], text semantics [14], [20], and communities [21], [22]. In
174addition to embedding a single homogeneous graph, EOE
175[23] and HWNN [24] infer a common latent space for
176respectively embedding coupled heterogeneous graphs and
177hypergraph. In addition to these unsupervised methods,
178there are several works focusing on task specific graph
179representation learning [25], [26]. It simultaneously train a
180discriminator or classifier using the labels of edges or verti-
181ces while learning the embeddings. The discriminator
182serves as a supervisor to make the final learned representa-
183tion robust enough for discriminating the labels in specific
184applications. We borrow the idea of learning discriminative
185information while embedding the graph structure to co-
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186 train a linear regressor for encoding the ToE and temporal
187 dependencies of vertices into the final representations.
188 In dynamic graph embedding, the main issue becomes
189 handling the dynamic evolving nature of vertices and
190 edges, and encoding their evolutionary patterns. Existing
191 works learn the structural differences of a graph at different
192 timestamps by either matrix factorization or deep learning
193 approaches. For matrix factorization approaches, TNE [2] is
194 a pioneering work that factorizes the consecutive snapshot
195 graphs into different latent spaces with a temporal smooth-
196 ness regularization. TMF [3] learns the first-order neighbor-
197 hood information while factorizing the adjacency matrices
198 of snapshot graphs. DHPE [5] employs the generalized SVD
199 to preserve the high-order proximities and Timers [27]
200 explores the timing of restarting SVD to overcome the error
201 accumulation while embedding the dynamic graph. How-
202 ever, they fail to preserve the global structural evolution of
203 the whole dynamic graph over time. In addition, none of
204 them embed temporal information of vertices and edges
205 like ToE with the structural evolution.
206 There exist deep learning methods that capture the spe-
207 cific evolution process in dynamic graphs. DynamicTriad
208 [4] models the triad closure process when a graph evolves.
209 HTNE [12] models the neighborhood formation sequences
210 as a Hawkes Process with a time-aware weights. EPNE [28]
211 learns the periodic linkage evolution patterns by causal con-
212 volutions. However, these specific dynamic processes
213 merely exist in some particular graphs. For example, the
214 triad closure process is not common in other networks
215 except social networks, thus leading to poor performance.
216 We embed temporal linkage evolution without pre-assum-
217 ing any dynamic processes and give an interpretation about
218 what happens in the latent space when the dynamic graph
219 evolves over time.
220 There are also methods that approach the graph evolu-
221 tion process by incrementally appending out-of sample ver-
222 tices or edges into the existing in-sample graph like
223 DepthLGP [10], GraphSAGE [8], MVC-DNE [29], etc. Dyn-
224 GEN [6] adopts auto-encoders to incrementally handle the
225 growing graph and its extended version Dyngraph2Vec [7]
226 trains a LSTM to capture the evolution throughout snapshot
227 graphs. DySAT [30] employs the self-attention mechanism
228 to capture the structure difference throughout the snapshot
229 graph sequence instead of using LSTM. DynGraphGAN [9]
230 learns long-term structural evolution via adversarial train-
231 ing. However, none of them model the ToE and temporal
232 dependencies of vertices, thereby failing to preserve the
233 complete evolutionary pattern of the dynamic graph in both
234 structural and temporal domains, which is one of the main
235 contributions of our work.

236 3 PROBLEM DEFINITION

237 In this section, we give a complimentary definition of
238 dynamic graphs and then properly formulate the dynamic
239 graph embedding problem.

240 Definition 1 Dynamic Graph. A dynamic graph G ¼
241 fGt1 ; Gt2 ; . . . ; Gtng is a sequence of directed or undirected
242 snapshot graphs Gt, where Gt ¼ ðVt; Et;WtÞ is a snapshot
243 graph at time t 2 ft1; t2; . . . ; tng. Vt is a subset of the vertex set

244V ¼ fv1; v2; . . . ; vmg. The edge et;di;j ¼ ðvti; vt
0
j ; dÞ 2 Et in Gt

245represents the connection between an upcoming vertex vti join-
246ing at time t and an existing vertex vt

0
j appearing at time t0,

247where i; j 2 f1; 2; . . . ;mg, t0 � t and d ¼ t� t0 is the ToE of
248et;di;j . Each edge e

t;d
i;j is associated with an edge weight wt;d

i;j 2 Wt.

249Since Vt � V for any t, the network structure in Gt

250evolves over time which also leads to G evolving. At time t,
251the edge et;di;j links the upcoming vertex vti to an existing one
252vt

0
j which joins the graph at time t0. The temporal depen-

253dency among vertices is reflected by the ToE d. It is possible
254for vti to form edges with the same vertex appearing at dif-
255ferent times vt

0
j and vt

00
j . These two edges link the same ver-

256tex pair but have different ToE d, which gives the dynamic
257graph the ability to distinguish the edges between the same
258pair of vertices but established at two different timestamps.
259Definition 1 provides a generic description of the
260dynamic graph. When tn ¼ 1, the dynamic graph G degen-
261erates into a static graph. If we assume t ¼ t0 þ 1 for all
262edges, G becomes a continuous-time dynamic graph
263defined in [11]. If we assume t0 ¼ t, G becomes a structure
264evolving dynamic snapshot graph sequence which is
265adopted by most of the approaches in dynamic graph
266embedding literature [2], [3], [4], [5], [6], [7], [8], [9], [10].
267When we assume t0 ¼ t, Vt � Vtþ1 and Et � Etþ1, G becomes
268a growing graph, where the vertices and edges are only
269appended to the graph but not removed. Our definition of a
270dynamic graph is generic and captures both the structure
271and temporal dynamics.

272Definition 2 Dynamic Graph Embedding. Given a
273dynamic graph G ¼ fGt1 ; Gt2 ; . . . ; Gtng and assuming that
274the maximum number of vertices m is known, the objective is
275to learn a mapping function f : v 7! rv 2 Rk for 8v 2 V such
276that rv preserves the temporal linkage evolution of vertex v in
277terms of the dynamic connection changes and temporal depen-
278dency, where k is a positive integer indicating the dimension of
279the representation rv.

2804 CAPTURING THE EVOLUTION OF DYNAMIC

281GRAPHS

282In this section, we introduce the intuitions of capturing the
283evolution of a dynamic graph and interpret what happens
284in the latent representation space when the dynamic graph
285evolves.
286Since each snapshot graph Gt is an instance of the
287dynamic graph G at time t, the dynamic change throughout
288the snapshot graph sequence exactly reflects the evolution
289of G. From a vertex point of view, this evolution process
290consists of the sequential changes of vertices’ connections
291with their corresponding ToE. Embedding the dynamic
292graph G becomes inferring a latent space H with k dimen-
293sions that maximizes the retention of vertices’ temporal con-
294nections and attributes. When projecting the snapshot graph
295Gt into the latent space H, every vertex in Gt obtains a
296response vector rt, which is its embedding, showing its
297position in H. If vertices have similar connectivity and ToE,
298they should be close to each other in H, which means the
299distance between their embeddings is small.
300When either vertices’ connections evolve or their ToE
301changes, resulting from the evolution of the dynamic graph,
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302 their embeddings will change accordingly, therefore caus-
303 ing their position in H to move. The trajectory of every ver-
304 tex in H carries its evolution process throughout the
305 snapshot graph sequence. An example of our idea is shown
306 in Fig. 1, where vertices c and d have similar connectivity as
307 well as ToE among their connections so that their embed-
308 dings in the latent space H should be close to each other,
309 and their moving trajectories are also similar. Since the
310 silent vertices disconnect from any existing vertices, they
311 should be projected to the same position in H no matter
312 which snapshot graph they leave. The connectivities of ver-
313 tices a and c are different in the three snapshot graphs
314 resulting in different temporal linkage evolutions, which
315 leads to their moving trajectories being far away from each
316 other. Finally, the embedding of any vertex v that preserves
317 its temporal linkage evolution is obtained by Eq. (1), and
318 represents its moving trajectory in H, where rv;t 2 Rk is its
319 learned representation from the snapshot graph Gt, and T is
320 a transpose operator

rv ¼ ½rTv;t1 ; rTv;t2 ; . . . ; rTv;tn �
T : (1)

322322

323

324 In the next section, we will propose our dynamic graph
325 embedding model and an optimization algorithm to effi-
326 ciently infer the latent spaceH for embedding vertices’ tem-
327 poral linkage evolution.

328 5 EMBEDDING TEMPORAL LINKAGE EVOLUTION

329 In this section, we present the details of our proposed time
330 capturing dynamic graph embedding (TCDGE) model for
331 encoding vertices’ temporal linkage evolution as represen-
332 tations. Plus, we illustrate the optimization algorithm and
333 training procedure to efficiently train the TCDGE model.

334 5.1 Time Capturing Dynamic Graph Embedding
335 Model

336 Before introducing our TCDGE model to solve the chal-
337 lenges, we first list the notations that will be used in the
338 remainder of this paper in Table 1.
339 The representations of vertices in a latent space should
340 reconstruct the original dynamic graph reasonably well
341 with the inverted latent space projector. Thus, we minimize
342 the quadratic reconstruction loss under non-negative con-
343 straints for inferring the common latent spaceH and encode
344 the representations of vertices in each snapshot graph Gt

argmin
H;Wt

1

2

Xn
t¼1

kGt �HWtk2F s:t: 8Wt � 0; H � 0:

(2) 346346

347

348Adjacency matrices are commonly used to capture the
349linkage information among vertices in a graph. However,
350the adjacency matrices of real world graphs are usually
351very sparse such as those for information networks, transac-
352tion networks, etc., which introduces bias into machine
353learning algorithms and leads to imprecise results [31].
354Additionally, the adjacency matrix only captures 1-step
355direct connections of vertices and is weak at representing
356the high-order neighborhood structure of the graph. One
357common approach to overcome this issue is to extract the
358high-order proximities of a graph from its adjacency matrix
359[14], [18]. In this paper, we employ high-order proximity
360matrix Mt of Gt as input, where Mt ¼ Ât þ Ât

2 þ � � � þ Ât
m

361and Ât is the 1-step probability transition matrix obtained
362from the adjacency matrix At after a column-wise normali-
363zation. If a vertex leaves Gt, meaning that it has no connec-
364tion with any existing vertices at t, we define it as a silent
365vertex and all elements in its corresponding At column are
366zero. Consequently, its corresponding vector in Mt is also a
367zero vector leading the optimally learned representations to
368also be zero vectors. Finally, the evolving structure of G is
369preserved in a sequence of high-order proximity matrices
370Mt. By factorizing them, we infer a common latent space H
371and encode the structural dynamics of the dynamic graph
372into the representationWt.
373In solving the second challenge and further capturing the
374temporal dynamics, which are the temporal dependencies
375of every pair of vertices carried by the ToE of their linked
376edges, the objective is to embed the ToE into the representa-
377tions Wt while factorizing Mt. We regard every single edge
378as a data sample to encode their ToE individually, which is
379different from treating all edges in a snapshot graph as a
380matrix Mt for embedding the graph structure. Inspired by
381discriminative embedding [25], [26], we treat ToE as
382“supervised” information to co-train a linear regressor
383while encoding the representations Wt. In other words, we
384employ the ToE to guide the embedding process and trans-
385fer it into the learned representations. Specifically, we con-
386strain the learned Wt such that it should have the ability to
387simultaneously reconstruct the graph structure and accu-
388rately predict the ToE using the co-trained regressor x.
389Given the ToE of an edge connecting two vertices u and v,

Fig. 1. An illustration of the evolution of a dynamic graph. a, b, c, and d
are vertices in a dynamic graph G ¼ fGt1 ; Gt2 ; Gt3g, where their edge
colors represents different ToE.

TABLE 1
Notations for Time Capturing Dynamic Graph Embedding

Symbols Description

Gt A snapshot graph at time t, t ¼ t1; t2; . . . ; tn
m The maximum number of vertices in G
At 2 Rm	m The adjacency matrix of Gt

Mt 2 Rm	m The high-order proximity matrix of Gt

MtðuÞ 2 Rm	1 The high-order proximity vector of vertex u at t
H 2 Rm	k The inferred latent representation space
Wt 2 Rk	m The learned representation matrix at t
WtðuÞ 2 Rk	1 The representation vector of vertex u at t
ytu;v 2 R The ToE of an edge linked vertices u and v at t
x 2 Rð2kþ1Þ	1 The learned coefficients of a linear regressor
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390 we concatenate their representation vectorsWtðuÞ andWtðvÞ
391 together as the feature of their corresponding edge to co-
392 train a linear regressor for estimating its ToE as follows:

Jtp ¼
Xn
t¼1

X
u;v

ytu;v � WtðuÞT WtðvÞT 1
h i

x
� �2

þ af xð Þ;

(3)
394394

395 where fðxÞ is a regularization of x and a > 0 is a regression
396 parameter. 1 is a constant for linear regression. Jtp is a
397 LASSO regressor when fðxÞ ¼ kxk1, and it becomes a ridge
398 regressor or an elastic net regressor if fðxÞ is kxk22 or kxk22 þ
399 a0kxk1 respectively.
400 The temporal dependencies of u and v are embedded into
401 their corresponding representations by the co-trained
402 regressor since the representations of both source and target
403 vertices are involved to regress the ToE of the edge they
404 formed. If there does not exist any edges between u and v at
405 time t, we set the corresponding ytu;v ¼ 0, indicating that
406 there is no temporal dependency between these two vertices
407 at time t. When the dynamic graphs are undirected, we let
408 ytu;v ¼ ytv;u so that every pair of vertices corresponds to the
409 same ToE no matter how we concatenate their representa-
410 tion WtðuÞ and WtðvÞ. In addition, if u appears multiple
411 times in the dynamic graph, such as a seller that posts multi-
412 ple selling announcements at different times in a dynamic
413 transaction network that we mentioned in Section 1, ToE is
414 exactly the unique discriminative information for the new
415 coming vertex v, identifying which u it connects to. Such
416 temporal dependencies between u and v are accurately pre-
417 served by our co-trained regressor which adopts the concat-
418 enation of their representations WtðuÞ and WtðvÞ as a
419 feature to regress their corresponding ToE.
420 The co-trained linear regressor x allows our approach to
421 identify the exact source vertex by estimating the ToE when
422 performing link prediction. Although existing approaches
423 can achieve the same goal by training an extra discriminator
424 using well learned representations, their performance is not
425 satisfactory due to the absence of discriminative informa-
426 tion, such as ToE, for identifying the source vertex while
427 learning the embeddings (please refer to the experimental
428 results in Section 6.5). Therefore, the learned representation
429 Wt has the ability to reconstruct the dynamic graph struc-
430 ture and preserve the temporal dependencies of vertices by
431 approximating the ToE of every edge.
432 Lastly, we assume that the graph evolves smoothly
433 instead of being totally reconstructed at every time step.
434 Thus, we penalize vertices’s sharp changes of position in
435 the latent space by minimizing the ‘2 distance between rep-
436 resentations in two consecutive snapshot graphs

Jsm ¼
Xn
t¼1

X
u

1�WtðuÞTWtðuÞ
� �2

þ
Xn
t¼2

X
u

1�WtðuÞTWt�1ðuÞ
� �2

:

(4)

438438

439

440 In order to maintain stability when factorizing H and Wt

441 from Mt, we employ quadratic regularizations Jreg ¼
442 kHk2F þPn

t¼1 kWtk2F to prevent H and Wt from becoming
443 sparse rapidly. Therefore, the overall TCDGE model is

argmin
H�0;Wt�0;x

1

2

Xn
t¼1

kMt �HWtk2F þ �1

2
Jreg þ �2

2
Jsm þ �3

2
Jtp;

(5)
445445

446where �1 > 0, �2 > 0, and �3 > 0 are model parameters. It
447co-trains a linear regressor to embed the ToE y, which car-
448ries the timespan of edges and temporal dependencies of
449vertices, into the representation Wt while encoding the
450high-order proximities by factorizing Mt for simultaneously
451preserving the structural dynamics. Since the ToE is an attri-
452bute of the dynamic graph and naturally exists, our pro-
453posed TCDGE is still an unsupervised representation
454learning approach.

4555.2 Optimization Algorithm

456In this subsection, we will explain how the optimization
457problem (5) was solved in detail. We aim to find the optimal
458latent space H, the representations of vertices Wt and the
459regression coefficient x. It is suitable to use an alternating
460directions method to solve this optimization problem by fix-
461ing H and x to solve Wt followed by fixing Wt to update H
462and x.

4635.2.1 Optimizing Vertex PresentationWt

464Since WtðuÞ and WtðvÞ are a part of Wt, it is difficult to han-
465dle the integrated vector ½WtðuÞT ;WtðvÞT ; 1� in Jtp when

466solving for Wt. Thus, we let x ¼ ½xTu ; xT
v ; x0�T , where xu 2

467Rk	1, xv 2 Rk	1, and x0 2 R, and rewrite Jtp as

Jtp ¼
Xn
t¼1

X
u;v

ytu;v �WtðuÞTxu �WtðvÞTxv � x0

� �2
þaf xð Þ:

(6)
469469

470We obtain the objective function of optimizing Wt as Eq. (7),
471which is a fourth-order polynomial and is non-convex

argmin
Wt�0

1

2

Xn
t¼1

kMt �HWtk2F þ �1

2

Xn
t¼1

kWtk2F þ �2

2
Jsm

þ �3

2

Xn
t¼1

X
u;v

ytu;v �WtðuÞTxu �WtðvÞTxv � x0

� �2
:

(7)
473473

474Therefore, we adopt a block coordinate descent approach to
475solve Wt. When updating WtðuÞ for each vertex u at time t,
476we fix the H, x, and WtðvÞ of all the other vertices v at time t
477as well as all the representations W that are not at time t.
478Consequently, the Wt problem becomes a convex optimiza-
479tion problem as shown in Eq. (8)

argmin
WtðuÞ�0

fðWtðuÞÞ ¼ argmin
WtðuÞ�0

1

2
kMtðuÞ �HWtðuÞk22 þ

�1

2
kWtðuÞk22

þ �2

2
1�WtðuÞTWtðuÞ

� �2
þ 1�WtðuÞTWt�1ðuÞ
� �2

� �

þ �3

2

X
v

ytu;v �WtðuÞTxu �WtðvÞTxv � x0

� �2

þ �3

2
ytu;u �WtðuÞTxu �WtðuÞTxv � x0

� �2
:

(8)
481481
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482 If we choose to ignore situations where vertices can link to
483 themselves (self-links), the last term in Eq. (8) could be
484 removed. We use the projected gradient methods [32] to
485 solve this convex optimization problem and obtain the
486 updating function ofWtðuÞ

WtðuÞ ¼ max WtðuÞ � b5 fðWtðuÞÞ; 0f g; (9)
488488

489 where b > 0 is the learning rate and the gradient
490 5fðWtðuÞÞ satisfies

5 fðWtðuÞÞ ¼ HTHWtðuÞ �HTMtðuÞ þ �1WtðuÞ
� �2 WtðuÞ 1�WtðuÞTWtðuÞ

� �
þWt�1ðuÞ 1�WtðuÞTWt�1ðuÞ

� �� �
� �3

X
v

ytu;v �WtðuÞTxu �WtðvÞTxv � x0

� �
xu

� �3 ytu;u �WtðuÞT ðxu þ xvÞ � x0

� �
ðxu þ xvÞ:

(10)
492492

493

494 To ensure a sufficient decrease of Eq. (9) and to speed up
495 convergence, we update the learning rate b with a scaling
496 factor u to make the newWtðuÞ satisfy

fðWiþ1
t ðuÞÞ � fðWi

t ðuÞÞ � s1 5 fðWi
t ðuÞÞT Wiþ1

t ðuÞ �Wi
t ðuÞ

� �
;

(11)
498498

499 where i is the number of iterations and s1 is a tolerance.
500 With the proof by Bertsekas in [33], there always exists a
501 b > 0 that satisfies the rule (11) and every limit point of
502 fWi

t ðuÞg1i¼1 is a stationary point of the bound-constrained
503 optimization problem (8) [32]. After optimizing every WtðuÞ
504 for every vertex in Gt, an optimal Wt is obtained. The
505 pseudo code for solvingWt is presented in Algorithm 1.

506 Algorithm 1. The Projected Gradient Algorithm of
507 SolvingWt

508 Input:Mt,H, x,W 0
t , y

t, �1, �2, �3, 0 < u < 1, 0 < s1 < 1
509 Output:Wt

510 1: repeat
511 2: for u ¼ 1; 2; . . . ;m do
512 3: b0 ¼ 0:01
513 4: for i ¼ 1; 2; . . . do
514 5: bi ¼ bi�1

515 6: if bi satisfies Eq. (11) then
516 7: repeat
517 8: bi ¼ bi=u
518 9: until bi does not satisfy Eq. (11)
519 10: else
520 11: repeat
521 12: bi ¼ bi � u
522 13: until bi satisfies Eq. (11)
523 14: end if
524 15: UpdateWtðuÞ by using Eq. (9)
525 16: end for
526 17: end for
527 18: until converge.
528 19: returnWt

529 5.2.2 Optimizing Common Latent SpaceH

530 When fixing Wt and x, the H optimization problem can be
531 addressed by solving

argmin
H

hðHÞ ¼ argmin
H�0

1

2

Xn
t¼1

kMt �HWtk2F þ �1

2
kHk2F :

(12)
533533

534This is also a convex bound-constrained optimization prob-
535lem that is again solvable using the projected gradient
536method, which is similar to the approach we employed in
537solvingWt. The updating function ofH is

H ¼ max H � b5 hðHÞ; 0f g; (13)
539539

540where the gradient of hðHÞ is

5hðHÞ ¼
Xn
t¼1

HWt �Mtð ÞWT
t þ �1H: (14)

542542

543When optimizing H, we adopt the same learning rate
544updating strategy in solving Wt here to ensure sufficient
545decent under the condition (15). s2 is the tolerance and i is
546the number of iterations

hðHiþ1Þ � hðHiÞ � s2 5 hðHiÞT Hiþ1 �Hi
� �

: (15)
548548

549

5505.2.3 Co-Training Linear Regressor for Embedding ToE

551Fixing H and Wt for all t to optimize x is a standard linear
552regression problem.When rewriting the Jtp in Eq. (3) inmatrix
553form, we obtain the objective function of optimizing x by
554Eq. (16), where Z ¼ ½ZT

1 ; Z
T
2 ; . . . ; Z

T
n �T and y ¼ ½yT1 ; yT2

555; . . . ; yTn �T , which is a standard linear regression problem

argmin
x

�3

2
Jtp ¼ argmin

x

�3

2
ky� Zxk22 þ

a�3

2
af xð Þ: (16)

557557

558Zt for t ¼ 1; . . . ; n contains the concatenated features of any
559pair of vertices in the snapshot graph Gt as showed in
560Eq. (17) and yt 2 Rm2

is the corresponding ToE. The stan-
561dard algorithm can be directly applied to solve the linear
562regression problem with different regularization fðxÞ and
563finally get x

Zt ¼

Wtð1ÞT Wtð1ÞT 1

Wtð1ÞT Wtð2ÞT 1

..

. ..
. ..

.

Wtð1ÞT WtðmÞT 1

Wtð2ÞT Wtð1ÞT 1

..

. ..
. ..

.

Wtð2ÞT WtðmÞT 1

..

. ..
. ..

.

WtðmÞT WtðmÞT 1

2
66666666666666664

3
77777777777777775

2 Rm2	ð2kþ1Þ: (17)

565565

566

567Since the connections of vertices usually evolve very fre-
568quently in a dynamic graph, which leads to substantial
569changes to the concatenated edge features but only has a
570slight impact on ToE, LASSO is very robust for embedding
571the ToE and unlikely to overfit. In the remainder of this
572paper, we specifically employ the LASSO regressor, letting
573fðxÞ ¼ kxk1, for illustration. To obtain the optimal LASSO
574regressor x, we first let gðxÞ ¼ �3

2 ky� Zxk22, and then
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575 compute its gradient by rgðxÞ ¼ �3ðZTZx� ZTyÞ. Lastly,
576 we employ the FISTA algorithm [34] to solve the LASSO
577 problem and obtain an optimal xwith

x ¼ Sa�3
2
ðx� grgðxÞÞ; (18)

579579

580 where Sð�Þ is a soft-threshold calculator. g ¼ 1=�maxðZTZÞ
581 where �maxðZTZÞ is the maximum eigenvalue of ZTZ which
582 is the smallest Lipschitz constant of rgðxÞ. The computa-
583 tional complexity of the FISTA algorithm is only Oð1=m2Þ
584 [34] which solves the LASSO very efficiently.

585 5.3 Efficient Training Procedure and Convergence

586 Although the projected gradient algorithm and the FISTA
587 algorithm are efficient for matrix factorization and LASSO
588 regression respectively, there exist two bottlenecks in fur-
589 ther improving the training efficiency and making TCDGE
590 converge faster. One bottleneck is the initialization of Wt

591 and H to make them close to the optimal point for reducing
592 the training time while preventing them from sticking into
593 meaningless local optima. The other bottleneck is that very
594 large-scale training samples make the FISTA algorithm very
595 time-consuming in computing the gradient rgðxÞ. Training
596 sets containing too many edges with zero ToE impair the
597 training precision of linear regressor as well. Here, we pres-
598 ent an initialization approach using singular value decom-
599 position (SVD) and an efficient FISTA training procedure to
600 address the above efficiency bottlenecks.

601 5.3.1 Initialization ofWt andH by SVD

602 The TCDGE algorithm cannot be initialized by randomly
603 generated H0 and W 0

t . Usually, Mt is a sparse matrix but
604 randomly generated H0 and W 0

t are all dense matrices. It
605 will make either or both H and Wt become zero matrices
606 after a few iterations. Thus, the algorithm stops at a local
607 optimum and outputs meaningless results.
608 To avoid reaching the zero local optimal point, the initial-
609 ized H0 and W 0

t should meet the requirement kMt �
610 H0W 0

t k2F � kMtk2F [32]. Therefore, we adopt SVD to initialize
611 H0 and W 0

t as follows. First, we decompose every Mt and
612 obtain its left-singular matrix Ut, singular value matrix It,
613 and right-singular matrix St. Then, we select the rectangular
614 diagonal sub-matrix from It corresponding to the top k sin-
615 gular values, and the first k columns from Ut and St denoted
616 as It;k,Ut;k and St;k. Finally, we initializeH0 andW 0

t by

H0 ¼ 1

n

Xn
t¼1

Ut;k and W 0
t ¼ It;kS

T
t;k: (19)

618618

619 Using SVD to initialize our embedding algorithm prevents
620 it from being stuck in the zero local optimum and allows it
621 to pursue meaningful results.

622 5.3.2 Efficient Linear Regressor Training With Negative

623 Sampling

624 To capture all of the temporal dependencies among the m
625 vertices in a dynamic graph consisting of n snapshot
626 graphs, m2 	 n training samples in Z are used to co-train
627 the linear regressor in every time step. Because of the high
628 dimensionality of Z, computing the gradient rgðxÞ is very

629time-consuming. Meanwhile, many vertices usually do not
630connect to each other in real cases. Thus, edges with zero
631ToE are much more common than nonzero ToE edges,
632which causes imbalance issues and impairs the precision of
633the co-trained regression model.
634Inspired by negative sampling [35], we mark all edges
635with nonzero ToE as positive samples and randomly choose
636a set of zero ToE edges, following a uniform distribution, as
637negative samples to jointly train the regressor. Different
638from deep learning models that just select a very small
639number of negative samples based on the label difference
640for training, we restrict the number of negative samples to
641half of the number of positive ones because negative sam-
642ples in our model indicate vertices having no temporal
643dependency which is one of the most important pieces of
644information that should be learned by the regressor.
645After negative sampling, the training samples in Z are
646dramatically reduced and positive samples become majori-
647ties, therefore saving the computational cost in calculating
648rgðxÞ and preventing the regressor from being dominated
649by the negative samples, which makes it converge quickly
650and precisely. We have tried selecting negative samples
651based on a probability distribution that is proportional or
652inversely proportional to the vertex degree but the experi-
653mental results show that this is rarely much different from
654following the uniform distribution.

6555.3.3 Convergence and Stop Criteria

656The overall work flow of the TCDGE algorithm is presented
657in Algorithm 2, which essentially is a block-wise coordinate
658descent algorithm. Therefore, its convergence can be guaran-
659teed according to the proof of convergence of block-wise
660coordinate descent [36]. Both algorithms for optimizing Wt

661and H stop when they meet the condition in Eqs. (20) and
662(21), which ensures the optimization outputs are close to a
663stationary point [32]. � is a very small positive number. For
664the jth element aj in vector a, pð�Þ equals the gradient at aj if
665aj > 0 else pð�Þ equals the negative gradient at aj

kpð5hðHiÞÞk2 � �k 5 hðH1Þk2 (20) 667667

668

kpð5fðWi
t ðuÞÞÞk2 � �k 5 fðW 1

t ðuÞÞk2: (21)
670670

671The FISTA algorithm for embedding the ToE stops when the
672residual of x is less than a small positive number �0.

673Algorithm 2. The TCDGE Algorithm

674Input: Mt, y, Z, x
0, t0, �1, �2, �3, a, 0 < u < 1, 0 < s1 < 1,

6750 < s2 < 1
676Output:H,Wt, x
6771: Initialize H0 andW 0

t by Eq. (19)
6782: Initialize x by the FISTA algorithm
6793: repeat
6804: for t ¼ 1; 2; . . . ; n do
6815: UpdateWt by Algorithm 1
6826: end for
6837: UpdateH by the projected gradient algorithm
6848: Update x by the FISTA algorithm
6859: until converge.
68610: returnH,Wt, x
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687 6 EXPERIMENTAL RESULTS AND ANALYSIS

688 In this section,we conduct extensive experiments to showcase
689 the effectiveness and efficiency of the TCDGE algorithms in
690 the data mining tasks of vertex classification, ToE prediction,
691 static link prediction, and time-aware link prediction.

692 6.1 Experimental Setting

693 6.1.1 Datasets

694 Three public real-world datasets are considered when vali-
695 dating the performance of TCDGE on data mining applica-
696 tions, whose statistics are presented in Table 2.
697 UCI Messages1 [37] is an online communication network
698 of students. A vertex represents a student that has sent or
699 received messages. The ToE is the communication time
700 interval between a pair of students. The communication
701 lasts 7 months so that a dynamic graph containing 7 snap-
702 shot communication graphs has been built for capturing
703 their dynamic communication behaviors.
704 Transaction2 [38] is a bitcoin transaction network. A vertex
705 is a trader who buys and sells bitcoins and an edge forms
706 while two traders complete a transaction. The ToE is the time
707 interval between buying and selling. Each snapshot graph
708 carries the transactions in a 6 month period. Since bitcoin
709 traders are anonymous, there is a need to maintain a record
710 of their reputation to prevent transactions with fraudulent
711 and risky traders. Traders rate each other’s trustworthiness
712 on a scale of �10 (total distrust) to +10 (total trust) with a
713 step of 1 after completing each transaction, so that we label
714 traders whose average score is above 1 as trustworthy while
715 the rest are deemed untrustworthy. Finally, we obtain 1092
716 untrustworthy traders and 4789 trustworthy ones.
717 We derive a Co-authorship3 network for publications from
718 2010 to 2014 in three research areas including networking
719 (NW), data mining (DM) and artificial intelligence (AI)
720 from the DBLP. A vertex is an author and two authors form
721 an edge when they coauthor a paper. The ToE indicates the
722 time interval between co-authorship. We deem researchers
723 that have coauthored with not less than 6 other authors and
724 at least coauthored with one of them twice in that period.
725 The snapshot graphs represent the co-authorship in every
726 year. We label the vertices by their research areas which
727 they published most in. Finally, we obtains 3405 authors in
728 NW, 2909 authors in DM, and 4060 authors in AI.

729 6.1.2 Baseline Methods

730 We benchmark our TCDGE algorithm to 7 state-of-the-art
731 methods listed below using their published codes.

732� DeepWalk4 [1] is a static graph embedding algorithm
733that employs skip-gram to encode linkage relation-
734ships among vertices searched by the random walk.
735We tested the combination of hyper parameters
736given window sizes ws 2 f5; 8; 10g, walk lengths
737wl 2 f10; 20; 30; 40g, and numbers of walks nw 2
738f20; 40; 60g, and report the best results.
739� Temporal Network Embedding (TNE)5 [2] is a matrix
740factorization based dynamic graph embedding
741method that encodes the structure evolving patterns
742in different latent spaces. We tested the hyper
743parameter � 2 f0:01; 0:1; 1; 10g, and report the best
744results.
745� Timers6 [27] is an incremental SVD approach for
746dynamic graph embedding which overcomes the
747error accumulation issues by restarting SVD when
748the error margin exceeds a threshold. We use the
749default parameter settings u ¼ 0:17.
750� DynamicTriad7 [4] preserves the triad closure process
751while embedding the structural evolution. We tested
752all combinations of hyper parameters b0;b1 2
753f0:01; 0:1; 1; 10g, and report the best results.
754� GraphSAGE8 [8] is a graph convolutional network
755approach for embedding the structural evolution of
756a dynamic graph. We train a two layer model with
757respective neighborhood sample sizes 25 and 10, as
758described in the original paper. We test different
759aggregators including GCN, mean, mean-pooling,
760and LSTM and report the performance of the best
761performing aggregator in each dataset.
762� DynGEN9 [6] adopts a deep auto-encoder to embed
763the structure changes throughout the snapshot graph
764sequence. We train a two layer model and adopt the
765default parameter settings that are recommended by
766the authors.
767� DynG2vecAERNN9 [7] is an extension of DynGEN
768which first adopts a deep neutral network to encode
769the structure of each snapshot graph, and then
770employs an LSTM to embed the sequential evolution
771of every vertex throughout the snapshot graphs. A
772two layer model is trained with the default parame-
773ter setting as described in the original paper.
774In order to verify the effectiveness of learning the com-
775mon latent space H to capture the linkage evolution, we
776experiment with our TCDGE without embedding ToE by
777setting �3 ¼ 0, namely TCDGE-noToE. Meanwhile, we test
778another variant TCDGE, namely TCDGE-wgToE, that
779adopts the ToE as weights of the adjacency matrix of each
780snapshot graph but does not co-train any regression model,
781thus verifying the effectiveness of our co-training approach.

7826.1.3 Evaluation Metrics

783We employ micro-F1 and macro-F1 scores as evaluation
784metrics for the task of vertex classification as seen below:

TABLE 2
Statistics of Datasets

Dataset jV j jEj jGtj Mean ToE Std ToE #Classes

UCI Messages 1899 22640 7 0.7387 (days) 2.1762 -
Transaction 5881 35592 11 1.4637 (months) 1.9303 2
Co-authorship 10374 60101 5 1.3834 (years) 1.0414 3

1. http://konect.uni-koblenz.de/networks/opsahl-ucsocial
2. https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3. http://projects.csail.mit.edu/dnd/DBLP/

4. https://github.com/phanein/deepwalk
5. https://github.com/linhongseba/Temporal-Network-

Embedding
6. https://github.com/ZW-ZHANG/TIMERS
7. https://github.com/luckiezhou/DynamicTriad
8. https://github.com/williamleif/GraphSAGE
9. https://github.com/palash1992/DynamicGEM
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Micro-F1 ¼ 2
P

i TPiP
i 2TPi þ FPi þ FNið Þ (22)

786786

787

Macro-F1 ¼ 1

c

X
i

2TPi

2TPi þ FPi þ FN
; (23)

789789

790 where TPi, FPi, and FNi are the true positive, false positive,
791 and false negative results of the ith predicted class, respec-
792 tively. The macro-F1 score is the mean of the class-wise F1
793 score that is sensitive to the performance in classifying each
794 individual class. The micro-F1 score measures the overall
795 classification performance regardless of the accuracy in
796 individual classes. Higher micro-F1 and macro-F1 scores
797 indicate better vertex classification performance.
798 We evaluate the performance of ToE prediction by mea-
799 suring the Root Mean Square Error (RMSE) between the
800 predicted ToE and the ground truth as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

y2Stest y� ŷð Þ2
jStestj

s
; (24)

802802

803 where y denotes the real ToE in the test set Stest and ŷ is the
804 predicted one. jStestj is the number of test samples in Stest.
805 The smaller the RMSE, the more accurate the ToE
806 prediction.
807 In link prediction, we employ the average area under the
808 curve (AUC) of the receiver operating characteristic (ROC)
809 curve as the performance metric. The higher the AUC, the
810 better the link prediction performance.

811 6.1.4 Parameter Setting

812 The experiments have been conducted with k ¼ 45 as the
813 dimension of the representation vector for both our method
814 and all baselines in all testing datasets. For the parameters
815 of TCDGE, we set the scaling factor u ¼ 0:5, tolerance s1 ¼
816 s2 ¼ 0:01. We co-train a LASSO regressor for our TCDGE
817 with initial regression parameter a ¼ 1 Since Wt will be
818 updated at each time step, making Z change dynamically,
819 the regression parameter a cannot be fixed. Otherwise, the
820 LASSO cannot adequately fit the ToE by using the new Z at
821 each time. In addition, the training error of LASSO will
822 gradually accumulate so that the reconstruction error of the
823 overall embedding model will progressively increase, thus
824 leading to poor embedding results. We adopt u to dynami-
825 cally update a 10 times using the same updating strategies
826 in the projected gradient algorithm for learning the best
827 LASSO regressor x at each time. Finally, we report the best
828 results by testing the combination of model parameters
829 given �1 2 f0:001; 0:01; 1g and �2; �3 2 f0:0001; 0:001; 0:01;
830 0:1; 1g for the data mining tasks presented in the following
831 subsections. All experiments are conducted on a standard
832 workstation with 2 Intel Xeon Gold 6128 CPUs and 64GB
833 RAM, and are implemented in MATLAB.

834 6.2 Vertex Classification

835 Vertex classification aims to identify the unique label of ver-
836 tices using their learned representations in the dynamic
837 graph G. We first learn the representation of vertices
838 in every snapshot graph Gt. Then, concatenate the

839representations Wt together by Eq. (1) for classification. A
840support vector machine (SVM) with a Gaussian kernel is
841trained by using these features to classify their correspond-
842ing labels. It tests the embedding algorithms’ ability to cap-
843ture the global graph evolutionary patterns in G for all
844timestamps. Since the UCI messages dataset does not con-
845tain vertex labels, we compare the classification perfor-
846mance in both bitcoin transactions and co-authorship
847datasets. We repeat the 5-fold cross-validation on both data-
848sets 10 times and compare the average performance in
849macro-F1 and micro-F1 scores. We did not adopt any extra
850methods to handle the issues of unbalanced labels in the bit-
851coin transaction dataset but straightforwardly train the SVM
852for testing the actual performance of our TCDGE algorithm
853in the case of label unbalanced classification. The results are
854shown in Table 3.
855In the bitcoin transaction dataset, our TCDGE algorithm
856achieves the best performance, and outperforms the best
857baseline by 2.00 percent in micro-F1 scores and by 4.36 per-
858cent in macro-F1 scores. In the co-authorship dataset,
859TCDGE and its variants, TCDGE-noToE and TCDGE-
860wgToE, dramatically outperform all 7 other baseline meth-
861ods. This indicates that capturing the moving trajectories of
862vertices in the common latent space, learned throughout the
863snapshot graph sequence by our proposed approach,
864embeds the evolution of a dynamic graph better than the
865baseline methods. In addition, the temporal evolution pat-
866terns captured by our approach work much better than the
867baselines in unbalanced label classification.
868In the co-authorship dataset, TCDGE-noToE performs
869the best. This may be because the standard deviation of its
870ToE is relatively small meaning that the time intervals of co-
871authoring papers are not as significant as who they co-
872author with over time for classifying their research areas.
873Therefore, purely capturing the linkage evolution may be
874good enough for classifying authors’ research areas from
875their co-authorship, and our TCDGE and TCDGE-wgToE
876achieve close performance, yet slightly worse than TCDGE-
877noToE but still much better than the baselines.
878When people trade bitcoins, the time interval between
879transactions becomes important for measuring traders’ trad-
880ing behavior and strategies, which results in higher standard
881deviation of ToEs. Since our TCDGE algorithm successfully
882embeds both structural evolution and the temporal informa-
883tion of edges at the same time, it achieves the highest macro

TABLE 3
Vertex Classification Results

Transaction Co-authorship

Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.8855 0.7229 0.5645 0.5684
TNE 0.8673 0.6777 0.4221 0.4064
Timers 0.7810 0.4896 0.3358 0.2965
GraphSAGE 0.6205 0.6256 0.4793 0.4537
DynamicTriad 0.8652 0.6737 0.5243 0.5189
DynGEN 0.8316 0.6680 0.5150 0.5065
DynG2vecAERNN 0.8140 0.4721 0.4681 0.5398
TCDGE-noToE 0.8621 0.7390 0.6921 0.7220
TCDGE-wgToE 0.8625 0.7402 0.6701 0.6885
TCDGE 0.9032 0.7725 0.6728 0.7079
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884 and micro F1 scores and dramatically outperforms the tradi-
885 tional models whichmerely capture the linkage information.
886 Although TCDGE-wgToE leverages the ToE as weights of
887 the adjacency matrices for embedding, the temporal depen-
888 dency among vertices gradually diminishes during embed-
889 ding due to the aggregation throughout the snapshot graph
890 sequence, which is consistent with the conclusion drawn in
891 [16]. However, co-training the LASSO regressor has the abil-
892 ity to better preserve the temporal dependency among verti-
893 ces and encode it into the final representation. Therefore,
894 embedding the temporal dependency together with the
895 structural evolution among vertices into a common latent
896 space makes the learned representation vectors preserve the
897 global structural and temporal evolutionary patterns from
898 the whole dynamic graph, which is more discriminative and
899 leads to better classification results.

900 6.3 ToE Prediction

901 The objective of ToE prediction is to estimate the ToE of an
902 edge given the representation of its source and target verti-
903 ces for testing how effectively the learned representations
904 capture temporal information. The experiment is conducted
905 under the leave-one-snapshot-graph-out cross-validation
906 setting. Since our model co-trains a LASSO regressor simul-
907 taneously with the representation learning, a snapshot
908 graph is selected for testing at each round and we use the
909 rest of the snapshot graphs to train our model until every
910 snapshot graph serves as the testing graph once. When test-
911 ing the baseline methods, we first generate all the represen-
912 tations from every snapshot graph, and then employ them
913 to further train a LASSO regressor under the same cross-val-
914 idation setting. We repeat each experiment 10 times and
915 report the average RMSE.
916 The ToE prediction results are presented in Table 4. Our
917 method achieves a 12.85 percent lower RMSE on average
918 against all baseline methods and outperforms the best base-
919 line by 6.50 percent indicating that the temporal dynamics
920 are preserved by our proposed co-training approach, which
921 results in much lower ToE prediction errors than the base-
922 line approaches that ignore it. The representations learned
923 by our TCDGE carry both structural evolution of the
924 dynamic graph and its ToE such that it is more effective
925 when discriminating temporal information than those
926 approaches that purely embed the graph structure, which
927 leads to better performance in ToE prediction.

9286.4 Static Link Prediction

929Static link prediction aims to predict whether a pair of vertices
930will form an edge at time tþ 1, given their embeddings
931learned at t. This task ignores the joining time of source verti-
932ces, which is widely adopted by the existing work to test the
933performance of learned embeddings. Here we employ the
934cosine distance tomeasure the similarity of two vertices in the
935latent space and calculate the probability of forming a new
936edge by the sigmoid function.Wepredict the links in snapshot
937graph Gtþ1 by using the representation Wt under the same
938experimental settings as those of [2]. The performance is mea-
939sured by the averageAUC for predictingG2 toGn.
940The results are reported in Table 5. Overall, our proposed
941TCDGE algorithm outperforms all baselines by 27.56 per-
942cent on average with respect to the AUC, and achieves 2.22
943percent higher AUC than the best baseline method TCDGE-
944noToE on average in all three datasets. The baseline
945approaches only learn from the linkage information. How-
946ever, our TCDGE algorithm not only learns the evolving
947patterns of who the vertices link to, but also embeds how
948they link by capturing their ToEs and temporal dependency
949such that the edges between the same pair of vertices but
950established at two different timestamps can be distin-
951guished. Therefore, our TCDGE algorithm achieves better
952static link prediction performance in terms of higher AUC
953than all baselines.

9546.5 Time-Aware Link Prediction

955Time-aware link prediction is a unique application for
956dynamic graph embedding, which aims to identify the join-
957ing time of existing vertices on top of the static link predic-
958tion. It performs two tasks at the same time. One is to
959predict whether a pair of vertices will form an edge at time
960tþ 1when given their representations at time t. The other is
961to predict the joining time of existing vertex to identify the
962unique one since it can join the dynamic graph several
963times. Specifically, data mining applications such as predict-
964ing which sell order will be completed by a buyer, predict-
965ing the future victims of fraud and when the fraud will
966happen, recommending items at an appropriate time, etc.,
967can all be abstracted as time-aware link prediction
968applications.
969Since the joining time of an existing vertex is equal to the
970difference between the ToE and the joining time of an

TABLE 4
Average RMSE of ToE Prediction

UCI Messages Transaction Co-authorship

DeepWalk 2.5934 2.1084 1.0395
TNE 2.5335 2.0932 1.0377
Timers 2.1536 2.1074 1.0428
GraphSAGE 2.1471 2.1004 1.0392
DynamicTriad 2.3329 2.3485 1.3425
DynGEN 2.4160 2.4053 1.0395
DynG2vecAERNN 2.1640 1.9756 0.9891
TCDGE-noToE 2.1957 2.0920 1.0371
TCDGE-wgToE 2.1595 2.0659 1.0452
TCDGE 2.1419 1.7798 0.8967

TABLE 5
Average AUC of Static Link Prediction

UCI Messages Transaction Co-authorship

DeepWalk 0.6619 0.9028 0.5977
TNE 0.6524 0.8264 0.5861
Timers 0.4943 0.4938 0.5156
GraphSAGE 0.5091 0.5624 0.5890
DynamicTriad 0.5187 0.4197 0.5950
DynGEN 0.6028 0.5826 0.4874
DynG2vecAERNN 0.4977 0.5218 0.4949
TCDGE-noToE 0.7003 0.9194 0.6044
TCDGE-wgToE 0.6969 0.9187 0.6037
TCDGE 0.7314 0.9248 0.6142
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971 upcoming vertex, predicting the joining time of existing ver-
972 tices at the time when the upcoming one joins the dynamic
973 graph is the same as predicting the ToE of the edge they
974 form. Thus, we predict the ToE instead of the actual joining
975 time of existing vertices in this experiment.
976 We conduct the experiment under the one-snapshot-
977 graph-ahead cross-validation setting in which a snapshot
978 graph Gt (t > 1) is selected for testing at each round and
979 we use the snapshot graph sequence fG1; . . . ; Gt�1g to train
980 our model until every snapshot graph except G1 serves as
981 the testing graph once. Since none of the baselines can
982 achieve the two goals in time-aware link prediction simulta-
983 neously, we employ the same cross-validation setting to
984 obtain baselines’ representations and then further train a
985 LASSO regressor to predict the ToE. We adopt the same
986 approach used in static link prediction to determine
987 whether there exists an edge connecting a pair of vertices
988 here.
989 A temporal link has been correctly predicted if and only
990 if the model correctly predicts that a pair of vertices formed
991 an edge and the RMSE of ToE prediction for this edge is less
992 than a threshold �. To test how the prediction accuracy of
993 ToE affects time-aware link prediction, we perform time-
994 aware link prediction in three datasets and test the thresh-
995 old � from 0.0001 to 30. The experiment repeats 10 times for
996 each threshold and the average AUC are reported in Fig. 2.
997 Our TCDGE performs the best in all three testing data-
998 sets when � > 0:1. It also achieves the highest AUC in the
999 bitcoin transaction dataset and dramatically outperforms

1000 other baselines except DynG2vecAERNN in the remaining
1001 two datasets when � � 0:1. DynG2vecAERNN works better
1002 in ToE prediction than other baselines (refer to Table 4) but
1003 is comparatively much worse in link prediction (refer to

1004Table 5) such that it achieves relatively high AUC with
1005small � but it cannot correctly predict more temporal links
1006when relaxing the threshold �. Although our TCDGE per-
1007forms slightly worse than DynG2vecAERNN with small �,
1008it becomes the best of all when � ¼ 1, and AUC increases
1009slowly when � > 1. This indicates that the RMSE of ToE
1010prediction for most temporal edges predicted by our
1011TCDGE is less than 1. Consequently, our LASSO co-training
1012approach preserves the temporal dynamics well while
1013embedding the ToE, therefore resulting in superior perfor-
1014mance in time-aware link prediction.

10156.6 Parameter Sensitivity Analysis

1016The TCDGE defined by Eq. (5) is dependent on regularizer
1017weights �1, �2, �3 and a hyperparameter k which is the
1018dimension of the latent representation space as well as the
1019dimension of the learned embeddings. The selection of �1,
1020�2 and �3 highly depends on the input data and the selec-
1021tion approach has been illustrated in Section 6.1.4. There-
1022fore, we conduct sensitivity analysis on the hyperparameter
1023k from 15 to 285 in vertex classification, ToE prediction, and
1024static link prediction. The co-authorship dataset is adopted
1025here because the scale is relatively large compared to the
1026other two datasets and the number of vertices in the three
1027categories are almost balanced, which is more common in
1028daily life. We fix �1 ¼ 0:0001, �2 ¼ �3 ¼ 0:01 and only vary
1029k at each time. As shown in Fig. 3, when k increases, both
1030F1-scores in vertex classification increase almost linearly
1031and gradually converge. The RMSE of ToE prediction
1032decreases exponentially and converges with increasing k.
1033The average AUC of static link prediction is not sensitive to
1034the dimension of the representations. Since all results

Fig. 2. Average AUC of time-aware link prediction with varying threshold �.

Fig. 3. Testing the hyperparameter k in the co-authorship dataset.
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1035 eventually converge to the best case when the k is high
1036 enough, our TCDGE is not sensitive to the dimension of the
1037 common latent space k.

1038 6.7 Convergence and Training Efficiency

1039 We demonstrate the convergence of our TCDGE algorithm
1040 in the co-authorship dataset which has the highest number
1041 of vertices. The loss of the objective function in Eq. (5), fidel-
1042 ity term 1

2

Pn
t¼1 kMt �HWtk2F , the LASSO regressor Jtp in

1043 Eq. (3) when fðxÞ ¼ kxk1, and temporal smoothness regu-
1044 larization Jsm in Eq. (4) are shown in Fig. 4a.
1045 Our model converges in very few iterations because of
1046 the initialization set by the SVD and the effectiveness of the
1047 projected gradient method for solving Wt and H. Our ini-
1048 tialization approach not only prevents our TCDGE from
1049 being stuck in the zero local optimum, but also generates an
1050 approximation of Mt upon initialization, which already
1051 decreases the loss of fidelity. In the projected gradient
1052 method, a scaler u is employed to search for a good learning
1053 rate to ensure the sufficient decrease of the gradient, thereby
1054 boosting the convergence speed of the overall TCDGE
1055 algorithm.
1056 Fig. 4b shows the average running time of each iteration
1057 while training our TCDGE by varying the hyperparameter
1058 k. As k increases, the running time for updating H at each
1059 iteration hardly increases. The running time of updating Wt

1060 and co-training x almost linearly grows with increasing k. It
1061 takes less than 1 minutes to finish updating the representa-
1062 tion for over ten thousand vertices when k <¼ 105 and less
1063 than 5 minutes when k ¼ 255.
1064 Although our TCDGE model looks complex, it converges
1065 quickly in terms of a small number of iterations and a very
1066 short running time for encoding the representation Wt,
1067 learning the common latent space H, and co-training the
1068 LASSO regressor x, demonstrating the effectiveness of the
1069 projected gradient method and the our proposed efficient
1070 training procedure.

1071 6.8 Scalability of TCDGE

1072 We synthesize two datasets on top of the co-authorship
1073 dataset to test the scalability of our TCDGE. One is to fix the
1074 number of snapshot graphs but augment the number of ver-
1075 tices in every snapshot graph by sampling vertices and
1076 edges in the other snapshot graphs as new vertices and
1077 edges of the current graph. This tests the scalability of the
1078 project gradient approach for updating Wt and the LASSO
1079 co-training. The experimental results are shown in Fig. 5a.
1080 As the number of vertices in the snapshot graph increases,

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

10931094the running time for updating Wt grows almost linearly.
1095The running time for co-training LASSO and updating H
1096becomes slightly longer, but still much slower than the
1097growth rate of updatingWt.
1098The other synthesized dataset fixes the number of verti-
1099ces in every snapshot graph but augments the number of
1100snapshot graphs to test the scalability of learning the com-
1101mon latent space H. We divide the vertices of each existing
1102snapshot graph into 5-folds based on the degree of vertices.
1103We take a fold from each existing snapshot graph without
1104duplication to synthesize a new snapshot graph. In Fig. 5b,
1105the experimental results indicates that the running time of
1106learning the common latent space grows linearly. Conse-
1107quently, our TCDGE algorithm has very good scalability
1108although the embedding model is complicated with high-
1109order polynomials.

11107 CONCLUSION

1111We generically model a dynamic graph as a sequence of
1112snapshot graphs appended with ToE for every edge, which
1113captures both the graph structure and temporal dependency
1114among vertices. A time capturing dynamic graph embed-
1115ding model is proposed to embed the global evolutionary
1116patterns of the dynamic graph, which preserves every
1117vertex’s temporal linkage evolution as its moving trajecto-
1118ries within the inferred common latent representation space.
1119The experimental results show that our method can achieve
1120significant performance improvements over existing state-
1121of-the-art approaches and it is very efficient and scalable.

1122ACKNOWLEDGMENTS

1123This work was supported in part by the Hong Kong RGC
1124Collaborative Research Fund (CRF) under Grant C5026-
112518G, in part by the Hong Kong RGC Theme-based Research
1126Scheme (TRS) under Grant T41-603/20-R, in part by the
1127Fundamental Research Funds for the Central Universities
1128under Grant NZ2020014, in part by the Guanddong Basic
1129and Applied Basic Research Foundation under Grant
11302021A1515012239, in part by the National Natural Science
1131Foundation of China under Grant 62032020, and in part by
1132the Hunan Science and Technology Planning Project under
1133Grant 2019RS3019.

1134REFERENCES

1135[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
1136of social representations,” in Proc. 20th ACM SIGKDD Int. Conf.
1137Knowl. Discov. Data Mining, 2014, pp. 701–710.

Fig. 4. Convergence and training efficiency of TCDGE in the co-author-
ship dataset. Fig. 5. Scalability test results of TCDGE in the synthesized dataset.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING



1138 [2] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable
1139 temporal latent space inference for link prediction in dynamic
1140 social networks,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 10, pp.
1141 2765–2777, Oct. 2016.
1142 [3] W. Yu, C. C. Aggarwal, and W. Wang, “Temporally factorized
1143 network modeling for evolutionary network analysis,” in Proc.
1144 Tenth ACM Int. Conf. Web Search Data Mining, 2017, pp. 455–464.
1145 [4] L.-k. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic net-
1146 work embedding by modeling triadic closure process,” in Proc.
1147 AAAI Conf. Artif. Intell., 2018, pp. 571–578.
1148 [5] D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu, “High-order proxim-
1149 ity preserved embedding for dynamic networks,” IEEE Trans.
1150 Knowl. Data Eng., vol. 30, no. 11, pp. 2134–2144, Nov. 2018.
1151 [6] P. Goyal, N. Kamra, X. He, and Y. Liu, “DynGEM: Deep embed-
1152 ding method for dynamic graphs,” 2018, arXiv:1805.11273.
1153 [7] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Capturing
1154 network dynamics using dynamic graph representation learning,”
1155 Knowl. Based Syst., vol. 187, 2020, Art. no. 104816.
1156 [8] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
1157 learning on large graphs,” in Proc. Int. Conf. Neural Inf. Process.
1158 Syst., 2017, pp. 1025–1035.
1159 [9] Y. Xiong, Y. Zhang, H. Fu, W. Wang, Y. Zhu, and S. Y. Philip,
1160 “DynGraphGAN: Dynamic graph embedding via generative
1161 adversarial networks,” in Proc. Int. Conf. Database Syst. Adv. Appl.,
1162 2019, pp. 536–552.
1163 [10] J. Ma, P. Cui, and W. Zhu, “DepthLGP: Learning embeddings of
1164 out-of-sample nodes in dynamic networks,” in Proc. AAAI Conf.
1165 Artif. Intell., 2018, 370–377.
1166 [11] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S.
1167 Kim, “Continuous-time dynamic network embeddings,” in Proc.
1168 3rd Int.Workshop Learn. Representations Big Netw., 2018, pp. 969–976.
1169 [12] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding tem-
1170 poral network via neighborhood formation,” in Proc. 24th ACM
1171 SIGKDD Int. Conf. Knowl. Discov. DataMining, 2018, pp. 2857–2866.
1172 [13] H. Peng et al., “Dynamic network embedding via incremental
1173 skip-gram with negative sampling,” Sci. China Inf. Sci., vol. 63, no.
1174 10, pp. 1–19, 2020.
1175 [14] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
1176 representation learning with rich text information,” in Proc. 24th
1177 Int. Conf. Artif. Intell., 2015, pp. 2111–2117.
1178 [15] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “User profile preserving
1179 social network embedding,” in Proc. 24th Int. Conf. Artif. Intell.,
1180 2017, pp. 3378–3384.
1181 [16] P. Goyal, H. Hosseinmardi, E. Ferrara, and A. Galstyan,
1182 “Capturing edge attributes via network embedding,” 2018,
1183 arXiv:1805.03280.
1184 [17] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
1185 for networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Dis-
1186 cov. Data Mining, 2016, pp. 855–864.
1187 [18] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representa-
1188 tions with global structural information,” in Proc. 24th ACM Int.
1189 Conf. Inf. Knowl. Manage., 2015, pp. 891–900.
1190 [19] H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen, W.-C. Peng, and X. Li,
1191 “Exploiting centrality information with graph convolutions for
1192 network representation learning,” in Proc. 35th IEEE Int. Conf.
1193 Data Eng., 2019, pp. 590–601.
1194 [20] L. Xu, X. Wei, J. Cao, and P. S. Yu, “On exploring semantic mean-
1195 ings of links for embedding social networks,” in Proc. World Wide
1196 Web Conf., 2018, pp. 479–488.
1197 [21] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang,
1198 “Community preserving network embedding,” in Proc. AAAI
1199 Conf. Artif. Intell., 2017, pp. 203–209.
1200 [22] J. Wang, J. Cao, W. Li, and S. Wang, “CANE: Community-aware
1201 network embedding via adversarial training,” Knowl. Inf. Syst.,
1202 vol. 63, no. 2, pp. 411–438, 2021.
1203 [23] L. Xu, X. Wei, J. Cao, and P. S. Yu, “Embedding of embedding:
1204 Joint embedding for coupled heterogeneous networks,” in Proc.
1205 Tenth ACM Int. Conf. Web Search Data Mining, 2017, pp. 741–749.
1206 [24] X. Sun et al., “Heterogeneous hypergraph embedding for graph
1207 classification,” in Proc. 14th ACM Int. Conf. Web Search Data Min-
1208 ing, 2021, pp. 725–733.

1209[25] J. Li, J. Zhu, and B. Zhang, “Discriminative deep random walk for
1210network classification,” in Proc. 54th Annu. Meeting Assoc. Comput.
1211Linguistics, 2016, pp. 1004–1013.
1212[26] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Collective classification
1213via discriminative matrix factorization on sparsely labeled
1214networks,” in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage., 2016,
1215pp. 1563–1572.
1216[27] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “Timers: Error-
1217bounded SVD restart on dynamic networks,” in Proc. AAAI Conf.
1218Artif. Intell., 2018, pp. 224–231.
1219[28] J. Wang, Y. Jin, G. Song, and X. Ma, “EPNE: Evolutionary pattern
1220preserving network embedding,” in Proc. 24th Eur. Conf. Artif.
1221Intell., 2020, pp. 1603–1610.
1222[29] D. Yang, S. Wang, C. Li, X. Zhang, and Z. Li, “From properties to
1223links: Deep network embedding on incomplete graphs,” in Proc.
1224ACM Conf. Inf. Knowl. Manage., 2017, pp. 367–376.
1225[30] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dynamic
1226graph representation learning via self-attention networks,” 2018,
1227arXiv:1812.09430.
1228[31] S. Greenland, M. A. Mansournia, and D. G. Altman, “Sparse data
1229bias: A problem hiding in plain sight,” BMJ, vol. 352, 2016, Art.
1230no. 352:i1981.
1231[32] C.-J. Lin, “Projected gradient methods for nonnegative matrix
1232factorization,” Neural Comput., vol. 19, pp. 2756–2779, 2007.
1233[33] D. Bertsekas, “On the Goldstein-Levitin-Polyak gradient projec-
1234tion method,” IEEE Trans. Autom. Control, vol. 21, no. 2, pp. 174–
1235184, Apr. 1976.
1236[34] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
1237algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol.
12382, no. 1, pp. 183–202, 2009.
1239[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
1240“Distributed representations of words and phrases and their
1241compositionality,” in Proc. Adv. Neural Inf. Process. Syst., 2013, pp.
12423111–3119.
1243[36] P. Tseng, “Convergence of a block coordinate descent method for
1244nondifferentiable minimization,” J. Optim. Theory Appl., vol. 109,
1245no. 3, pp. 475–494, 2001.
1246[37] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,”
1247Social Netw., vol. 31, no. 2, pp. 155–163, 2009.
1248[38] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge
1249weight prediction in weighted signed networks,” in Proc. 16th
1250IEEE Int. Conf. Data Mining, 2016, pp. 221–230.

1251Yu Yang received the bachelor of computer sci-
1252ence degree from the Xi’an University of Science
1253and Technology in 2012 and the MEng degree in
1254pattern recognition and intelligence system from
1255Shenzhen University in 2015. He is currently
1256working toward the PhD degree with the Depart-
1257ment of Computing, The Hong Kong Polytechnic
1258University. His research interests include spatio-
1259temporal data analysis, representation learning,
1260and image processing.

1261Jiannong Cao (Fellow, IEEE) received the MSc
1262and PhD degrees in computer science from
1263Washington State University, Pullman, WA, USA,
1264in 1986 and 1990, respectively. He is currently
1265the chair professor with the Department of Com-
1266puting, The Hong Kong Polytechnic University,
1267Hong Kong. His current research interests
1268include parallel and distributed computing, mobile
1269computing, and big data analytics. He was a
1270member of the editorial boards of several interna-
1271tional journals, a reviewer of international journals
1272or conference proceedings, and an Organizing or Program Committee
1273member for many international conferences.

YANG ET AL.: TIME-CAPTURING DYNAMIC GRAPH EMBEDDING FOR TEMPORAL LINKAGE EVOLUTION 13



1274 Milos Stojmenovic received the PhD degree in
1275 computer science from the University of Ottawa,
1276 Canada, in 2008. He is currently a professor with
1277 Singidunum University, Belgrade, Serbia. He has
1278 authored or coauthored more than 55 scientific
1279 contributions in books and peer-reviewed confer-
1280 ences and journals. His research interests
1281 include computer vision, machine learning and
1282 sensor networks, where he researches and
1283 develops software for the automated detection of
1284 objects in images, deep Learning for prediction of
1285 future events, and routing simulations in ad hoc sensor networks. He is
1286 currently on the editorial boards of two journals and has an H-index of
1287 18. He is currently a visiting fellow with Hong Kong Polytechnic Univer-
1288 sity Riga Technical University.

1289 Senzhang Wang (Member, IEEE) received the
1290 MSc degree from Southeast University, Nanjing,
1291 China, in 2009 and the PhD degree in computer
1292 science from Beihang University, Beijing, China,
1293 in 2015. He is currently a professor with the
1294 School of Computer Science and Engineering,
1295 Central South University, Changsha. He has
1296 authored or coauthored more than ten papers on
1297 the top international journals and conferences
1298 such as Knowledge and Information Systems,
1299 ACM SIGKDD Conference on Knowledge Dis-
1300 covery and Data Mining, and AAAI Conference on Artificial Intelligence.
1301 His current research interests include data mining and social network
1302 analysis.

1303 Yiran Cheng received the BSc degree from the
1304 Department of Computing from The Hong Kong
1305 Polytechnic University in 2020. From 2017 to
1306 2019, he was an undergraduate research assis-
1307 tant with the Internet and Mobile Computing Lab-
1308 oratory, The Hong Kong Polytechnic University.
1309 His research interests include data mining and
1310 parallel computing.

1311Chun Lum received the BS degree from the
1312Department of Computing from the Hong Kong
1313Polytechnic University in 2018. His research
1314interests include data analytics and machine
1315learning.
1316

1317Zhetao Li (Member, IEEE) received the BEng
1318degree in electrical information engineering from
1319Xiangtan University in 2002, the MEng degree in
1320pattern recognition and intelligent system from
1321Beihang University in 2005, and the PhD degree
1322in computer application technology from Hunan
1323University in 2010. He is currently a professor
1324with the College of Computer Science, Xiangtan
1325University. From December 2013 to December
13262014, he was a postdoc in wireless network with
1327Stony Brook University. His research interests
1328include data analytics, wireless communication, and multimedia signal
1329processing.

1330" For more information on this or any other computing topic,
1331please visit our Digital Library at www.computer.org/csdl.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


