
Robust RFID-based Respiration Monitoring in
Dynamic Environments

Yanni Yang, Jiannong Cao
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.

yan-ni.yang@connect.polyu.hk, jiannong.cao@polyu.edu.hk

Abstract—Respiration monitoring (RM) is essential for diag-
nosing and tracking respiratory diseases. Recently, RFID tech-
nology has enabled RM in a lightweight and cost-effective way
by only attaching the tiny and cheap RFID tag on the monitored
person’s chest. However, current systems are mostly designed for
static environments with no surrounding people’s movements. In
reality, dynamic environments where people could move nearby
the monitored person are quite common. In such environments,
respiration signals would be disturbed by the dynamic multipath
signals from ambient movements, which may lead to inaccurate
RM results. In this paper, we study how to realize robust RFID-
based RM in dynamic environments with accurate respiration
rate estimation and apnea detection. We find that the dynamic
multipath signals can cause not only high-frequency noises but
also fake and distorted respiration cycles, which cannot be simply
removed by the low-pass filter. Thus, we need a new method to
eliminate the effect of multipath signals. Inspired by the intrinsic
features of human respiration pattern, we propose to transform
the respiration pattern into a matched filter, which can extract
the real respiration cycles out of noisy RFID signals. We then
estimate the respiration rate by counting the respiration cycles via
multi-scale peak detection. For apnea detection, the problem from
multipath signals is that the fake respiration cycles can result
in the missing detection of apnea when the monitored person
stops breathing. To address this issue, we define a new indicator
which measures the dominance of respiration components in
the signal’s spectrum to identify apnea from multipath signals.
Experimental results show that our system achieves an average
error of 0.5 bpm for respiration rate estimation and a 5.3% error
for apnea detection in dynamic environments.
Index Terms—Respiration monitoring, RFID, Multipath effect

I. INTRODUCTION

Respiration state is an important metric to observe and mon-

itor people’s health conditions. Many respiratory diseases, e.g.,
sleep apnea [1], asthma, and chronic obstructive pulmonary

disease (COPD) [2], can be reflected from the respiration state.

Thereby, respiration monitoring (RM) is highly required for

people suffering from respiration disorders.
Traditional RM systems are cumbersome. People need to

wear tight devices on the body, e.g., the chest belt and nostril
sensor. These devices could make people feel uncomfortable,

especially during sleep. Recently, radio frequency (RF) signals

have shown their capability for non-intrusive RM, which aims

to release people from bulky sensors [3]–[9]. Among RF sig-

nals, RFID signals have been widely exploited for RM [10]–

[12]. By attaching the RFID tag on the monitored person’s

chest, tag signals can capture the periodic respiration pattern

while breathing. RFID signals have many advantages over

other RF signals for RM. Compared with WiFi signals which

have limited usage for multi-person RM [5] [3], RFID tags

can be attached on different persons’ chests to simultaneously

and separately monitor their respiration. Compared with radar

signals, e.g., FMCW [8] [9], which requires dedicated devices,

RFID devices are widely available in the market, and the cheap

RFID tags make it more cost-effective.

However, current RFID-based RM systems can only work

when the monitored person is in a static environment where

no people move around, so that respiration is the only mo-

tion [10]–[13]. While dynamic environments with surrounding

people’s movements are quite common in many RM scenarios.

For instance, if a person is watching TV in the living room

with RM running at the same time, family members could

pass by from time to time. Hence, RM systems should also

work properly in dynamic environments. However, the move-

ments of surrounding people could bring dynamic multipath

signals which are superimposed with the desired line-of-sight

(LOS) respiration signals of the monitored person. Then, the

respiration pattern in the RFID signals would be distorted,

which may result in wrong RM results. Therefore, in this

work, our goal is to remove the effect of multipath signals

in dynamic environments for realizing robust RFID-based RM

with accurate respiration rate estimation and apnea detection.

To achieve this goal, the first task is to understand how
the dynamic multipath signals of moving people affect the
respiration signals of the monitored person. Previous work
models the effect of multipath signals on the RFID phase

values in a general way [14] [15]. However, the change of

RFID phase values incurred by multipath signals is subject to

many factors, e.g., antenna radiation range, people’s moving
area and pattern. Therefore, in our work, we perform a detailed

investigation of these factors’ effects on the RFID phase

value changes. We find that the multipath signals of moving

people can bring similar order of magnitude changes on the

phase values compared with those resulting from the chest

movement during respiration. In addition, the multipath signals

could distort the original respiration signals with both high-

frequency noises and fake respiration cycles, which could

cause wrong respiration state measurements.

Thus, the second task is to remove the multipath effect on
respiration signals for accurate respiration rate estimation.
To achieve this, we get insights from the inherent features of

the human respiration pattern. Human-beings have a stable and978-1-7281-6630-8/20/$31.00 2020 © IEEE
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periodic respiration rhythm which is unique and diverse among

individuals [16]. Compared with the random ways of people’s

moving, respiration presents a regular and rhythmic pattern.

This inspires us to transform a real respiration cycle into a

matched filter to denoise the respiration signals mixed with

multipath signals. Then, there will be peaks in the matched

filter output which match the corresponding respiration cycles.

By detecting the peaks, we can estimate the respiration rate

accordingly. However, the performance of the matched filter

depends on the shape of the respiration cycle. Since respiration

patterns are diverse for different persons, a unique respiration

cycle template should be created for each user to have their

own matched filter. So, we propose a cycle-averaging method

to generate the respiration cycle template beforehand.

The third task is to accurately detect the apnea, which is a
symptom of sudden breathing stop. In dynamic environments,

the ambient movements can result in the missing detection

of apnea for the monitored person. This is because when the

monitored person stops breathing with no respiration signals

generated, the multipath signals may make the phase values

change like the respiration pattern. This would leave a false

impression that the person is still breathing and lead to the

missing diagnosis of apnea. To address this issue, we observe

the spectrum of respiration and multipath signals in the fre-

quency domain and compare the dominance of their frequency

components within the respiration rate range. For respiration

signals, the most dominant frequency components fall into

the respiration rate range. While the respiration frequency

components of multipath signals take up only a small portion

over the whole spectrum. Thus, we define a respiration-to-

noise ratio (RNR) which measures the percentage of respi-

ration components over all the frequency components in the

spectrum. The measured RNR is compared with a pre-defined

threshold to identify the apnea out of the multipath signals.

In summary, our work makes the following contributions:

• To the best of our knowledge, we are the first to study the

problem of RFID-based RM in dynamic environments.

We can accurately estimate the respiration state when

people move in the vicinity of the monitored person.

• We perform detailed analyses on how multipath signals of

ambient people’s movements affect the respiration signal-

s. We investigate the key factors that affect the magnitude

and pattern of multipath signals, which promotes the

understanding of RFID multipath effect in this field.

• Based on the intrinsic feature of respiration, the matched

filter is applied to denoise signals for respiration rate esti-

mation. Spectrum analysis is done to aid apnea detection.

Experimental results show that our system achieves sim-

ilar performance on respiration rate estimation (0.5 bpm
error) and apnea detection (5.3% error) in dynamic envi-

ronments compared with those for static environments.

II. UNDERSTANDING RFID-BASED RESPIRATION

MONITORING AND THE MULTIPATH EFFECT

In this section, we will introduce the preliminaries of the

RFID tag phase and analyze how the phase values are affected
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Fig. 1. Demodulated voltage of tag response received by the RFID reader

by both of the respiration activity and multipath signals.

A. Preliminary of RFID tag phase

The RFID antenna controlled by the reader sends out signals

to interrogate the tag. After powering up the tag, the signals

will be backscattered to the antenna. Then, the reader can

capture the power and phase of tag signals. Here, the tag phase

is used to measure the respiration state, since the phase value is

more sensitive to the minute chest movement during breathing

[10]. To interpret the tag phase, we refer to the phasor space,

as shown in Fig. 1(a), to show how the phase is measured.

The tag response received by the reader is transformed into a

baseband signal �V , which can be represented as follows [17].

�V = �Vo + �V i
tag; �Vo = �Vleak + �Vscatter (1)

�Vo is decided by the reader transmitter to receiver leakage
�Vleak and scattering �Vscatter from the environment. �V i

tag is

the voltage of the tag backscattered signals of interest. �V i
tag

changes with the state of the tag chip (i = state 0 or 1),

which indicates the matching and mismatching state between

the input impedance of the tag antenna and the tag chip [18].

The volume of �V can affect the detection of the tag signals. If
�V becomes too small, e.g., the tag is far from the reader, the

tag will not be detected. After removing the DC component

in �V , the phase φ is calculated as follows.

φ = ang(�V 1
tag − �V 0

tag) = arctan(
Qac

Iac
) (2)

Qac and Iac refer to the AC quadrature and in-phase compo-

nents, respectively. When the tag moves, �V 1
tag and

�V 0
tag rotate

together and the phase value changes accordingly.

The magnitude of phase value can also be viewed from

signal’s travelling distance d, which is expressed as follows.

φ = {2π · d

λ
} mod 2π (3)

λ is the wavelength. For respiration monitoring, the tag is

attached on the chest. When the chest expands and contracts,

it brings dr(t) change to the tag displacement. If the tag faces
to the antenna directly, Equ. (3) becomes the below expression.

φ = {2π · 2[d0 + dr(t)]

λ
} mod 2π (4)

d0 is the initial distance between the tag and the antenna. dr(t)
is a sinusoidal function about the chest movement. It shows
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Fig. 2. Propagation path of multipath signals from moving person

that phase values will change periodically with valleys and

peaks indicating the expansion and contraction of the chest.

B. Tag phase of multipath signals

RFID-based RM systems are commonly designed to employ

the LOS signals, which directly traverse between the antenna

and tag, for respiration pattern extraction [10]–[12]. While

there are many reflectors in the environment, e.g., surrounding
people and furniture. These reflectors bring multipath signals,

which are superimposed with LOS signals. So, the �Vm induced

by multipath signals is added on �Vtag in the I-Q plane. �Vm

involves static and dynamic components. Static components

are those reflected by stationary objects (e.g., desk and chair),
which can be merged into �Vo. Dynamic components (�V

i
dm),

as added in Fig. 1(b), come from moving objects, e.g., people
moving around. Meanwhile, multipath signals also add another

component in the phase values with the travelling distance of

dm(t), and Equ. (4) changes to the following expression.

φ = {2π · 2[d0 + dr(t)] + dm(t)

λ
} mod 2π (5)

In [14], it tells that dynamic multipath signals can make

phase values change periodically within 2π with the object’s

moving. While the respiration chest displacement also leads

to periodic phase changes within 2π [10]. Thereby, we need

to compare the magnitude and pattern of the phase changes

caused by the multipath signals with those from the respiration

activity. Since multipath signals bring �Vdm and dm(t) in phase
values, we will next study how people’s moving1 affects these

two variables regarding the phase value changes.

1) Effect of �Vdm: To investigate the effect of surrounding
people’s movements on �Vdm, we look into the propagation

ways of multipath signals. As shown in Fig. 2, multipath

signals propagates in two ways [14]: (1) antenna (A)→ person

(P)→ tag→ antenna; (2) antenna→ tag→ person→ antenna.

In propagation way (1), the moving person affects the

downlink of multipath signals, i.e., [antenna→ person→ tag].

At this point, �Vdm mainly depends on the person’s reflection of

the signals from the antenna to the tag. Suppose people reflect

the same amount of signals, the key factor affecting �Vdm is the

person’s moving area. For the directional RFID antenna, it has

an effective radiation area, inside which a 3 dB beamwidth

area (denoted as 3 dB-area) exits. Fig. 3(a) shows a 3 dB-area
for a Laird antenna [19]. The area inside the red circle is the

effective radiation range, and the inner area segmented by the

1Here, we mainly discuss the effect of walking movement because it is a
common activity and involves larger body movements. We will investigate the
effect of other movements in the evaluation section.

Fig. 3. Illustration of RFID antenna radiation range and 3 dB beamwith
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Fig. 4. Distribution of standard deviation of the phase value with moving
people moving in different areas

two black arrows is the 3 dB-area. The signal power reduces
by half and attenuates significantly outside the 3 dB-area [20].
If the person moves outside the 3 dB-area, the strength of the
reflected signals becomes smaller or even equal to zero. Then,
�Vdm decreases, making the phase values change slightly.

To see the effect of people’s moving area on phase changes,

we attach a tag on a paper box and place the antenna 1.5 m
away facing to the tag straightly, as shown in Fig. 3(b). A red

line is drawn on the ground as the 3 dB beamwidth boundary.

Volunteers are asked to walk inside, outside and randomly

in and out of 3 dB-area without blocking the LOS path to
generate multipath signals, respectively. The distributions of

the standard deviation (std) of the phase values for people
moving inside, outside and randomly in and out of 3 dB-
area are shown in Fig. 4. We also depict the std of the phase
values caused by the mere respiration activity for comparison.

From Fig. 4, we can obtain the following observations: (1)

The std distribution of the phase values when people move

inside 3 dB-area is larger than that of outside 3 dB-area. This
is because the movements inside 3 dB-area can result in larger
�Vdm. (2) The std distributions of the random moving and

respiration overlap a lot, showing that the multipath signals

of moving people have similar effects on the phase changes

compared with the respiration activity. Since the 3 dB-area
is relatively small and people tend to walk arbitrarily inside

and outside the area, people’s moving could bring comparable

phase changes as the respiration activity.

For propagation way (2), the moving person affects the

uplink of multipath signals, i.e., [tag → person → antenna].

In this case, �Vdm is mainly decided by the person’s reflection

of the signals from the tag to the antenna. So, the distance

between the person and tag matters for the phase changes. To

see its effect, we ask a person to walk along a straight line

with l distance to the antenna-tag yellow line under the setting

in Fig. 3(b). The average std of phase values for different l is
given in Fig. 5. The std falls sharply at the beginning. After

2020 17th IEEE International Conference on Sensing, Communication and Networking (SECON)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 29,2021 at 12:15:56 UTC from IEEE Xplore.  Restrictions apply. 



0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

0.1

0.3

0.2

0.4 std of multipath signals

std of respiration signal
s
td

distance l (m)
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Fig. 6. Phase values of the multipath signals caused by people walking around

around 1 m, the std decreases smoothly and get close to 0.
Compared with the mean std of respiration phase values (the
straight line), multipath signals can be ignored when people

are far from the monitored person. But, for people moving

closely around the monitored person, multipath signals will

affect the respiration pattern and should be removed.

2) Effect of dm(t): Next, we investigate the effect of peo-
ple’s moving pattern, i.e., dm(t), on the phase values. People’s
moving routes can be random and unpredictable. Thus, it is

difficult to describe dm(t) in a mathematical expression. But
we can try to analyze the effect of dm(t) in another way. First,
the overall increasing and decreasing trend of dm(t)’s length
can result in the general growth and decline of phase values.

Second, the dynamic multipath signals bring constructive and

destructive effects on the received signals, making the phase

values change periodically [14]. The frequency of the periodic

phase changes can be expressed as f = 2v/λ [21]. v is the

walking speed, which falls in the range of 0.5−1.5 m/s [22].
Then, f is in the range of 3−9 Hz, which is much higher than
the respiration rate range 0.17 − 0.5 Hz [23]. In Fig. 6, we

show the phase values of the multipath signals when a person

walks by a static tag. The tiny and frequent peaks, highlighted

with green rectangular, are due to the person’s walking activity.

Apart from the high-frequency peaks, there is also a general

increasing and decreasing trend during 1.5 s− 3.5 s, outlined
with yellow arrows. This is owing to the change of the person’s

moving route, which makes the length of dm(t) to grow

first and decline later. This general trend looks similar to the

respiration pattern. Thus, the multipath signals also bring low-

frequency components which can act as fake respiration cycles.

C. Respiration signals mixed with multipath signals

As discussed above, the multipath signals of moving people

could distort the respiration signals with comparable magni-

tude changes of phase values, which carry both high-frequency

noises and fake respiration cycles. Here, we attach an RFID tag

on a person’s chest and ask another 2 persons to walk around
to show the respiration phase values mixed multipath signals

in Fig. 7(a). Meanwhile, the ground truth signals of respiration
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(a) phase values with mixed respiration and multipath signals

(b) ground truth of respiraiton signals from chest band

(c) peak detection after low-pass filtering the signals in (a)
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Fig. 7. Multipath mixed respiration signals, ground truth respiration signals,
and peak detection results

Fig. 8. Sketch of system overview

are collected with a chest band and shown in Fig. 7(b). The

person breathes 5 respiration cycles. But, it is not clear to

see the exact respiration cycles in the raw phase values which

are messed up with high-frequency and low-frequency noises.

In particular, the first respiration peak is quite flat and low.

The peaks in the green rectangular, which are not respiration

cycles, look similar to the respiration peaks. If we apply peak

detection directly on the phase values after low-pass filtering

[5], as shown in Fig. 7(c), 7 respiration cycles are detected.
Then, the respiration rate will be wrongly estimated. Besides,

the multipath signals also result in wrong apnea detection. In

static environments, the phase values would keep stable during

apnea. We can detect the apnea by observing whether phase

values are above a certain threshold. However, if people are

moving around the monitored person, multipath signals will

incur the phase values to change, which could cheat the apnea

detection algorithm that the person is still breathing.

III. OUR APPROACH

In this section, we will introduce how we eliminate the mul-

tipath effect in dynamic environments for accurate respiration

monitoring. We will first present the overview of our approach

and then go into the details of each module.

A. Overview

The system overview is depicted in Fig. 8. The raw RFID

phase values are first collected from the tag and segmented

into fix-length windows.2 Then, the matched filter is employed

to denoise the respiration signals mixed with multipath sig-

nals. The matched filter is created with the respiration cycle

2We perform RM only when the user is quasi-static without major move-
ments. The method in [5] is used to detect whether the user moves.
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template generated in the template construction module. As

template shape can influence the performance of the matched

filter, we pre-collect the phase values when the monitored

person breathes in a static environment to construct a unique

template. Then, the original phase values together with the

matched filter output are passed to the apnea detection and res-

piration rate estimation modules. Apnea detection is done by

transforming the phase values in a window into the frequency-

domain spectrum and judging the dominance of the respiration

rate components. The matched filter output of those windows

without apnea will be processed to estimate the respiration

rate by detecting the peaks in the matched filter output.

B. Matched filtering

To obtain the real respiration pattern from the noisy multi-

path signals, an intuitive way is to apply the low-pass filter to

remove the high-frequency components in the phase values.

But the peak detection results in the last section has shown

that it does not work well because the multipath signals also

bring low-frequency components, which result in fake respi-

ration cycles. To tackle this issue, we leverage the intrinsic

differences between the pattern of respiration and multipath

signals. Respiration signals are regular and sinusoidal with a

known pattern. Multipath signals are more like random noises,

which involve low and high-frequency fluctuations combined

in various ways. This inspires us to employ the matched filter

to detect the desired signals out of noises. The matched filter

is an optimal linear filter, made from a known signal template,

to detect the template signal by maximizing its signal-to-

noise ratio (SNR) from the unknown signals with stochastic

noises [24]. For respiration monitoring, we can extract a single

respiration cycle as the template for creating the matched filter

and apply the matched filter on the received phase values to

denoise it. The output of the matched filter will peak at where

the template signal appears. After that, we can detect the peaks

in the matched filter output and estimate the respiration rate.

For the matched filter, the respiration cycle template should

be carefully selected for the following reasons. First, the shape

of the template can affect the performance of the matched

filter. Only when the template has the same shape with the

desired signal can we achieve the optimal SNR. If the width

or height of the template varies, the SNR of matched filter

output will degrade. Second, respiration patterns are unique

and diverse among different people [16], e.g., the phase values
of two persons’ respiration in Fig. 9 show that their respiration

cycles have different shapes. This means that the respiration

cycle template should be unique for the monitored person to

achieve high SNR of the matched filter output. Otherwise, if

we make a unified template for all the users, the matched

filter would not suit everyone. Therefore, the template should

be exclusively extracted for the monitored person. We will

discuss the effects of using the person’s own template and

other persons’ template on the SNR in section IV.

To extract the respiration cycle template, we first pre-collect

the pure respiration phase values of the monitored person in

a static environment. The monitored person only needs to
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Fig. 9. Phase values of two persons’ respiration activity
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Fig. 10. Matched filter output of the signals in Fig. 7(b)

breathe normally for 2 − 3 minutes with tens of respiration
cycles obtained. This pre-collection phase is once for all, so it

would not bring too much inconvenience to users. Thereafter,

we extract the template from the collected respiration samples

with a cycle-averaging method introduced as follows. First,

the median filter is applied to smooth the raw phase values.

Then, peak detection is performed on the negative of the phase

values to extract the local minimum points. Based on the

local minimum points, the whole phase series is segmented

into several windows so that each window involves a single

respiration cycle. Then, we obtain the average width and

height of all the respiration cycles for later use. Next, we

calculate the similarity between each pair of the respiration

cycles based on the Euclidean distance. The respiration cycle

with the highest pairwise similarity is selected as the template

candidate. Finally, the template candidate is scaled according

to the average width and height of all the respiration cycles

for being the respiration cycle template rt(n). After that, the
impulse response of the matched filter h(k) is obtained from
rt(n) as h(k) = rt(N − k − 1). N is the length of rt(n). In
Fig. 10, we show the output after applying the matched filter

on the phase values in Fig. 7(a). It presents 5 peaks, which

exactly match the ground truth signals in Fig. 7(b).

C. Apnea detection

After removing the multipath effect, we first detect whether

the respiration apnea appears. At first, we think that if there

is no peak in the matched filter output for a while, we can

regard that the apnea appears. However, for apnea detection,

the matched filter does not work as we expect in the face of the

fake respiration cycles caused by multipath signals. The reason

is as follows. When the person is breathing, the matched filter

can accurately extract the real respiration cycles mixed with

fake cycles because real cycles have a higher correlation with

the respiration cycle template compared with fake cycles. But

when the person stops breathing, there is no real respiration

cycle in the phase values. At this time, if multipath signals

mimic a respiration-like wave, there would be a small peak

in the matched filter output. For example, the phase values

shown in Fig. 11(a) are collected from a person who stops

breathing from 14 s to 24 s with people moving around. The
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Fig. 11. Phase values, matched filter output and RNR of signals with apnea

multipath signals result in a respiration-like wave from 15 s to
20 s. Although the wave has a smaller amplitude, it leads to
a minor peak in the matched filter output, as shown in the red

rectangular of Fig. 11(b). If the fake peak is not well identified,

it can lead to the impression that the person is still breathing.

To differentiate the apnea from multipath signals, we inves-

tigate the original phase values in the frequency domain rather

than using the matched filter output. When the monitored

person is breathing, even though multipath signals bring noises

to respiration signals, there are still dominant frequency com-

ponents within the respiration rate range (0.17 Hz, 0.5 Hz). If
the person stops breathing, and only multipath signals are left,

the frequency components resulting from moving behavior will

take up a larger proportion compared with the components in

the respiration rate range. Thus, we define a respiration-to-

noise ratio (RNR) to identify the apnea. We first perform the

fast fourier transformation (FFT) on the phase values. Then,

in the whole spectrum f(n), we get the maximum amplitude

fm in the respiration rate range and calculate the RNR by

RNR = fm/
∑n

i=1 f(i).

RNR represents the percentage of the respiration compo-

nents over all the frequency components. The RNR of pure

multipath signals is lower than that of the respiration signals

mixed with multipath signals. In Fig. 11(c), we show the RNRs

for the phase values in Fig. 11(a). Here, RNR is calculated

on 10 s-long sliding windows with 20 sample points as the
interval. RNRs in (14 s, 24 s), especially for the points around
21 s, are much smaller than other periods. To detect the

decrease in RNRs for apnea detection, we calculate the RNR

of the person’s pre-collected respiration signals in the static

environment, and the half of its RNR is set as the threshold

σ. If the length of consecutive RNRs whose values are lower
than σ exceeds 5 s, it is decided that the apnea appears, and
the corresponding phase series will not be passed to perform

respiration rate estimation. The length of 5 s is chosen because
it is the longest duration of normal respiration cycles [23].

D. Respiration rate estimation

To estimate the respiration rate, peak detection is applied

to the matched filter output. The reason why we use peak

detection instead of FFT is that the resolution of FFT is

restricted by the length of time windows [10]. The resolution

can be quite low if the real-time result is required. For instance,

if we want a result every 20 s, the resolution in the frequency
domain is 0.05 Hz (i.e., 3 bpm), which may lead to inaccurate
respiration rate. However, the peak detection approach suffers

from the tiny fluctuations in the matched filter output. Because

the peak detection algorithm would regard the small fluctuation

point as a peak as long as its neighbor points are both below it.

To avoid the adverse effect of fake peaks, previous methods set

thresholds to discard the peaks which are too low or too closed

to each other [5]. While the scale of the phase values will

change from time to time. So, empirical thresholds may still

incur missing or fake peaks. Therefore, to adapt to different

scales automatically, we employ the automatic multi-scale

peak detection (AMPD) [25]. AMPD frees us from choosing

thresholds to detect the real peaks with the help of multi-scale

technique. The detected peaks of the signals in Fig. 10 are

shown with red crosses. Then, the respiration rate is estimated

for each window as rate = 60/ 1
n

∑n−1
i (pi+1 − pi). rate is

in the unit of breath per minute (bpm). pi is the timestamp of
the peak. n is the total number of peaks.

IV. EVALUATION

In this section, we will introduce the experimental setup,

evaluation metrics and the results in terms of different factors

for apnea detection and respiration rate estimation.

A. Experimental setup

The experiments are done using commercial off-the-shelf

RFID devices. The RFID reader is ImpinJ Speedway R420.

The antenna is Laird E9208 antenna, and the tag is ImpinJ

E41-C. The reader works in the 920−925 MHz region and the
reader mode is set as MaxThroughput. The reader is connected

to a Dell Inspiron 7460 laptop with i7-7500U CPU and 8 GB
RAM. The RFID measurements are processed with Python 3.0.

We did experiments in two different environments, as shown in

Fig. 12. The antenna is put 1− 2 m away from the monitored

person. The tag is attached to the person’s chest. 10 volunteers
act as the monitored person and surrounding people in turn.

We do not assign specific routes for volunteers to move, so

they can walk freely around the monitored person. The ground

truth of the respiration signals is collected via a chest band

equipped with a 3-axis accelerometer.

B. Evaluation metrics

To evaluate the performance of our system, the following

metrics are used. First, the percentage of the missing ap-

nea (MA) and false apnea (F A) over all the apnea cases
are defined to illustrate the accuracy of apnea detection as

MA = #missing apnea
#real apnea , F A = #false apnea

#no apnea .

Second, to evaluate the accuracy of respiration rate estima-

tion, the mean absolute error (MAE) is defined as MAE =
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Fig. 12. Experimental settings in two environments
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Fig. 13. Percentage of missing apnea (MA) and false apnea (FA) in the static
environment, and with 1 person, 2 persons, 3 persons moving around

1
n

∑n
i=1 |ri − r

′
i|. ri and r

′
i are the estimated and real respira-

tion rate, respectively. n is the number of samples.

C. Performance of apnea detection

1) Effect of number of moving people: We test our apnea
detection approach in both static and dynamic environments

with 0, 1, 2 and 3 persons moving around. We choose 1 − 3
moving people because there would not be too many people

walking around in indoor places like the living room and

bedroom. Thus, 3 persons are enough for evaluation. During

the experiment, volunteers who act as the monitored person are

asked to simulate the apnea by holding their breath for 5−10 s.
The results of MA and F A are shown in Fig. 13(a). Generally,

MA and F A grow slightly with the increasing number of

moving people, but they are both below 6% for all the cases.

The average MA and F A with 1− 3 moving people are only
1% − 2% higher than those in the static environment. This

indicates that our approach helps to enhance the robustness

of apnea detection in dynamic environments. MA is slightly

lower than F A because our approach is designed to decrease

the cases of missing apnea. From the view of apnea diagnosis,

patients can accept higher F A rather than higher MA, as
higher MA may delay the detection of the apnea symptom.

2) Effect of the RNR indicator: Next, we compare the

performance of our RNR-based approach with the previous

peak-threshold approach to demonstrate the effectiveness of

our approach on apnea detection in dynamic environments.

The previous approach sets a threshold for the detected peaks

of raw signals. If the detected peaks are below the threshold,

they will treat the signals as apnea [5]. Here, the peak threshold

is set as the mean of the phase values after applying the low-

pass filter. The comparison results are given in Fig. 13(b).

It shows that our approach outperforms the peak-threshold

approach with an approximate 10% cutdown of MA and F A.
This is because the fake peaks caused by the multipath signals

from moving people would be regarded as breathing cycles in
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Fig. 14. MAE of respiration rate with different numbers of moving persons:
no person (static), 1 person (1p), two persons (2ps) and three persons (3ps)

the peak-threshold approach. Besides, the empirical threshold

is not adaptive to the amplitude of peaks which can lead to

more missing apnea. While our proposed RNR indicator can

differentiate the real respiration signals from the multipath

signals during the apnea period.

D. Performance of respiration rate estimation

1) Effect of matched filter: To show the effectiveness of the
matched filter on respiration rate estimation, we first compare

the MAE between the real and estimated respiration rates with

and without applying the matched filter on the phase values.

For the method without the matched filter, AMPD is directly

applied to the phase values after denoising the signals with

a median filter. For our method, the matched filter is first

applied to denoise the phase values, then AMPD is employed

for peak detection. The average MAE with the matched filter

is 0.54 bpm. While the MAE without the matched filter is

3.06 bpm, which is around 5 times larger than that with the
matched filter. This indicates that the matched filter can help

to promote the accuracy of respiration rate estimation.

2) Effect of number of moving people: We further show the
MAE results for different numbers of moving people in Fig.

14, including 0 (static), 1 (1p), 2 (2ps) and 3 persons (3ps).

The distance between the person and antenna is set as 1.5 m.
The average MAE goes up from 0.2 bpm to 0.6 bpm with

more number of moving people because more people bring

more multipath signals. The highest MAE, which happens

with 3 moving persons, is still within 0.7 bpm. The CDF plot
shows that most of MAEs are distributed within 0.6 bpm. We
also compare the accuracy of respiration rate estimation of

our system with existing systems in Table. I. Our system has

a similar range of MAE to existing ones. Furthermore, [10]

[12] are only designed for RM in static environments, while

our system can also work in dynamic environments.

3) Effect of moving area: As mentioned in section II-B1,
the moving area could affect �Vdm and phase changes. Hence,

we ask a volunteer to move inside and outside the 3 dB-area

TABLE I
COMPARISON OF RESPIRATION RATE ESTIMATION WITH EXISTING WORK

[10] [12] our approach
MAE 0.5-1 bpm 0.3-0.5 bpm 0.3-0.6 bpm

Scenario static static dynamic
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Fig. 15. (a) MAEs for inside and outside 3 dB-area. (b) MAEs for different
distances between antenna and person

to see the accuracy of respiration rate estimation, respectively.

Since the inner 3 dB-area is a small area, so the experiment is
done with only one moving person. The MAEs are shown in

Fig. 15(a). When the person moves inside the 3 dB-area, the
MAE is around 0.45 bpm, which is about 0.15 bpm higher

than moving outside the 3 dB-area in average. Therefore, we
can still achieve relatively high accuracy when the moving

person is in the 3 dB-area of the antenna. In practice, since
the 3 dB-area is quite a small region which mainly covers the
LOS paths between the monitored person and antenna, people

are less likely to move inside the 3 dB-area to disturb the
respiration monitoring of the monitored person.

4) Effect of distance: Next, we see the effect of the distance
between the antenna (A) and the monitored person (P ) on
respiration rate estimation. A longer distance between A and

P also means a longer travelling distance of the signals, so

the power of the signals backscattered to the antenna becomes

less. Besides, the longer the distance between A and P , the
larger the 3 dB-area will be. Then, there is a higher probability
that the surrounding people would move inside the 3 dB-area.
Hence, we change the distance from 1 m to 4 m with an

interval of 0.5 m to see how the distance affects the accuracy

of respiration rate estimation. Then, we ask one volunteer to

move around the monitored person. The MAEs for different

distances are shown in Fig. 15(b). The MAE increases with

the distance going up from 1 m to 3 m, then it drops down
slightly. The reason why MAE increases at the beginning is

that the 3 dB-area becomes larger to allow the person to move
inside the 3 dB-area, and the multipath signals bring more
effects on the phase values. While, when the distance is larger

than 3 m, the MAE drops because the multipath signals lose
energy with a longer travelling distance. Furthermore, a longer

distance between A and P also leads to fewer respiration LOS

signals. Drawing the experience from current RFID-based RM

studies, the antenna is usually put 1−2 m away from the user.

5) Effect of respiration cycle template: In section III-B,

we mentioned the performance of the matched filter can be

affected by different templates. Here, we show the SNR of

the matched filter output to see the effect. First, we collect

the pure respiration phase values of 4 volunteers and extract
4 templates for them. Then, one volunteer (X) is selected as

the monitored person (another 3 are denoted as A, B, C). We
collect the phase values while X is breathing with 2 persons
moving around. The 4 templates are made into 4 matched

filters and use it to denoise X’s phase values. The SNRs of the

matched filter output and the MAEs of respiration rate using
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the matched filters with X’s own and A’s, B’s, C’s template
are shown in Fig. 16, respectively. The SNR when using X’s

own template generated matched filter is the highest. Besides,

the respiration rate MAE of using the person’s own template is

also slightly lower than those using other persons’ templates,

which infers the importance of choosing the proper template.

E. Performance of other movements
Apart from the walking movement, there are also other

movements that could happen around the monitored person

in daily RM scenarios. Here, we discuss some common cases.

For example, for the couple in sleep, the movement of one

person changing sleeping postures can bring multipath signals

to the other person being monitored. For a person sitting beside

the monitored person, the person’s movements like stretching

arms or turning around also incur multipath signals to the

monitored person. Thus, we imitate the above scenarios and

measure the respiration rate. The results are shown in Fig. 17,

with MAE of changing sleeping postures as 0.39 bpm and

MAE of sitting movements as 0.34 bpm. This shows that our
approach also works well in these cases.

V. RELATED WORK

Our work is related to RF-based respiration monitoring and

the multipath effect of wireless signals.

A. RF-based respiration monitoring
Recent advances in RF-based human sensing have witnessed

their application in respiration monitoring. The motivation of

RF-based sensing is that people can release themselves from

wearing bulky sensors. Some systems use WiFi, UWB and

FMCW radar for respiration monitoring by exploiting the mul-

tipath signals reflected by the chest [3], [8], [26]. The signal

transmitter and receiver are put aside the person. The received

signals change periodically with the expansion and contraction

of chest while breathing. Some use RFID systems of which

the tags are attached to the chest, and the backscattered LOS

signals from the tags are used for respiration pattern extraction

[10]–[12]. The advantage of RFID-based RM is that it is more

scalable for the multi-person scenario, because the tags can

help to differentiate the signals from different persons. While

those studies that employ the multipath signals for respiration

monitoring, e.g., WiFi, suffer from the problem of precisely

separating the respiration signals from different persons. That

is why the expensive FMCW radar is used to further entangle

the signals reflected by multiple persons [9]. In addition, the

RFID tags are cheap, lightweight and easy to wear. Thus, it

is convenient and cost-effective for users.
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B. Multipath effect of RF signals on respiration monitoring

The multipath effect is a double-edged issue for RF-based

human sensing. For one thing, multipath effect is the key ad-

vantage to take for non-intrusive sensing. Because the signals

reflected by the human body contain the movement pattern.

However, multipath effect is a hurdle when multiple persons

are present. We need to separate the signals from different

persons to capture the desired movements. For RM, people

mainly monitor the respiration when the person is quasi-static,

but we still face the multi-person issue. In [8] [9], FMCW

radar is employed to extract the time of flight information of

each signal path, so that the respiration signals of the desired

person can be obtained. In [27], the authors try to remove the

WiFi signals reflected by the surrounding moving people by

widening the bandwidth via re-designing the protocol. RFID-

based RM also faces the same multipath effect problem. But,

current RFID-based respiration systems have the assumption

that the environment is static, where no people move around

the monitored person. However, the assumption limits the

usage of the system in many practical scenarios. The system

should be robust to report accurate respiration state in dynamic

environments. Thus, our work aims to remove the multipath

effect for RFID-based RM in dynamic environments and

achieve robust respiration state estimation without modifying

the off-the-shelf commercial RFID device and protocol.

VI. DISCUSSION

Our system, although trying to realized robust RFID-based

RM in dynamic environments, still has some limitations. First,

people’s respiration pattern could change over time. Therefore,

the template should be updated from time to time to guarantee

accuracy. Second, for sleep apnea detection, we only detect the

sudden stop breathing. However, there are also hypopnea and

obstructive apnea, which need further studies to detect them.

VII. CONCLUSION

In this work, we push forward the application of RFID-

based RM. Previous systems have realized RM in the static

environment. While in dynamic environments, the moving

people bring multipath signals which distort the respiration

pattern in the RFID phase values. Therefore, we propose to

enhance the robustness of RFID-based RM in dynamic envi-

ronments. The effect of the multipath signals is eliminated by

employing the matched filter to detect the desired respiration

cycles from the noisy phase series. The respiration rate is

then obtained by counting the peaks in the matched filter

output. To identify the apnea out of the multipath signals

which could mimic the pattern of breathing cycles, we draw

on the dominance of respiration components in the frequency

domain to avoid the missing detection of apnea. The evaluation

results show that our approach can promote the accuracy of

respiration monitoring in dynamic environments.
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