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Abstract. Early prediction of students at risk (STAR) is an effective
and significant means to provide timely intervention for dropout and sui-
cide. Existing works mostly rely on either online or offline learning behav-
iors which are not comprehensive enough to capture the whole learning
processes and lead to unsatisfying prediction performance. We propose
a novel algorithm (EPARS) that could early predict STAR in a semester
by modeling online and offline learning behaviors. The online behaviors
come from the log of activities when students use the online learning man-
agement system. The offline behaviors derive from the check-in records
of the library. Our main observations are two folds. Significantly different
from good students, STAR barely have regular and clear study routines.
We devised a multi-scale bag-of-regularity method to extract the regu-
larity of learning behaviors that is robust to sparse data. Second, friends
of STAR are more likely to be at risk. We constructed a co-occurrence
network to approximate the underlying social network and encode the
social homophily as features through network embedding. To validate the
proposed algorithm, extensive experiments have been conducted among
an Asian university with 15,503 undergraduate students. The results
indicate EPARS outperforms baselines by 14.62%-38.22% in predicting
STAR.

Keywords: Learning analytics - At-risk student prediction * Learning
behavior - Regularity patterns + Social homophily

1 Introduction

Predicting students at risk (STAR) plays a crucial and significant role in
education as STAR keep raising public concern of dropout and suicide among
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adolescents [16,22]. STAR refer to students requiring temporary or ongoing inter-
vention to succeed academically [18]. Students may be at risk for several reasons
like family problems and personal issues including poor academic performance.
Those students will gradually fail to sustain their studies and then drop out
which is also a waste of educational resources [1]. Early prediction of STAR offer
educators the opportunity to intervene in a timely manner.

Traditionally, many universities identify STAR by their academic perfor-
mance which sometimes is too late to intervene. Existing works are largely based
on either online behaviors or offline behaviors of students [8,12,14]. For exam-
ple, STAR are predicted in a particular course from in-class feedback such as
the grade of homework, quiz, and mid-term examination [14]. However, due to
the complex nature of STAR [5], either online and offline behaviors only capture
part of the learning processes. For example, some students prefer learning with
printed documents so they become inactive in online learning platforms after
downloading learning materials. This process is difficult to capture through their
online learning behaviors. Therefore, existing work can hardly capture the whole
learning processes in a comprehensive way and thus leads to poor performance
in the early prediction of STAR.

In this work, we aim to predict STAR before the end of a semester using
both online and offline learning behaviors. STAR are defined as students with
an average GPA below 2.0 in a semester. Online behaviors are extracted from
click-stream traces on a learning management system (LMS). These traces reveal
how students use various functionalities of LMS. While the offline behaviors
derive from library check-in records. To achieve the goal, we encounter the fol-
lowing three major challenges: (1) Lable imbalance. The number of STAR is
significantly smaller than that of normal students, which makes it an extreme
label-imbalance classification problem. The classifier will be easily dominated
by the majority class (normal students). (2) Data density imbalance. The
library check-in records are much sparser than click-stream traces on the online
learning platform so that it is challenging to fuse them fairly well for classifying
STAR. (3) Data insufficiency. Students, especially STAR, are usually inactive
at the early stage of a semester. As a result, the behavior traces are far from
enough for accurate early prediction of STAR.

In light of these challenges, we propose a novel algorithm (EPARS) for early
prediction of at-risk students. EPARS captures students’ regularity patterns of
learning processes in a robust manner. Besides, it also models social homophily
among students to perform highly accurate early STAR prediction. The intu-
itions behind EPARS are two-fold. First, good students usually follow their study
routines periodically and show clear regularities of learning patterns [24]. How-
ever, the study routines of STAR are disorganized leading to irregular learning
patterns, which is different from good students. Second, students tend to have
social tie with others who are similar to them according to the theory of social
homophily [15] and existing studies found that at-risk students had more dropout
friends [5].
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Based on both intuitions, we first propose a multi-scale bag-of-regularity
method to extract discriminative features from the regularity patterns of stu-
dents’ learning behaviors. Unlike the traditional approaches using entropy for
measuring the regularities, which cannot work well on sparse data, we ignore the
inactive behavior subsequence and capture the regularity patterns in a multi-
scale manner. Our approach can capture the regularity patterns fairly well even
though the data are very sparse. Therefore, it overcomes the challenge of data
density imbalance and extracts discriminative features from regularity patterns
for classifying STAR. In order to model the social homophily, we construct a
co-occurrence network from the library check-in records to approximate social
relationships among students. Co-occurrence networks have been widely used
in modeling social relationship and achieved great success in many application
scenarios [20,21] After that, we embed the co-occurrence networks and learn
a representation vector for every student with the assumption that students’
representation vectors are close when they have similar social connections. Mod-
eling the social homophily provides extra information to supplement the lack of
behavior trace for STAR at the beginning of a semester, which solves the data
insufficiency problems and makes EPARS capable of early predicting STAR.
Moreover, we oversample the training samples of STAR by random interpo-
lating using SMOTE [2], which overcomes the label imbalance problem while
training the classifiers.

We conducted extensive experiments on a large scale dataset covering all
15,503 undergraduate students from freshmen to senior students in the whole
university. The experimental results show that the proposed EPARS achieves
0.7237 accuracy in predicting STAR before the end of a semester and 0.6184
prediction accuracy after the first week of the semester, which outperforms the
baseline by 34.14% and 38.22% respectively. Comparative experiments found
that our proposed multi-scale bag-of-regularity method and modeling students’
social homophily by the co-occurrence network improve the performance of
STAR early prediction 26.82% and 14.62% respectively. From the data analysis,
we also found that STAR engaged less than normal students in learning in the
early semester. Besides, the results confirm that the friends of STAR are more
likely to be at risk if they have similar regularity patterns of learning behaviors,
which in line with the conclusion drawn by an existing experimental study [5].

The our contributions are summarized as follows.

— We propose a multi-scale bag-of-regularity approach to extract regularity pat-
terns of learning behaviors, which is robust for sparse data. This approach is
also generic for extracting repeated patterns from any given sequence.

— We model the social homophily among students by embedding a co-occurrence
network constructed from their library check-in records, which reliefs the data
insufficiency issues.

— Extensive experiments on a university-scale dataset show that our proposed
EPARS is effective on STAR early prediction in terms of 14.62%38.22%
accuracy improvement to the baselines.
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The remainder of this paper is organized as follows. We review the relative
works in the next section and formally formulate the STAR early prediction
problem in Sect. 3. The data description are reported in Sect.4. In Sect. 5, we
present the proposed EPARS in detail and evaluate its effectiveness in Sect. 6
before we conclude the paper in the last section.

2 Related Works

There are various reasons for students being at-risk, including school factors,
community factors, and family factors. Most of the existing works focus on school
factors due to the convenience of data collection. The classification models used
include Logistic Regression, Decision Trees, and Support Vector Machines. The
main difference of these works relies on the input features, which could be gen-
erally classified into offline and online.

The offline learning behaviors contain check-ins of classes or libraries, quiz
and homework grades, and records of other activities conduct in the offline
environment. These kinds of works are quite straight forward to monitor the
student learning activities for identification. Early researchers design the Per-
sonal Response system and utilize the order of students’ device registration to
help identify STAR [6]. Besides, questionnaires and personal interviews are also
applied to collect student information for identification [3]. These methods show
accurate results in an early stage of a semester. Moreover, Marbouti et al. also
proposed to identify STAR at three time-points (week 2, 4, and 9) in a semester
using in-term performance consists of homework and quiz grades and mid-term
exam scores [14]. These methods rely heavily on domain knowledge, and collect-
ing these offline learning data is very high labor cost and time-consuming, such
that they are not practical for large scale STAR prediction.

With the popularization of online learning, researchers have turned their
attention to analyzing student behavioral data on online learning platforms such
as MOOCs and Open edX. The online learning behaviors are collected from
the trace that students left in the online learning system such as click-stream
logs in functional modules of the systems, forum posts, assignment submission,
etc. Kondo et al. early detect STAR from the system login and assignment
submission logs on the LMS [11], but their results may be partial since most
students are not actively engaged with LMS. Shelton et al. designed a multi-
tasks model to predict outstanding students and STAR [19], which purely uses
the frequency of module access as features. [9] proposed a personalized model
for predicting STAR enrolling in different courses, but it is hardly generalized to
various courses, especially the totally new one. Instead of purely using statistic
features, we further extract students’ regularity patterns and social homophily
for early predicting STAR.
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3 Problem Formulation

This section gives the formal problem definition of STAR early prediction which
is essentially a binary classification problem. We will introduce the exact defini-
tion of STAR, the input data, and the meaning of early prediction.

According to the student handbook of the university, when a student has
a Grade Point Average (GPA) lower than 2.0, he/she will be put on academic
probation in the following semester. If a student is able to pull his/her GPA
up to 2.0 or above at the end of the semester, the status of academic probation
will be lifted. Otherwise, he/she will be dropped out. Therefore, we define STAR
as students whose average GPA is below 2.0 in a semester.

The input data are two folds. One is the records of students’ online activ-
ities in the Blackboard, a learning management system. The Blackboard has
several modules including course participation, communication and collabora-
tion, assessment and assignments. Students could browse and download course-
related materials including lecture keynotes, assignments, quizzes, lab documents
etc. They can also take online quizzes and upload their answers for assessment.
Besides, students could communicate over the different posts and collaborate
on their group assignments. Students’ click operations in the Blackboard will be
recorded (online traces). The other is the check-in records of the library. Students
have to tap their student cards before entering the library (offline records).

Early prediction means the input data are collected before the end of a
semester. Given online traces and offline records accumulated within ¢ (¢ < tepnq)
where te,q is the end time of a semester, our objective is to identify STAR as
accurate as possible.

4 Data Description

We collect students’ online and offline learning traces and their average GPA in
an Asian University in 2016 to 2017 academic year. The online learning traces
come from how students use the Blackboard, a learning management system, to
learn. There are many functions in the Blackboard but some of them are rare to
be used by students. Thus, we collect the click-stream data with timestamps from
some of the most popular modules in the Blackboard including log-in, log-out,
course materials access, assignment, grade center, discussion board, announce-
ment board, group activity, personal information pages, etc. Offline learning
traces come from students’ library check-in records which indicating when they
go to library. Since students do not need to tap their student cards when they
leave the library, the check-out records will not be marked down and we exclude
it in this study.

All 15,503 undergraduate students in the whole university involved in this
study. Every student has a unique but encrypted ID for linking their LMS click-
stream data, library check-in records, and GPA. The overview of collected data
are showed in Table 1. There are 225 and 319 STAR in semester one and two
respectively, which are 1.45% and 2.06% of all students. This makes our STAR
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Table 1. Data overview.

Semester 1 Semester 2

STAR Other Std | STAR Other Std
Population 391 15,112 225 15,278
# click-stream logs in LMS 2,225,605 | 95,949,014 | 1,019,134 | 70,874,428
Avg. # click-stream logs 5,692.0844 | 6,349.1936 | 4,529.4844 | 4,638.9860

Avg. # click-stream logs in first 2 weeks | 301.4041 | 399.9502 | 243.0400 | 284.4368
Avg. # click-stream logs in last 2 weeks | 526.6522 | 545.4346 | 336.9133 | 304.7331

# library check-in 14,045 636,353 6,245 517,557
Avg. # library check-in 35.9207 42.1091 27.7556 33.8760
Avg. # library check-in in first 2 weeks | 1.7877 2.3303 1.3889 1.8424

Avg. # library check-in in last 2 weeks | 2.9834 3.3760 2.3444 2.4547

early prediction as an extremely label imbalance classification problem, which is
our first challenge. In addition, students left over 170 million click-stream logs
but only 1.7 million library check-in records in the whole academic year such that
the data density between online and offline learning trace are also imbalance.
Compared to the last two weeks of the semester, all students are less active in
the first two weeks and STAR are even less active than normal students which
cause data inefficiency problems for early predict STAR at the beginning of the
semester.

5 Methodologies

In this section, we will elaborate on the proposed EPARS including multi-scale
bag-of-regularity, social homophily, and data augmentation.

5.1 Multi-scale Bag-of-Regularity

In order to extract the regularity patterns from students’ learning traces, we
propose multi-scale bag-of-regularity here, which is robust for sparse data.
Based on Hugh Drummond’s definition, behavior regularity is repeatedly
occurring of a certain behavior in descriptions of patterns [4]. Students usually
have their own repeated patterns for using LMS and going to the library. For
instance, some students prefer to go to the library every Monday and Thursday.
It is possible for us to illustrate their repeated patterns on multiple scales such as
they will not go to library after the day they go there; they go to the library two
and three days apart alternately. If we purely extract the regularity patterns on a
single scale, it hardly captures the complete picture and leads to information loss.
This motivates us to extract the regularity patterns in multi-scales. In addition,
traditional approaches, such as entropy, measure the regularities in a global
perspective. When students’ library check-in data are sparse, those approaches
will regard their library check-in as outliers and consider their general regularity
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patterns as never go to the library, which are incorrect. Therefore, we focus
on the every behavior trace students leave during learning for extracting their
learning regularity patterns.

First of all, we construct a binary sequence from students’ behavior traces.
When they have certain behaviors, such as check-in to the library, we mark it
as 1 in the sequence. The time granularity for constructing the binary sequence
depends on the application and the time granularity we used in this study is
a day. Next, We sample subsequences of length ¢ centered on every nonzero
element in the sequence. The length of subsequences ¢ = 2 + (s — 1) x z where
s € {1,2,---,S} is scale and z is the step-size between scales. This sampling
approach guarantees that no all-zeros sequence will be sampled for the following
regularity measurement which gives our method the ability to overcome data
sparsity issues. Every subsequence actually is a behavior pattern that is viewed
on different scales.

After sampling the behavior patterns, we explore the repeated patterns from
them to obtain the regularities. Since the regularity is repeatedly occurring of
behavior patterns, we ignore the subsequences that the times of occurrences are
less than a threshold n. For the subsequence of length ¢ in scale s, it contains
2¢ — 1 different behavior pattern excluding all-zeros one. We regard them as a
bag and count the number of occurrences of every behavior pattern. Finally, a
(2¢ —1) x 1 vector r, is obtained, which carries the behavior regularities on scale
s. Lastly, we concatenate the regularity vectors 75 in every scale as the represen-
tation of regularity on multi-scales. Our bag-of-regularity approach explores the
regularity patterns of behaviors in multi-scales such that it can extract richer
information from the sparse input sequence. The regularity features extracted
from dense LMS data and sparse library check-in records by our multi-scale bag-
of-regularity are on the same scale-space so that we can simply concatenate them
together as the final regularity features for STAR prediction and the performance
is fairly well. In addition, the proposed multi-scale bag-of-regularity is generic
for extracting repeated patterns from any given sequence since it will transform
the input sequence into a binary sequence before extracting regularities.

5.2 Social Homophily

We construct a co-occurrence network to model the social relationship among
students. If students are friends, they are more likely to learn together because
of the social homophily [15]. They have a higher probability to go to the library
together comparing to strangers. Thus, we assume that two students are friends if
they go to library together. If the time difference of the library check-in between
two students is less than a threshold §, we treat this as the co-occurrence of
two students in the library. In other words, they go to the library together.
Based on this, we construct a co-occurrence network G(V, E, W) where nodes
V' are students and there is an edge e € E linking two nodes if students go
to the library together. Each edge is accompanied by a weight value w € W
showing how many times they co-occurrence in the library. We constrain w > o
which is a threshold to filter out the “familiar strangers”. We do not construct
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the co-occurrence network from the LMS log-in traces because the LMS log-in
frequency is too high and it will involve too many “familiar strangers” in the
network. This will introduce significant biases for learning the social homophily
later.

Next step is to learn students’ social homophily from the co-occurrence net-
work. Network embedding has been widely applied in encoding the connectivities
among nodes as representation and well preserves the graph properties [13,23].
Here, we embed the co-occurrence network by Node2Vec [7] and learn a represen-
tation vector for every node which preserves the connectivities among students.
In addition, we constrain that the learned representation of nodes should be
close when they have similar connections. Specifically, we first exploring diverse
neighborhoods for every node by a biased random walk. Let us denote ¢; as the
ith node in the walk. We sample node sequences with transition probability

o e if (uw) EE
p(e;i = ulcio1 =v) = { 0 Otherwise

(1)

where Z is a constant for normalization and a,,, in Eq. (2) is the sampling bias.

1/p if dyy =0
1 if dyy =1
WIT 1/ if dyy =2 2)

0 Otherwise

dy, denotes the shortest path distance between nodes u and v. Parameters p
and ¢ make the trade-offs between depth-first and breadth-first neighborhood
sampling.

To learning the final representation of every node, we train a Skip-gram model
[17] by maximizing the log-probability of its network neighborhood conditioned
on its feature representation as showed in Eq. (3) where f(-) is a mapping func-
tion from node to feature representations and N (u) is u’s neighborhood sam-
pling by the above random walk.

exp (£(u) - (01)
2 AL seo o) 9

We adopt the stochastic gradient ascent to optimize the above objective function
over the model parameters and obtain the representation of every node which
carrying its social homophily. Learning students’ social homophily provides extra
information for dealing with the data insufficiency issues such that it makes our
EPARS have the ability to early predict STAR.

5.3 Data Augmentation

To deal with the extremely label imbalance issues, we oversample the STAR by
a synthetic minority over-sampling technique (SMOTE) [2] while constructing
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the training set. For each STAR training sample, denoted as x, we first search
its k-nearest neighbors from all STAR samples in training set by the Euclidean
distance in the feature space, and the k is set to 10 in our experiment. Next, we
randomly select a sample 2’ from the k nearest neighbors and synthesize a new
STAR example by Eq. (4) where w is a random number between 0 and 1.

Tnew =T+ (7' — ) X w (4)

After the data augmentation, STAR have the same amount as the normal
students in the training set; this allows the classifier to avoid being dominated
by the majority of the normal students during training. SMOTE synthesizes
new examples between any of the two existing minority samples by a linear
interpolation approach. Compared with a widely used under-sampling technique
EasyEnsemble, SMOTE introduces random perturbation into the training set
while generating the synthetic examples, which provide the trained classifier
better generalization.

6 Experiments

We conduct experiments to showcase the effectiveness of proposed EPARS.
In particular, we aim to answer the following research questions (RQ) via
experiments:

— RQ1: How effective is the EPARS in predicting STAR?

— RQ2: How early does the EPARS well predict STAR?

— RQ3: How effective is SMOTE for data augmentation in EPARS?
— RQ4: Is the EPARS sensitive to hyper-parameters?

6.1 Experiment Protocol

Experiment Setting. In our dataset, each student has an independent label of
either STAR or the normal student in each semester. Thus, we treat students in
different semesters as a whole in our experiments. When predicting STAR at any
time t before the end of the semester t.,q, we extract features from their online
and offline learning traces from the beginning of a semester to the current time
t. After feature extraction, we synthesize new STAR examples to augment the
training set. We conduct experiments under the 5-fold cross-validation setting
and repeat 10 times. The average results will be reported in the next subsection.
Several classifiers are tested, including the Logistic Regression, Support Vector
Machine (SVM), Decision Tree, Random Forest, and the Gradient Boosting Deci-
sion Tree (GBDT). GBDT outperforms all other classifiers in our experiments,
so we only report the results of GBDT due to the space limit.
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Parameter Setting. We set the maximum scale of regularity S = 4, the co-
occurrence threshold 6 to be 30 s, the linking threshold o = 2, and the dimension
of embedding to be 64 for EPARS. We select & = 10 neighborhood for SMOTE
to augment the training set. The classifier GBDT is trained with parameters
that the number of estimators is 100, maximum depth of the decision tree is 10,
and the learning rate is 0.1.

Evaluation Metrics. We evaluate the performance of EPARS from two
aspects. Since the STAR prediction is a binary classification problem, we adopt
Area Under the receiver operating characteristics Curve (AUC) to measure the
classification performance. The AUC indicates how capable the model is to dis-
tinguish between STAR and the normal students. Moreover, since our focus is
to find out the STAR as accurate as possible, we measure the accuracy of our
model in predicting STAR by the number of true positive predictions divided by
the total number of STAR in the test set. We denote it as ACC-STAR, which
indicates how many percentages of STAR are correctly predicted.

Baseline Approaches. As mentioned in the introduction, our major contribu-
tion is to achieve better STAR early prediction performance, in terms of higher
AUC and ACC-STAR, with features extracted from students’ learning regu-
larity and social homophily. To verify the effectiveness of EPARS, we set four
baseline models, including SF, DA, DA-Reg, and DA-SoH. SF uses only the sta-
tistically significant behavior features as input to predict STAR without data
augmentation. The process of discovering significant statistical features will be
presented in the next paragraph. DA uses the same features as SF and augments
the training set using SMOTE. Comparing SF and DA, we can verify whether
SMOTE can solve the label imbalance challenge well and results in better classi-
fication performance. DA-Reg and DA-SoH integrate the regularity features and
the social homophily to the DA, respectively. They are to verify the effectiveness
of our proposed multi-scale bag-of-regularity and the social homophily modeling
approach in STAR prediction.

To discover the significant statistical features, we perform an ANOVA (anal-
ysis of variance) test to figure out what behaviors are statistically significant
for distinguishing between STAR and the normal students. We have 13 kinds of
clickstream behaviors on the LMS and 28 kinds of library check-in behaviors at
different times of the day and different periods in the semester. Due to the space
limited, we report the statistically significant features and some of the insignif-
icant features discovered from the ANOVA in Table 2. It is interesting to note
that STAR use the LMS less than the normal students, but they will check the
announcement and lectures’ information more. There is no significant difference
in accessing the course materials and checking assignment results. Besides, STAR
go to the library less than the normal students at the beginning of a semester.
Still, they prefer more to be there after business hours. Lastly, we select the
statistically significant features as the SF baseline to benchmark our proposed
EPARS.
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Table 2. Results of the ANOVA test.

Features P-value | F-value | Mean STAR | Mean others
# LMS Login 0.0020 9.5112 | 127.4987 144.8043
# LMS Logout 0.0000 34.5301 8.9318 20.1348
# Check announcement 0.0158 5.8311 | 41.4436 36.8361
# Course access 0.7328 0.1165 4.2677 4.5667
# Grade center access 0.7694 0.0859 | 10.5486 10.2108
# Discussion board access 0.0020 9.5951 | 11.7979 19.2444
# Group access 0.0209 5.3385 | 13.2782 20.1268
# Check personal info 0.0000 16.7953 0.2283 1.6585
# Check lecturer info 0.0000 |106.1638 9.7297 5.5440
# Journal page access 0.0199 5.4191 0.2283 1.6585
# Lib check-in 0.0700 3.2829 | 42.8163 47.3589
# Lib check-in in the morning 0.0001 14.7133 7.0367 9.4206
# Lib check-in in the afternoon 0.0023 9.3196 | 27.0604 31.9419
# Lib check-in after midnight 0.0000 43.9327 4.0105 1.6927
# Lib check-in before exam months | 0.0123 6.2740 | 33.9265 39.0143
# Lib check-in at the first month 0.0004 12.5447 8.4724 10.6052

Table 3. Results of predicting STAR using the whole semester learning behavior data.

Metric SF DA DA-Reg | DA-SoH | EPARS
AUC 0.8423 1 0.8442 | 0.8611 |0.8623 |0.8684
ACC-STAR | 0.5395 | 0.6079 | 0.6842 |0.6184 | 0.7237

6.2 Experimental Results

RQ1: To verify the effectiveness of our proposed EPARS in predicting STAR,
we extract features from the whole semester data to train the GBDT and bench-
mark EPARS with four baselines. This experiment evaluates the performance of
EPARS when students’ all learning behaviors in a whole semester is known. The
results are presented in Table 3.

Comparing the experimental results between SF and DA, it is confirmed
that our data augmentation approach overcomes the data imbalance challenges
to some extent and achieves improvement in both AUC and ACC-STAR. In
addition, the regularity features extracted by our multi-scale bag-of-regularity
method can improve the accuracy of predicting STAR a lot, which indicates
that the regularity of learning is a distinguished feature between STAR and the
normal students, and the multi-scale bag-of-regularity can well extract their reg-
ularity patterns efficiently. Compared with DA-Reg, DA-SoH achieves a higher
AUC score and has better overall classification performance. However, its ACC-
STAR is much lower than DA-Reg’s, suggesting that it cannot identify STAR
as accurate as DA-Reg. In other words, social homophily helps identify the
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normal students a lot rather than recognizing STAR. This shows that our app-
roach is capable of well modeling the social homophily among students. Nev-
ertheless, STAR may have similar linkage patterns with “familiar strangers” in
the co-occurrence network since STAR are very handful. Combining the regu-
larity patterns of learning and social homophily, which is our proposed EPARS,
achieves the best performance in predicting STA in terms of 19.05%, 5.77% and
17.03% ACC-STAR improvement to DA, DA-Reg and DA-SoH, respectively.
This indicates that friends of STAR are more likely to be at-risk if their regu-
larity patterns of learning behaviors are also similar. Therefore, the regularity
features can help eliminate the “familiar strangers” and result in better STAR
prediction performance.

RQ2: To demonstrate the effectiveness of our methods in early predicting
STAR, we conduct experiments in every week’s data of the semester. For each
week, we extract features of students’ learning traces from the beginning of the
semester to the end of that week. We repeat the experiment for 10 times, and the
average ACC-STAR of early predicting STAR is presented in Fig. (1) in which
the solid lines are the average ACC-STAR, and the shadows represent the error
spans.
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Fig. 1. Results of STAR early prediction.

Our EPARS outperforms all other baselines from the first week to the end of
the semester. It is worth mention that our EPARS can correctly predict 61.84%
STAR only based on the online and offline learning traces of the students in the
first week, which outperforms SF, DA, DA-Reg, and DA-SoH 38.22%, 17.50%,
14.62%, and 22.38%, respectively. In the first four weeks, the prediction per-
formance of SF keeps on decreasing. One possible reason is that some normal
students are not active in the beginning of the semester, so that they may have
similar behavior patterns with STAR and cause misclassification. Students’ social
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homophily and regularity patterns of learning behaviors are much more discrim-
inable especially in the early stage of a semester. The performance of EPARS
is almost converged in the middle of a semester while other baselines are still
gradually increasing or concussion. It shows that our EPARS can leverage less
information but achieves better performance in early predicting STAR.

RQ3: To verify the effectiveness of using SMOTE for dealing with the label
imbalance issues, we conduct a comparative experiment among random under-
sampling (RU), random oversampling (RO) and SMOTE. RU and RO are widely
adopted in existing work for STAR prediction [8,10]. RU randomly deletes exam-
ples with the majority labels until the labels of training samples are balanced
while RO randomly resamples the minority examples until the numbers of the
minority are the same as the majority one. We regard SF as baseline and launch
above data augmentation approach for predicting STAR before the end of a
semester. We repeat the experiment 10 times and report the average AUC and
ACC-STAR in Table4.

The first two columns show the number of examples in the training set after
data augmentation in each fold of the experiment. Experimental results show
that RO slightly outperforms the baselines but the performance of RU is worse
than the baselines. In the case of extremely label imbalance, undersampling
technique drops most of negative training samples and constructs a very small
training set, which cannot provide enough information to well train a classifier.
Although RO augments the minority examples by oversampling, most synthesis
examples are the same so that the classifier is very easy to overfit and results
in poor testing accuracy. SMOTE synthesizes the minority examples by linear
interpolation which not only increases the number of minority samples but also
enriches the diversity of the training set. Thus, it achieves the best STAR pre-
diction accuracy in such an extremely label imbalance classification task.

Table 4. Evaluation of data augmentation.

# STAR after DA | # Normal Std after DA | AUC ACC-STAR
SF 305 11295 0.8342 | 0.5526
RU 305 305 0.8211 |0.5316
RO 11295 11295 0.8458 | 0.5645
SMOTE | 11295 11295 0.8684 | 0.7237

RQ4: We test how sensitive EPARS is to the hyper-parameters and discuss how
to select hyper-parameters for EPARS. We focus on three hyper-parameters
of EPARS. One is the maximum scale S of multi-scale bag-of-regularity. The
other two are co-occurrence threshold ¢ and linking threshold o between pairs
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Fig. 2. Results of testing the maximum scale S of multi-scale bag-of-regularity.

of students when constructing co-occurrence networks for further modeling the
social homophily.

While we are testing the maximum scale S, we fix all other parameters and
vary S from 2 to 7 because the minimum time length of the repeated pattern
is two days, and the course schedule is a 7-day cycle. The prediction results are
shown in Fig. (2). We found that the overall classification performance measured
by AUC is not sensitive to the maximum scale S, but it affects a lot on the
correctness of identifying STAR. EPARS achieves the best performance when
S = 4. The reason may be in two folds. One reason is that the regularity patterns
of the scale 5 to 7 can be synthesized by the scale of 2 to 4. Thus it has already
captured almost all regularity when setting the maximum scale S = 4. The other
reason is that the output feature vector of multi-scale bag-of-regularity is short
and dense when S = 4. It will dramatically become sparse when S > 4 in our
cases, which makes the performance worse.

Table 5. Results of testing co-occurrence threshold 4.

1) Ave #edge per week | AUC | ACC-STAR
10 s | 14263 0.8699 | 0.5921

30 s | 39386 0.8684 |0.7237

60 s | 77318 0.8576 |0.6316

We further test how co-occurrence threshold § and linking threshold o affect
the modeling of social homophily and present the results in Table5 and 6. § =
30 is the best since smaller § will make the co-occurrence network unable to
capture enough social relationship for learning the social homophily and larger
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Table 6. Results of testing linking threshold o.

o AUC | ACC-STAR
2 times | 0.8684 | 0.7237
3 times | 0.8615 | 0.6184
4 times | 0.8554 | 0.5658
5 times | 0.8122 | 0.5395

¢ will introduce a large number of “familiar strangers” which also damages the
prediction performance. Similar results are found in the result of testing linking
threshold o. When increase o, both AUC and ACC-STAR are dropping. The
reason is that STAR and some ordinary students go to the library less often than
outstanding students so that higher o may filter out their social interaction and
results in worse prediction performance.

7 Conclusion

In this paper, we propose EPARS, a novel algorithm to extract students’ reg-
ularity patterns of learning and social homophily from online and offline learn-
ing behaviors for early predicting STAR. One of our major contributions is to
devise a multi-scale bag-of-regularity method to extract regularity features from
sequential learning behaviors, which is robust for sparse data. In addition, we
model students’ social relationships by constructing a co-occurrence network
from library check-in records and embed their social homophily as feature vec-
tors. Before training a classifier, we oversample the minority examples to over-
come the label imbalance issues. Extensive experiments are conducted on a large
scale dataset covering all undergraduate students in the whole university. Exper-
imental results indicate that our EPARS improves the accuracy of baselines by
14.62% ~ 38.22% and 5.77% ~ 34.14% in predicting STAR in the first week and
the last week of a semester, respectively.
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