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The locomotor-respiratory coupling (LRC) ratio of a person doing exercise is an important parameter to reflect the exercise

safety and effectiveness. Existing approaches that can measure LRC either rely on specialized and costly devices or use heavy

sensors, bringing much inconvenience to people during exercise. To overcome these limitations, we propose ER-Rhythm

using low-cost and lightweight RFID tags attached on the human body to simultaneously extract and couple the exercise and

respiration rhythm for LRC estimation. ER-Rhythm captures exercise locomotion rhythm from the signals of the tags on

limbs. However, extracting respiration rhythm from the signals of the tags on the chest during exercise is a challenging task

because the minute respiration movement can be overwhelmed by the large torso movement. To address this challenge, we

first leverage the unique characteristic of human respiratory mechanism to measure the chest movement while breathing, and

then perform dedicated signal fusion of multiple tags interrogated by a pair of antennas to remove the torso movement effect.

In addition, we take advantage of the multi-path effect of RF signals to reduce the number of needed antennas for respiration

pattern extraction to save the system cost. To couple the exercise and respiration rhythm, we adopt a correlation-based

approach to facilitate LRC estimation. The experimental results show that LRC can be estimated accurately up to 92% − 95%

of the time.
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1 INTRODUCTION

1.1 Motivation

Nowadays, indoor fitness training has become a popular choice for people to do regular exercise. However, many

people fail to achieve safe and effective exercise due to the lack of measurements for the body physiological
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signals, which could result in serious physical injuries or visceral organ damage [3]. Various parameters have

been proposed to analyze the physical and physiological information during exercise. One key parameter is the

locomotor-respiratory coupling (LRC) ratio, which characterizes the correlation between the exercise locomotion

and respiration rhythm. Researchers have found that there exists the tight coordination between the limb

movement and respiration for many rhythmic exercise activities, e.g., running, cycling and pedaling [12, 34].

Keeping harmonic coordination between locomotion and respiration during exercise not only reduces energy

consumption and prolongs the training period, but also promotes the maintenance of the cardiopulmonary

functions [27].

Experimental evidence and practical experiences have given many suggestions on how to exercise with an

accurate way of breathing. LRC ratio is an essential parameter, which is defined as the frequency and phase

locking between locomotion and respiration [11]. By monitoring the LRC during exercise, people can adjust

their respiratory rhythm to maintain the LRC ratio at a stable and proper level, so that they can boost exercise

performance and prevent getting hurt. Therefore, our work targets on accurately estimating the LRC ratio for

coupling the exercise and respiration rhythm.

1.2 Limitation of Prior Art

Existing works primarily focus on the following three categories: (1) Exercise-only monitoring systems using

cameras [23], inertial sensors [19] or wireless signals (e.g., WiFi [39] and RFID [14]) to detect and evaluate

the exercise performance for various exercise activities. These works only target on extracting the locomotion

pattern during exercise while failing to capture the respiration information; (2) Respiration-only monitoring

systems using wearable sensors (e.g., chest belt and nostril sensor) or wireless signals (e.g., WiFi [25, 26] and

radar [35]). The on-body sensors are quite intrusive to users. For instance, the specialized chest band [7] which

is tightly bound on the chest could make people uncomfortable for free breathing and exercise, especially for

women. Although wireless signals provide a contact-free approach to detect the respiration, they can accurately

monitor the respiration state merely when the person is in the quasi-static state, e.g., sleeping and sitting; (3)

Exercise and respiration rhythm monitoring systems including the cardiopulmonary exercise testing (CPET)

[10] and smartphone-based systems [16, 17, 20]. CPET is expensive which can cost over $2, 000 for one user per
test. Besides, people need to wear facemask and ECG electrodes on the body during exercise, bringing much

inconvenience. Smartphone-based systems are cost-effective compared with CPET. However, people need to

put a microphone close to the mouth and nose on the face, meanwhile wearing the smartphone on the arm.

Furthermore, extra sensors are required if leg movement needs to be monitored which brings more load and

discomfort during exercise. Compared with these limitations, we may raise a question: can we simultaneously

extract and couple the exercise and respiration rhythm in a lightweight way using low-cost commercial devices?

1.3 Our Approach

In our work, we employ commercial RFID devices to measure the LRC ratio. RFID tags are lightweight, offering a

way for non-intrusive sensing to release people from wearing bulky sensors during exercise. In addition, RFID

tags are quite cheap ($0.1 − 0.2 per tag). People can share the low-cost service based on the RFID infrastructure

deployed for public use, e.g., in the gym. RFID tags can be attached on different body parts, so that different

movements can be detected and distinguished. Therefore, we propose ER-Rhythm, which can simultaneously

measure and couple the exercise and respiration rhythm with accurate LRC estimation during exercise. The

system can be deployed in the indoor environment, like in the gym coaching session.

In ER-Rhythm, RFID tags are attached on the limbs and chest to extract the exercise limb movement and

respiration rhythm, respectively. As shown in Fig. 1, two RFID antennas are deployed in front of and behind

the person. The front antenna transmits signals to the tags on the limbs and front chest. The back antenna
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Fig. 1. Illustration of ER-Rhythm scenario and deployment of RFID tags.

interrogates the tag on the back chest. The backscattered signals reflected by all the tags are collected by the RFID

reader for further processing. Our key observation is that the movements of different body parts during exercise

affect the phase values of the RFID signals in distinct ways. The backscattered signals reflected by the tags on the

limbs involve the limb movement pattern, which is called limb movement effect. For the tags attached on the chest,

the backscattered signals involve the tiny chest movement caused by respiration (respiration effect) as well as the

relatively large torso movement caused by the exercise locomotion (torso movement effect). The torso movement

effect can be further divided, including the random effect due to the randomly unbalanced body trembling and the

periodic effect generated by the cyclic exercise movements. In our work, we first study the feasibility to measure

both the exercise limb movement and respiration rhythm by modeling the effects of different body movements

on the phase values of RFID signals. Then, we estimate the exercise limb movement rate with the limb tags. The

tiny respiration pattern is extracted after removing the effects from the large torso movement by synthesizing the

information of multiple tags on the body. Finally, the patterns measured from the limb movement and respiration

are coupled to estimate the LRC ratio. To further reduce the system cost, we make use of the multi-path effect

of the backscattered signals to extract the exercise and respiration rhythm with only one antenna, which still

achieves high LRC estimation accuracy.

1.4 Challenges

To simultaneously extract and couple the exercise and respiration rhythmwhile achieving accurate LRC estimation,

however, is not a trivial task. The first challenge is to extract the chest movement pattern during respiration from

the RFID signals. The chest movement displacement caused by respiration is tiny, making the phase changes of

the signals to be quite small. We enhance the chest movement pattern by leveraging the unique characteristic

of human respiratory mechanism that the front and back chest will expand and contract synchronously while

breathing. By fusing both the front and back chest movement, a larger respiration pattern can be obtained.

Even if the chest movement pattern while breathing is enlarged, it is still too small to be distinguished from

the large torso movement. Thereby, the second challenge is to eliminate the torso movement effect, especially for

the random effect which is mixed with the respiration pattern in the chest tag signals. The random effect comes

from the unbalanced torso trembling, whose pattern is unpredictable and untraceable. To solve this problem,

we decompose the random torso movement along two dimensions and remove it based on the relative moving

distances and directions of the two chest tags towards two antennas.

The third challenge is to accurately estimate the LRC ratio. Since the limb movement rate (fl ) is higher than
the respiration rate (fr ), the torso periodic effect can be removed by applying the low-pass filter with fl as the
cutoff frequency. However, when fl and fr are close to each other, the periodic effect will leave residual effect

on the respiration pattern due to the transition band of the low-pass filter. Besides, the estimation of fr suffers
from the low resolution when performing Fast Fourier Transformation (FFT) on the respiration signals with

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 158. Publication date: December 2019.



158:4 • Yang et al.

limited length. Thus, LRC can be wrongly estimated with inaccurate fr . To address the problem, we get inspired

by the LRC theory that there are a set of LRC ratios for human-beings during exercise. So, we generate simulated

respiration signals based on the known LRC ratios and fl . Then, a cross-correlation array is calculated between

the real respiration signals and each of the simulated signals. The final LRC is decided as the one with the highest

correlation value.

1.5 Contributions

In this paper, we make the following three contributions: (1) We propose ER-Rhythm, which is the first work

that uses COTS RFID to extract respiration pattern during exercise and couples the exercise and respiration

rhythm in a lightweight and low-cost way. (2) We perform in-depth analysis about the effects of the exercise

movements and respiration on the RFID signals. The tiny respiration effect is fully extracted against the large

torso movement effect. Meanwhile, we employ the multi-path effect to reduce needed antennas. Finally, we adopt a

correlation-based approach to couple the exercise and respiration rhythm for LRC estimation. (3) The ER-Rhythm

is implemented to evaluate the LRC estimation performance with different kinds of exercise activities under

different settings in the real environment. Extensive experiments show that our system can estimate the LRC

ratio accurately up to 92% − 95% of the time.

The rest of the paper is organized as follows. Section 2 introduces the basics of LRC and analyzes the effects

of limb movement and respiration on the RFID phase values. In Section 3, we illustrate the overview of the

ER-Rhythm and the detailed design of each module in the system. Section 4 presents our experimental setup and

results on LRC estimation under different scenarios. The related work is given in Section 5. At last, we discuss

the future work in Section 6 and make the conclusion in Section 7.

2 UNDERSTANDING THE EXERCISE AND RESPIRATION RHYTHM

In this section, the preliminary knowledge of the locomotor-respiratory coupling is introduced first. Then, we

perform analysis on using the RFID signals for extracting the exercise and respiration rhythm.

2.1 Locomotor-Respiratory Coupling

LRC is defined as the frequency and phase locking between the locomotor and respiratory systems [22]. According

to the LRC theory [13], for humans doing exercise, there are a set of coupling ratios as listed in Table 1, denoted as

LRC list. Taking the LRC of 3 : 1 for the cycling activity as an example, it means the person breathes 1 time with 3

rounds of periodic limb movement. There are integer LRC ratios, i.e., 5 : 1, 4 : 1, 3 : 1, 2 : 1, 1 : 1, and non-integer

LRC ratios, i.e., 5 : 2, 5 : 3, 3 : 2, 4 : 3, in the LRC list. Researchers have given evidence in [12, 34] that integer LRC

ratios appear more frequently than non-integer ratios. For most exercisers, there are dominant LRC (DC) and

secondary LRC (SC) [31]. DC is the main LRC for most of the exercise duration. While SC, which is usually the

closest LRC near DC, will appear for the purpose of adjusting the exercise rhythm gradually when the exerciser

changes the locomotory speed. SC can reflect how the exerciser responds to the change of exercise intensity by

adjusting the respiration. The type of exercise activity is one of the modulators of the LRC. For example, LRC

ratios in running are typically 2 : 1, 3 : 1, and 4 : 1, among which 2 : 1 is the commonest ratio. For cycling,

common LRC ratios are 2 : 1 and 3 : 1, while 1 : 1 is more frequently present in weightlifting. The personal

trainers usually advise people to breathe within the common range of LRC for the specific activity. Exercisers

Table 1. Common LRC ratios for human-beings during exercise

LRC ratio 5:1 4:1 3:1 5:2 2:1 5:3 3:2 4:3 1:1

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 158. Publication date: December 2019.



ER-Rhythm: Coupling Exercise and Respiration Rhythm Using Lightweight COTS RFID • 158:5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

)
d

ar( 
es

a
h

P

4.0

0.0

Time (s)

)
d

ar( 
es

a
h

P 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

(a) phase values of leg movement for pedaling (b) phase values of leg movement for running

(c) phase values of respiration for a quasi-static person

0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.5 32.0
Time (s)

)
d

ar( 
es

a
h

P
0.5

0.0
36.0 40.0

4.0

0.0

Fig. 2. Phase series of limb movements for exercise activities and chest movement for respiration

with higher LRC may overload themselves without sufficient oxygen supply. While lower LRC indicates that

exercisers may achieve less effective exercise training.

The way to measure LRC, which has been adopted by many researchers, is to divide the locomotion movement

rate by the respiration rate during a period and approximate the result to its nearest ratio in the LRC list [28].

There can be few cases, e.g., when the real LRC is 11 : 4, while the determined LRC is 3 : 1. However, according

to the studies in sports training [34] and interview replies from personal trainers, it is sufficient to provide the

common LRC ratios in the LRC list to exercisers for training guidance. Therefore, the result when we measure

LRC is one of the values in the LRC list.

We select some in-place and rhythmic activities to measure the LRC considering two aspects. First, the selected

activities should cover different types of exercise to test whether the system can work for different activities.

Second, since the torso movement brings more noises for respiration pattern extraction, there should be exercise

activities that involve different magnitudes of torso movement to evaluate our approach. Therefore, we choose

both aerobics (running, rowing, pedaling, and cycling) and anaerobic activity (weightlifting). For the scale of torso

movement, large torso movement appear during running and rowing, while pedaling, cycling and weightlifting

involve less torso movement. The intensity for the activities is controlled by the exerciser with different speeds

or frequencies.

2.2 RFID Phase Values for Exercise or Respiration Movements

To monitor the exercise and respiration activity, the phase value of RFID signals is used. The phase value is a

basic metric which reveals the relative distance information between the signal transmitter and receiver. For

the RFID signals, the distance d between the antenna and the tag can influence the phase value θ , which can be

represented as follows.

θ =

{
2d

λ
· 2π + ϵ

}
mod 2π (1)

λ is thewavelength (≈ 32.4 cm here), and ϵ is the phase shift with a fixed value caused by the hardware imperfection

and environmental effects. Since we focus on the change of the phase values during bodymovements, the existence

of ϵ will not affect the result. When the tag is attached on the body, it will move along with the body during

exercise, and the phase values will change accordingly. The limb movement can bring around 5 cm−15 cm change

on d depending on the position of the tag on the limb. While the chest movement during respiration only incurs

about 5mm − 10mm change on d [32], so the phase changes incurred by the respiration would be quite small.

The phase values of the tags on the limbs are shown in Fig. 2(a)-(b) for the pedaling and running activities as

examples. They show clear and periodic patterns of limb movements. Then, a person is asked to breathe normally
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Fig. 3. Illustration of different movement effects on the tags for the running activity

in a quasi-static standing state, and the phase values of the tag on the front chest are shown in Fig. 2(c), in which

5 times of sinusoidal breathing cycles are present. The phase value for respiration is much smaller than the limb

movement. Furthermore, the respiration signals of the chest tag during exercise would suffer from more noises

due to the effects of the large torso movement.

2.3 Modeling the Respiration Activity during Exercise

In this subsection, we analyze the effects of the limb movement and respiration on the RFID signals. The tags

on the limbs, i.e., the leg and arm, are denoted as Tl , and the tags on the chest are represented as Tc . For Tl , it is
mainly affected by the limb movement effect (El ), which is the cyclic movement of arm and leg, as shown in Fig.

3(a). The phase value θl of Tl can be expressed as below.

θl =

{
2(dl + dEl )

λ
· 2π

}
mod 2π , dEl = A1 sin(2π fl + ϕ1) (2)

dl is the initial distance between the tag and the antenna. dEl characterizes the periodic limb movement into a

sinusoidal signal, with fl as the limb movement rate and ϕ1 as the initial phase.

For Tc , it is directly influenced by two sources of movement effects via the line-of-sight (LOS) path, as shown

in Fig. 3(b)-(d), one is the target respiration effect (Er ) caused by the chest movement for observing the respiration

pattern during exercise (Fig. 3(b)), the other is the torso movement effect (Et ). The torso movement effect can be

further divided into two parts: random effect (Etr ) and periodic effect (Etp ). The random effect is caused by the

random movement during exercise. Although most indoor exercise activities are in-place movements, the torso

could move randomly to the right or the left, forward or backward (Fig. 3(c)), as the body cannot keep definitely

balanced while exercising. The periodic effect is the product of the cyclic torso movement during exercise. For

example, the person’s torso would sway up and down while running on a treadmill (Fig. 3(d)). As a result, the

periodic effect could synchronize with the limb movement effect. The torso movement effect could degrade the

respiration pattern in the phase values. This is because that the torso movement is larger than the minute

respiration movement. Thus, the respiration pattern can be overwhelmed by the presence of torso movement.

There are also indirect and minor multi-path effects brought by the limb movement onTc , denoted as dElm , which
is consistent with the limb movement effect. Thus, the phase values θc of Tc can be represented as follows.

θc =

{
2(dc + dEr + dEt + dElm )

λ
· 2π

}
mod 2π , dEr = A2 sin(2π fr + ϕ2)

dEt = dEtr + dEtp , dEtp = A3 sin(2π fl + ϕ3), dElm = A4 sin(2π fl + ϕ4), A4 < A3

(3)

The respiration effect dEr is also converted into a sinusoidal signal, with fr as the respiration rate.

To extract the exercise locomotion pattern, we can leverage the phase values of Tl and estimate the limb

movement rate fl via peak detection. However, the large torso movement effect, mixed with respiration effect,
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Fig. 5. The ER-Rhythm system overview.

should be removed from the signals of Tc to recover the clear respiration pattern. Fig. 4(a) depicts the raw RFID

phase values of the tag on the front chest during pedaling, which are quite messy to see the periodic respiration

pattern due to the existence of the torso movement effect. The large wave changes in the signals are brought by

the random effect, and the small the frequent fluctuations are caused by the periodic effect. Fig. 4(b) shows the

recovered respiration signals with clear and periodic respiration cycles after our dedicated processing, which will

be introduced in the next section.

3 ER-RHYTHM SYSTEM DESIGN

In this section, we will articulate the system workflow with a detailed introduction of each module.

3.1 System Overview

The sketch of the ER-Rhythm system is shown in Fig. 5. It consists of three phases: Signal Pre-processing, Exercise

and Respiration Rhythm Extraction, and LRC Estimation. The inputs are the raw RFID signal measurements,

including the antenna ID, tag ID, time and phase values. First, the raw phase values of all the tags are denoised

via phase calibration, smoothing, and interpolation. Then, the phase series for the exercise activity are detected

and segmented into small windows with a fixed length. Next, the phase series collected from Tl and Tc are used
to extract the exercise limb movement and respiration pattern. The limb movement rate is calculated from the

phase values of the tags on the limb. Meanwhile, the respiration rhythm is obtained through respiration effect

measurement and removal of the torso movement effect on the respiration signals. Based on the chest movement

mechanism during breathing, we investigate the usage of two tags on the front and back chest to enlarge the

respiration pattern. Finally, the exercise and respiration rhythm is coupled to estimate the LRC ratio. Instead of

calculating the LRC ratio by directly dividing the respiration rate over the limb movement rate, the LRC ratio is

estimated using a correlation-based approach, which maps the coupling of the limb movement and respiration by

generating template respiration signals based on the set of potential LRC ratios.

3.2 Signal Pre-processing

The raw phase values are first calibrated to remove the half-wave effect and unwrapped. Since the tags respond

in a randomly selected slot to the signals transmitted from the antenna, the sampling rates and timestamps for
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different tags are not the same. Therefore, the phase series of all the tags are interpolated with the same sampling

rate, which is 50 Hz. For the tags on the limb, the median filter is applied to smooth the phase values. Next, we

detect the exercise activity during which the LRC estimation is performed. We observe the phase values of Tl
with and without exercise movements in Fig. 6(a)-(b). The first and the last parts are the start and end of the

exercise. The sinusoidal wave in the middle is caused by the periodic limb movements. For each time window,

we remove the mean of the phase values to create a waveform oscillating around 0. It can be seen that, for

the periodic movements, the phase values go cross the zero line more frequently than those of the start and

end period. Therefore, we use a sliding window to divide the phase series and the zero-crossing rate (ZCR) is

calculated for each sliding window. Then, a threshold is selected to detect the exercise movements. The ZCR

values are illustrated in Fig. 6(c)-(d). Here, as the human respiration rate is 10 − 30 breath per minute, the sliding

window is 5s-wide so that it involves at least one breathing cycle. The interval of the sliding window is 2 samples.

The threshold is decided by the limb movement rate for the exercise activity. For example, the number of cycles

during running and pedaling is normally above 40 per minute [5, 6]. So, the threshold for the ZCR is calculated

as 8 (40/60*6*2). The horizontal dash line in Fig. 6(c)-(d) is the threshold. The windows whose ZCRs are above the

threshold will be collected. Then, the phase time series of all the tags during the exercise activity are segmented

into fix-length time windows, i.e., 20 s .

3.3 Limb Movement Rate Estimation

The limb movement rate fl is estimated from the signals of the tag on the limb. For running, cycling and pedaling,

fl is estimated with the tag on the leg. For weightlifting and rowing, fl is obtained with the tag on the arm. The

limb movement pattern in Fig. 2(a)-(b) presents sinusoidal wave which inspires us to detect the limb movement

cycle via peak detection. However, since the peak detection algorithm identifies the peak whose neighbor value

is smaller than it, there are many fake peaks in the phase series as shown in Fig. 7(a). To remove the fake peaks

that do not correspond to the real movement cycle, we set a threshold for the distance between two neighbor

peaks. For runnin, the stride frequency is usually in the range of [90, 120] cycles per minute [5]. For cycling and

pedaling, the number of revolutions is within 80 rounds per minute [6]. For rowing and weightlifting, the number

of cycles could be less, which is below 40 times per minute. Therefore, we can calculate the minimum interval

σt between two movement cycles and discard the peaks that are too close to each other. In addition, we only
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Fig. 8. Chest movement modeling during respiration and the propagation of the RFID signals

keep the peaks whose height are higher than the mean value σm of the phase series. In Fig. 7(b), the peaks that

represent the breathing cycles are detected. Then, the number of peaks is counted in a time window t as pn . Since
fl is relatively stable within a short period of time, the limb movement rate fl is estimated by fl = pn/t .

3.4 Respiration Pattern Extraction

Next, we will extract the respiration pattern involved in the phase values ofTc via respiration effect measurement

and torso movement effect removal.

3.4.1 Respiration Effect Measurement. We employ the respiration mechanism, as shown in Fig. 8(a), to fully

investigate the effects of chest displacement on the RFID phase values. When a person breathes in and out, the

whole chest, which is simplified into a cylinder, will expand and contract accordingly [38]. In this process, there

would be displacement change in the front, mediolateral and back dimension of the chest. During exercise, the

mediolateral dimension change could be buried by the arm movement. But the front and back dimension can be

fused together to extract the respiration effect, instead of only exploiting the front dimension change. In this

way, the respiration pattern can be more obvious. Therefore, we attach one tag on the front chest and one tag

on the back chest. Then, two antennas are put right in front of and behind the target person to interrogate the

front tag and back tag, respectively, as shown in Fig. 8(b)-(c). Suppose that the respiration can lead to dr f and drb
displacement change of the front chest and back chest, respectively. dr f is commonly larger than drb .
For the tag on the front chest (Tcf ), the initial distance between Tcf and the front antenna (Af ) is df . When

breathing in, the front chest will expand and move towards Af , making the phase values of Tcf decrease. When

breathing out, the chest will contract which leads to the increase of the phase values of Tcf . Then the phase

difference Δθf of Tcf between breathing in ((θf )in ) and breathing out ((θf )out ) is:

Δθf =
��(θf )in − (θf )out

�� =
����(2df − 2dr f

λ
−
2df

λ
) · 2π

���� mod 2π =

{
2dr f

λ
· 2π

}
mod 2π . (4)

For the tag on the back chest (Tcb ), the initial distance between Tcb and the back antenna (Ab ) is db . When

breathing in, the signal’s traveling distance will drop by 2drb with the back chest expanding and moving backward.

While for breathing out, the signal traveling distance will increase by 2drb with the back chest contracting and

moving forward. If we add the phase values of Tcf and Tcb , the sum values while breathing in and out can be

represented as below.

(θf + θb )in =

{
2(df − dr f ) + 2(db − drb )

λ
· 2π

}
mod 2π (5)

(θf + θb )out =

{
2df + 2db

λ
· 2π

}
mod 2π (6)
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Fig. 9. Respiration phase series of Tcf , Tcb and their sum Fig. 10. Torso random effect modeling

Accordingly, the phase difference Δ(θf + θb ) between breathing in and breathing out can be expressed as:

Δ(θf + θb ) =
��(θf + θb )in − (θf + θb )out

�� =
{
2(dr f + drb )

λ
· 2π

}
mod 2π . (7)

Comparing Equ. (4) with Equ. (7), the phase difference of the summation of Tcf and Tcb is 2drb/λ larger than

that of the single Tcf . In this way, the respiration pattern can be amplified. To verify it, we make one person

to breathe in the quasi-static state, and measure the phase values of Tcf , Tcb and calculate the sum of Tcf and

Tcb , as depicted in Fig. 9. It shows that the phase series of Tcf and Tcb are in-phase with each other. The peaks

and valleys in the phase series when breathing out and breathing in are generally synchronized. It also shows

that the magnitude of the phase values of Tcb is smaller than that of Tcf , since drb < dr f . Most importantly, the

summation of Tcf and Tcb shows larger amplitude for the respiration pattern in Fig. 9(c). Therefore, the phases

values of Tcf and Tcb are added together for measuring the respiration chest movement.

3.4.2 Torso Movement Effect Removal. In subsection 2.3, we mention the torso movement effect, including the

random effect and period effect, can overwhelm the respiration signals for the tags on the chest. Thus, we need to

eliminate the effects caused by the torso movement to capture clear respiration pattern.

For the random effect, we divide the random torso movements into two parts. One is the vertical displacement

(move forward and backward) and the other is horizontal displacement (move to the left and right). First, we show

how the vertical displacement affects the phase values. As illustrated in Fig. 10(a), the torso moves l forward to

Af . Then the phase values ofTcf will decrease
2l
λ
. Suppose l is 5 cm, as the in-place exercise usually results in tiny

torso swaying movement. Compared with the displacement of the chest while breathing, which is in the range of

[5mm, 10mm] for the front chest [32], the vertical displacement l could bring large effect on the phase values.

For Tcb , the phase values will increase inversely. Next, we discuss the effects of the horizontal displacement.

As depicted in Fig. 10(b), the person moves to the left with distance of l = 5 cm. Suppose the distance between

Tcf and Af is df = 1m, then the phase values will increase
2(
√
d2
f
+l 2−df )

λ
. The (

√
d2
f
+ l2 − df ) is only around

1mm, which is quite small compared with the effects of vertical displacement l = 5 cm, so that the horizontal
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Fig. 11. Respiration phase series with effect from torso movements and removal of torso movement effect

displacement can be ignored. Therefore, we only need to consider the effects of the vertical displacement. We

find that the vertical displacement brings opposite effects on theTcf andTcb . More specifically, if the person does

not move, the summation of the phase values of Tcf and Tcb can be represented as below.

θf + θb =

{
2(df + db )

λ
· 2π

}
mod 2π (8)

If the person’s torso moves forward l , the propagation path of Tcf will drop from 2df to 2df − 2l , while the path
of Tcb will increase from 2db to 2db + 2l . Then, the phase summation of Tcf and Tcb is as follows.

θf + θb =

{
2(df − l)

λ
· 2π +

2(db + l)

λ
· 2π

}
mod 2π =

{
2(df + db )

λ
· 2π

}
mod 2π (9)

Thereby, the distance l is removed in Equ. (9) by using the summation of the Tcf and Tcb . Here, we show the

phase series for Tcf and Tcb when the person moves forward and backward towards the Af while running in

Fig. 11(a) and Fig. 11(b), respectively. They show that the phase values between the two vertical dashed lines

experience a large change. ForTcf , the phase values first decrease and then increase, whileTcb shows the opposite
trend. The summation phase series are shown in Fig. 11(c), in which the large phase changes caused by the

random torso movement are offset. In this way, the random effect is eliminated and we can obtain relatively clear

respiration pattern.

For the period effect which synchronizeswith the limbmovement, it incurs small and high-frequency fluctuations

in the phase values, as shown in Fig. 11(c). Considering that the limb movement rate is generally higher than the

respiration rate during exercise, we apply a third-order Butterworth low-pass filter with fl as the cutoff frequency

to remove the period effect. The phase series after the low-pass filter is depicted in Fig. 11(d), which shows the

periodic pattern of the respiration rhythm.

3.4.3 Reduce the Usage of Two Antennas to One. To extract the clear respiration pattern from the RFID signals,

multiple RFID tags and two antennas are employed. The usage of the front antenna Af is to measure the signals

of Tl and Tcf , and the back antenna Ab will interrogate Tcb . Although the RFID antenna does not cost much

for the deployment of the system, it could be more cost-effective if we can reduce two antennas to one with

similar results on respiration pattern extraction. In this way, we not only save the cost but also save the space

for monitoring. From this point of view, we exploit the multi-path effects of the RF signals so that only Af is

required to measure the signals of all the tags.

The main idea is to replace the back antenna Ab with a large barrier, e.g., the wall or shelf. The barrier reflects

the signals transmitted from Af to Tcb . Then, the signals of Tcb will travel back to Af . The propagation paths

of the signals are illustrated in Fig. 12. Af transmits the signals directly to Tcf via the line-of-sight path (1). For
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Fig. 12. One-antenna deployment for respiration effect measurement and torso movement effect removal.
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Fig. 13. FFT series of the recovered respiration phase values for respiration rate estimation: the yellow dashed line is the

estimated respiration rate and the red dashed line is the real respiration rate.

Tcb , the signals first arrive at the barrier, get reflected by it and reach Tcb via the multi-path (2). Then, Tcb will

response to the signals and send out the signals which first reach the barrier, get reflected by it and arrive at Af

via the multi-path (3).

The barrier plays the same role as Ab . For respiration effect measurement (Fig. 12(a)), when the person breathes

in, the front chest will expand and move forward to Af , making the length of (1) to decline. Meanwhile, the back

chest will move backward to Af , making the length of (2) and (3) to decrease, too. When the person breathes

out, the length of (1), (2) and (3) will all increase. Therefore, the sum of Tcf and Tcb can help to exaggerate the

respiration pattern. For torso movement effect removal (Fig. 12(b)), for instance, when the human body moves

forward to Af , the traveling distance of (1) will decrease, while the distance of (2) and (3) will increase inversely.

Thus, the summation of the Tcf and Tcb can also achieve the elimination of the torso movement effect. But the

concern is that if the barrier is not well positioned, there would not be enough multi-path signals that reach Tcb
and get back to Af . Then, the number of the phase values from Tcb will not be sufficient to reveal the respiration

pattern. We will discuss the influence of the position of the barrier in the evaluation section.

3.5 LRC Estimation

For LRC estimation, intuitively, it can be achieved by dividing fl over fr and matching the division result to the

nearest LRC ratio in Table 1. However, this method can lead to inaccurate LRC estimation due to the errors in fr
extraction. There can be cases when fl and fr are close to each other in practice. The torso period effect removed

by the Butterworth low-pass filter with fl as the cutoff frequency has residual effects on the respiration pattern

due to the existence of the transition band in the low-pass filter’s frequency response. Second, if we perform FFT

on the filtered respiration signals within a fixed length of time window , i.e., 20 s , for fr extraction, the resolution
of the frequency domain can be relatively low, i.e., 1/20 = 0.05 Hz. This could bring deviations to fr estimation

within the resolution range.

An example of the FFT series for the filtered respiration signals is shown in Fig. 13. We remove the DC

component and add a Hamming window on the respiration signals before FFT operation. The fr is settled as the

frequency component with the highest peak, where the first yellow dashed line is located at. The second red
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Fig. 14. Correlation-based LRC estimation with the example of the real LRC ratio as 4 : 1

dashed line correspond to the real fr . There is an 0.03 Hz deviation between the estimated and real respiration

rates. The nominator (fl ) is usually larger than the denominator (fr ). Consequently, even a small error in the fr
can lead to wrong LRC estimation. For example, when the real fl and fr are 0.6 Hz and 0.24 Hz, respectively, the
real LRC ratio should be 5 : 2. However, if there is only 0.03 Hz error less than the real respiration rate, then the

LRC would be wrongly estimated as 3 : 1.

To estimate the LRC precisely, we do not extract fr and calculate LRC directly. Instead, a correlation-based

approach is adopted [20]. The insight of this approach is to obtain the most likely LRC based on the prior

knowledge of all the possible LRC ratios and limb movement rate fl . In specific, we leverage the given set of LRC

ratios ri in the LRC list and the estimated fl , and calculate a set of candidate respiration rates fri = fl/ri . Then,
a set of simulated respiration signals are generated with the corresponding fri for each of the LRC ratios. The

simulated respiration signals are sinusoidal-like time series, represented as follows.

si (t) = A ∗ sin(2π fri t + ϕ) (10)

The amplitude of the phase series is normalized to [−1, 1]. Thus, A is set as 1, and ϕ in Equ. (10) is 0. Then, we

calculate the cross-correlation array between the real phase respiration series θr eal and each of the simulated

respiration signals si (t) for different fri . Then, we compare the maximum valueMi =max {θr eal · si (t)} in the

correlation array of different LRCs and choose the LRC with the highestMi as the final ratio. Fig. 14(a) shows an

example of the real respiration phase series and the simulated respiration signals with LRC of 4 : 1. TheMi of

different LRC ratios are also depicted in Fig. 14(b). The maximumMi is achieved with the candidate LRC of 4 : 1,

which corresponds to the real coupling ratio.

4 EVALUATION

In this section, the experimental setup is first introduced. Then, we will evaluate the accuracy of limb movement

rate estimation, respiration rate estimation, and LRC estimation. Next, we will discuss the effects of the distance

between the antenna and the person and the effects of the orientation for placing the antenna towards the

person on LRC estimation. Meanwhile, we will compare the performance of the two-antenna and one-antenna

deployment. Finally, we will show examples of the LRC ratios for persons with different exercise background.

4.1 Experimental Setup

As shown in Fig. 15, the ER-Rhythm system is implemented using COTS RFID devices, including the ImpinJ

Speedway R420 RFID reader, Laird E9208 antenna and ImpinJ E41-C tag. The reader works in the 920 − 925MHz
region, and the reader mode and search mode are set as AutoSetDence and DualTarget, respectively. The reader

is connected to a Dell Inspiron 7460 laptop with i7 − 7500U CPU and 8 GB RAM. The RFID measurements are

processed with Python 3.0.

We test the system performance in different environments with five exercise activities, as shown in Fig. 15(b).

For cycling and weightlifting, the torso of the exercise could keep relatively stable with small torso movement.

For pedaling and rowing, the torso moves along with stepping up-and-down and pulling back-and-forward, in
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Fig. 15. Illustration of the experiment setup

which the periodic effect plays the main role in affecting the respiration pattern. Running brings the highest

torso movement effect because the torso will shake fast and randomly with each stride. All the five activities

involve rhythmic and frequent limb movements.

To measure the ground truth of the limb movement rate, a 3-axis accelerator is worn on the leg or arm. To

obtain the ground truth of the respiration cycles, we draw from the fact that people perform nasal breathing with

louder breathing sound during exercise than in peacetime [4, 30]. Thereby, we ask all the volunteers to breathe

via the nose and stick an in-line microphone under the nose to collect the breathing sound during exercise, as

shown in Fig. 15(a). To guarantee the effectiveness of breathing sound measurement, we find 5 volunteers and

collect their breathing sounds with the microphone. They are guided to breathe 50 times with the commands

given by another person beside them. Then, we count the number of peaks in the sound waves, from which all

the respiration cycles are correctly detected. In our experiments, 15 volunteers, including 12 males and 3 females,

are recruited. They are between 23 and 32 years old (mean = 26, std = 3), and the between 165 cm and 190 cm
tall (mean = 177 cm, std = 6.5 cm). Some of them are regular exercisers with fitness training or sport playing

at least twice a week, some rarely exercise. We interview each volunteer about which exercise activities they

are interested in and what time they are available for data collection. Then, based on the selected activities, we

assign 10 volunteers to each activity. It takes around 10 weeks for all the volunteers to perform the assigned

exercise activities during their spare time with 10-20 minutes of training each time.

To evaluate the system performance, three metrics are defined: (1) Mean Absolute Error (MAE) of limb

movement rate and respiration rate estimation; MAE is calculated as 1
n

∑n
i=1 |ti − ei |. ti and ei are the true and

estimated values, respectively. For each time window, the difference between ti and ei is calculated, and the MAE

is the average error of all the windows. (2) Percentage of Accurate Windows (PAW) of LRC estimation; For a time

period, we divide it into several time windows with fixed length, and the LRC is estimated for each window. Then,

we count the number of windows with accurate LRC results over all the windows to get the PAW. For instance, in

a 10-min cycling period which involves 30 windows (20s-wide window), the 90% PAW means that 27 windows

provide accurate LRC values. We regard the accuracy of LRC is acceptable when PAW is above 90%. (3) Error

of LRC estimation; The error of LRC is the difference between the real LRC and the estimated LRC values. For

example, the error between the estimated LRC 3 : 1 and the real LRC 2 : 1 is 1, the error between the estimated

LRC 5 : 2 and the real LRC 2 : 1 is 0.5. The LRC error is only evaluated for the inaccurately estimated windows.

Previous works only evaluate the LRC estimation with the PAWmetric [15, 17, 20]. They do not consider the error

of LRC estimation. However, we think that the LRC error is also an essential metric to show the LRC estimation
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Fig. 16. Statistics of LRC error values

Table 2. Comparison of errors on limb movement and respiration rate estimation with existing works

Limb movement rate [33]: 1-3 cycles [39]: 6-8 cycles Our: 3-5 cycles

Respiration rate [21]:0.5-1 bpm [40]: 0.3-0.5 bpm Our: 0.5-1.5 bpm

performance. [15, 17, 20] mention that the LRC estimation result is acceptable when the estimated LRC is closed

to the real one. Therefore, we calculate all the possible LRC errors between every two different LRC values in the

LRC List. For instance, the largest error of 4 is the difference between 5 : 1 and 1 : 1. For repetitive LRC error

values, we count their occurrence. For example, the error of 0.17 can be the difference between 3 : 2 and 4 : 3

or between 5 : 3 and 3 : 2, so the occurrence is 2. The calculated values of all the possible LRC errors and their

occurrence are shown in Table. 16. The median value of all the LRC errors is around 1 (1.17). In addition, the

error of 1 has the highest occurrence, which means that it appears more frequently in the wrong LRC estimation

windows. Thereby, we empirically regard that if the LRC error is below 1, the estimated LRC is closed to the real

one, and vice versa. Furthermore, as mentioned in Section 2.1, exercisers will transit between DC and SC, and SC

also reflects the exercise rhythm. So, if the LRC error is the difference between DC and SC, the LRC estimation

result is still referential. Since integer LRCs are more commonly seen in exercisers, DC and SC are more likely to

be integer LRCs. Hence, the difference between DC and SC is usually 1. Based on the above statistics of LRC

errors, we empirically set the acceptable LRC error range to be the values below 1.

4.2 Limb Movement Rate and Respiration Rate Estimation

Here, the evaluation is done under the two-antenna deployment. The distance between the person and antenna

is 1m, and the antenna is put on a tripod with 1.5 − 1.8m high based on the person’s height.

4.2.1 Limb Movement Rate Estimation. The average MAE of limb movement rate estimation is 0.008 Hz. We

evaluate the performance of limb movement rate estimation for different exercise activities. For running, pedaling

and cycling, the tag on the leg is used for extracting the limb movement rate. For weightlifting and rowing, the

tag on the arm is used. We compare the estimation accuracy of attaching the tags on different limb parts. For

the arm, the tag can be put on the upper or lower arm. For the leg, the tag can be put on the thigh or the knee.

The results are shown in Figure 17(a). The MAEs are all below 0.015 Hz, indicating the estimated rate is quite

close to the ground truth. In addition, the MAEs of putting the tags on the lower arm and on the knee are smaller

than that on the upper arm and thigh, and the average MAE is around 0.008 Hz. This is because the tags on
the lower arm and knee experience longer distance change, so the movement pattern is more obvious. We also

compare the accuracy of limb movement rate estimation with [33] and [39]. [33] uses the smartwatch to estimate

weightlifting cycles, and [39] uses WiFi signals to estimate running steps. Since they use the metric with the

error of cycles during a period, we convert the MAE of limb movement rate in the unit of Hz to the number

of wrong detected cycles of limb movements. The results are shown in Table 2. The comparison results show

that the accuracy of limb movement rate estimation is better than that in [39], while worse than that in [33].

According to the survey in [33], the average error of 3 − 5 cycles is tolerable for the users.
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Fig. 18. PAWs and errors of LRC estimation

4.2.2 Respiration Rate Estimation. The average MAE of respiration estimation is about 0.0225Hz. Next, we perform
experiments to evaluate the effectiveness of our method for extracting respiration rhythm during exercise and

compare with the performance of only using Tcf ’s phase profile. Although we do not calculate the LRC by

estimating the respiration rate directly from the summation phase profile, the accuracy of respiration rate

estimation is discussed here for comparison. We perform FFT on the summation phase profile of Tcf and Tcb
after chest movement measurement and torso movement effect removal and on the phase profile of Tcf after

signal pre-processing and low-pass filtering. As depicted in Fig. 17(b), using only the phase values collected from

Tcf , the average MAE can be around 0.071 Hz, which is equal to around 4.3 breath per minute. While, with the

summation phase values (Tcf and Tcb ), the average MAE is about 0.0225 Hz, corresponding to 1.35 breath per

minute. The MAE of respiration rate estimation is reduced by two-thirds. We compare the MAE of respiration rate

estimation with [21] and [40], as shown in Table 2. For respiration rate estimation, the MAE of our work is a little

larger than that of [21] and [40]. Because the assumption in [21, 40] is that the target person is quasi-static, while

our system is for the exercise scenario, where the movements make the respiration pattern noisier. Nevertheless,

we do not directly use the respiration rate to estimate the LRC. Instead, the correlation-based approach is applied

to improve the accuracy of LRC estimation.

4.3 LRC Estimation

The LRC estimation is evaluated with respect to different approaches, distances, and orientations under both

two-antenna and one-antenna deployment.

4.3.1 Comparison of different LRC estimation approaches. The correlation-based approach can achieve higher

accuracy on LRC estimation. The performance of LRC estimation with different approaches is evaluated under

the two-antenna deployment with 1m distance between the antenna and target human. We first compare the

PAW results of directly dividing the limb movement rate over the respiration rate with those of our proposed

correlation-based approach, as shown in Fig. 18(a). The average PAW of the direct division approach is around
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Table 3. PAW of LRC estimation for different persons and different exercise activities

Person 1 2 3 4 5 6 7 8 9 10
PAW - pedal 93.8% 94% 94.4% 93.4% 93.1% 92.8% 94.7% 93.6% 93% 92.2%

Main LRC - pedal 2:1 3:1 3:1 2:1 4:1 4:1 2:1 3:1 2:1 3:1
PAW -cycle 94.4% 95.2% 96% 94.7% 94.4% 93.5% 95% 94.8% 95.2% 94.8%

Main LRC - cycle 3:1 3:1 2:1 4:1 3:1 4:1 3:1 3:1 2:1 3:1
PAW -run 93% 91.1% 92.8% 89.4% 90.8% 92% 90.4% 90% 89% 89.2%

Main LRC - run 2:1 2:1 3:1 4:1 2:1 3:1 2:1 2:1 4:1 2:1
PAW -row 93.5% 94.1% 92% 91.5% 91.7% 91.2% 92% 92.3% 91.5% 91.2%

Main LRC - row 2:1 3:1 3:2 3:1 5:2 2:1 2:1 3:2 3:1 4:3
PAW - lift 96% 95.2% 94.1% 95% 93.8% 95.5% 96% 95.8% 95% 95.6%

Main LRC - lift 3:2 2:1 2:1 3:2 3:2 5:2 2:1 3:2 2:1 2:1

81%, which is lower than the average PAW of the correlation-based approach (92%). The main reason is that errors

in respiration rate estimation can lead to large deviation in LRC estimation. While the correlation-based approach

narrows the range of possible results by using the potential LRC ratios. We further show the detailed PAW results

and main LRC ratios for different activities and each of the 10 persons in Table 3. The main LRC is the ratio that

appears most frequently for the person performing the specific exercise activity. Generally, the PAW results for

the running (90.7%) and rowing (92.1%) activities are smaller than those of pedaling (93.5%), cycling (94.8%) and
lifting (95.2%). This is because that larger torso movement is involved during running and rowing, which incurs

more noises to the respiration pattern extraction. Compared with existing smartphone-based systems [17, 20],

whose PAW is around 91 − 91%, our approach achieves the comparable results.

We also show the distribution of the errors between the real and the estimated LRCs for the correlation-based

approach in Fig. 18(b). There are 19 possible error values among all the LRC ratios, while in our experiments,

there are 10 error values that appear. The average error of all the samples is 0.74. The frequent error values
are 0.5 and 1, and there is no error larger than 2. Thus, the errors in LRC estimation of our system are within

a small range. Besides, we find out the errors of which the estimated LRC is the neighbor of the real LRC, and

the neighbor errors account for 72% of all the errors. This indicates that, even though some errors appear, the

estimation LRC ratio is not far from the real one.

4.3.2 Distance. The PAWs of LRC estimation are above 85% when the distance between the antenna and target person

is within 2.5m for the two-antenna deployment, and the PAWs are above 85% for the one-antenna deployment when

the distance is within 1.5m. The average errors of LRC are below 1 within 2.5m for the two-antenna deployment and

within 1m for the one-antenna deployment. First, we investigate the effects of the distance between the front/back

antenna and target person on LRC estimation for the two-antenna deployment. Here, the target person faces the

antenna straight. There are furniture and other objects in the environment. The PAWs are shown in Fig. 19(a).

Within 2.5m, the PAWs are above 85%. For longer distance, the performance degrades gradually. For distance

longer than 4m, there are cases that the RFID reader fails to read enough phase values of the tags (no signal

measurements or the number of the measurements is below 10 per second), so there is no PAW result. The average

errors of LRC estimation for the two-antenna deployment are given in Table 4. The errors are lower than 1 when

the distance is within 2.5m, and keep increasing with longer distance. Longer distance also brings a problem that

there can be other persons moving in the area between the target person and the antenna or the objects in this

area block the signals. We did experiments when the distance between the antenna and person is 2.5m, and one

person is asked to walk randomly in the LOS area between the antenna and the target person. The PAW of LRC

estimation drops to 67%. This shows that the system performance can be affected by the movements intervening

the LOS signals. Thereby, the antennas should be put closed to the target person, e.g., 1 − 1.5m, to avoid objects’

blockage and people’s movements.
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Fig. 19. Effects of distance on LRC estimation

Table 4. Average errors of LRC estimation for different distances

Distance(m) 0.5 1 1.5 2 2.5 3 3.5 4

LRC error of two-antenna deployment 0.71 0.74 0.79 0.86 0.95 1.13 1.38 1.84

3*LRC error of one-antenna deployment Distance(m) 0.5 1 1.5 2 2.5

Tcb and barrier 0.85 0.91 1.12 1.64 /

Tcf and Af 0.82 0.88 0.95 1.43 1.87

Next, we discuss the effects of the distance between Tcb and the barrier and that between Tcf and Af on LRC

estimation for the one-antenna deployment. Here, we use the indoor wall and clapboard as large barriers, as

shown in Fig. 15(b). First, the distance between Tcf and Af is fixed to 1m, and we test the effects of the distance

between the Tcb and the barrier on LRC estimation. Then, we fixed the distance between Tcb and the barrier to

1m and change the distance betweenTcf andAf reversely. As shown in Fig. 19(b), when the distance betweenTcf
andAf , and that betweenTcb and the barrier are within 1.5m, the values of PAW are above 80%. With the distance

becoming longer, the accuracy could decrease. The average errors of LRC for the one-antenna deployment are

also shown in Table 4. For the same distance between the Tcb and the barrier and that between Tcf and Af , the

error of the former setting is larger than that of the latter one. In addition, we find that the performance is more

sensitive to the distance between the Tcb and the barrier: there are not enough signal measurements collected

when the distance is above 2m. While the upper limit of the distance between the Tcb and the antenna can reach

2.5m to receive signals. This is due to the reason that the RFID signals, reflected by the barrier and back to the

receiver, lose more power in this process. The number and the power of the received signals of Tcb would be

less than that of the Tcf . Thus, for the one-antenna deployment, it requires the distance among the person, the

antenna and the barrier to be shorter.

4.3.3 Orientation. The PAWs of LRC estimation are above 85%when the orientation is within 20◦ for the two-antenna

deployment, and the PAWs are above 80% when the orientation is within 20◦ for the one-antenna deployment. The

average errors of LRC are below 1.5 within 30◦ for the two-antenna deployment and within 20◦ for the one-antenna

deployment. The orientation of the target person towards the antenna, α , is defined as depicted in Fig. 20, and we

discuss the effects of the orientation on LRC estimation. Here, the distance between the antenna/barrier and the

target person is fixed to around 1m. For the two-antenna deployment, as shown in Fig. 21, when α is within 20◦,

the PAWs are above 85%. However, when α keeps growing, the PAW becomes worse, even below 60% for α of 50◦.

When α is 60◦, there are not enough signal measurements received by the RFID readers because the antenna

is directional. The average errors of LRC for the two-antenna deployment are shown in Table 5. The average

errors exceed 1.5 when α is above 30◦. The reason why the LRC estimation accuracy drops so quickly after 30◦ is

two-fold. First, there would be fewer signals collected by the reader with a larger α as the directional antenna has

a limit ellipsoidal reading zone. Second, when α increases, the chest displacement will have smaller effects on the
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Fig. 20. Illustration of the orientation of

the person towards the antenna.
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Fig. 21. PAWs of the LRC estimation with different orientation angles for the

two-antenna and one-antenna deployment.

Table 5. Average errors of LRC estimation for different orientation angles

α 10◦ 20◦ 30◦ 40◦ 50◦

LRC error of two-antenna deployment 0.81 0.92 1.26 1.75 2.17

LRC error of one-antenna deployment 0.85 1.08 1.63 2.04 /

Table 6. PAWs and average errors for the multi-person scenario

No.-Activities 2-[pedal, cycle] 2-[pedal, weight lift] 2-[cycle, run] 3-[pedal, cycle, run]

PAW [92%, 89%] [91%,88%] [88%, 90%] [90%, 86%, 89%]

Error [0.81, 0.86] [0.83, 0.90] [0.93, 0.85] [0.94, 1.05, 0.91]

change of the propagation path for the signals. Thereby, the respiration pattern could be less clear which could

result in lower PAW for LRC estimation.

The effects of α on the LRC estimation for the one-antenna deployment follow the similar trend of the two-

antenna deployment. The PAWs decrease with the increment of α , and the reader cannot receive enough signals,

especially for Tcb when α is and above 40◦. As illustrated in Table 5, the one-antenna deployment reports more

errors compared with those of the two-antenna deployment. The average error exceeds 1 when α is 20◦. The

orientation has more dramatic influence on LRC estimation since the PAW drops down faster and the error

becomes larger. The upper limit of α (40◦) is smaller than that of the two-antenna deployment (50◦). This means

that for the one-antenna deployment, the antenna should be better deployed with smaller α . In practice, the

antennas can be displaced down from the ceiling and put right in front of (and behind for two-antenna deployment)

the exercise equipment. This not only helps to achieve better estimation results but also benefits the monitoring

of multiple persons so that the signals of multiple persons could interfere less with each other.

4.3.4 Multi-person scenario. The PAWs of the multi-person scenario are above 86% and the average errors are below

1.05. The above experiments are done with a single person. In practice, there can be multiple persons doing

exercise together. Like in the gym, multiple persons could run on the treadmill. Besides, different kinds of exercise

equipment can be put along with each other. Thus, we need to evaluate the LRC estimation performance with

multiple persons and with different combinations of exercise activities. As we discussed in subsection 4.3.2, the

surrounding movements could affect the target persons’ signals, especially when the movements influence the

LOS signals. So, for the multi-person scenario, each person has the unique RFID tags attached on their bodies,

and multiple pairs of antennas are put in front of and behind each of them, respectively. The persons are located

horizontally without burying others’ signals, then there could be only the minor multi-path effects brought by

the neighbor persons.
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To evaluate the performance of multi-person LRC estimation, two persons are first asked to perform the

following set of the exercise, (pedaling, cycling), (pedaling, lifting) and (cycling, running), respectively. In addition,

three persons perform the pedaling, cycling and lifting at the same time. The distance between each two of

the multiple persons is around 1 − 1.5m. The results of the PAW and average error are shown in Table 6. For

two persons, the PAW is approximately around 90%, and the average error is around 0.85. For three persons,
the person in the middle has lower accuracy (PAW about 86%, error about 0.97) due to the reason that the two

persons around both bring multi-path effects to the middle person.

4.4 LRC Illustration over Time

In this subsection, we show the detailed LRC ratios for two selected volunteers during exercise in Fig. 22. The first

person (P1) in Fig. 22(a)-(b) is a football lover with fitness training around three times a week. While the second

person (P2) in Fig. 22(c)-(d) does not exercise regularly, and in the experimental period, he did not go to the gym

or exercise outdoor specifically except for the experimental exercise. For P1, we show the real and estimated LRC

ratios of each time window discretely for the running activity. In Fig. 22(b), there are a few fluctuations of the

LRC ratios in the beginning, and then it becomes stable as 4 : 1. There are two wrong LRC estimation samples

along the 15min period. The estimated and real limb movement rate and respiration rate are also depicted in

Fig. 22(a). There is a gradual increase in both the limb movement rate and respiration rate during the first 4 − 5

minutes. For P2, the limb movement rate, respiration rate are and the LRC ratios, are also shown for the running

activity in Fig. 22(c)-(d).

Comparing the exercise and respiration information of P1 with P2, P1 has higher limb movement rate and LRC

ratio than P2. This is mainly because that P2 goes for fitness training and sports less than P1, so P1 tend to run

slower than P2. For P1, the respiration rate is more stable than that of P2. Meanwhile, the LRC ratios of P2 after 4
minutes illustrate more fluctuations than P1. The above results could indicate that people who exercise frequently
could foster better cardio-pulmonary function. Therefore, they can achieve more stable coordination between the

exercise and respiration rhythm than those who are not regular exercisers. We also inquiry P1 about his way of
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breathing during exercise. The answer is that P1 keeps the habit of fixing his respiration rhythm along with the

leg movement cycle during running, which he learned from professionals that this could help to strengthen the

exercise performance.

5 RELATED WORK

We first introduce the existing systems for exercising-only monitoring and respiration-only monitoring, respec-

tively. Next, we discuss the related works for exercise and respiration rhythm monitoring.

5.1 Exercise-only Monitoring

There are many wearable devices and sensors for monitoring exercise activities. The inertial sensors, e.g., the

accelerometer and gyroscope in wearable devices are widely used to measure the exercise movement, for

example, the stride frequency and running speed. They can also provide fine-grained information to assess the

behavior during exercise [18, 33]. In addition, current smartwatches can monitor the heart rate based on the

photoplethysmography[2]. However, except for the heart rate, the respiration rate is also one of the important

vital signs. Cameras can also be used for exercise monitoring [23], however, people in the public gym would not

like to be captured by the cameras due to the privacy concerns.

Apart from the wearable sensors, there are device-free approaches for exercise monitoring using RF signals.

People only need to attach RFID tags or even do not need to wear any sensors on their bodies for being monitored.

In [14], it builds a platform to monitor free-weight exercises, including free-weight activity recognition and

performance assessment with RFID. [39] estimates the running steps for multiple persons using WiFi signals.

[19] realizes indoor workout assessment with WiFi signals. However, the above works only capture the exercise

limb movement information but without the respiration state.

5.2 Respiration-only Monitoring

Respiration monitoring systems involve two categories, which are device-based and device-free systems. Device-

based approaches rely on on-body sensors, e.g., belt on the chest and oximeter on the finger [8]. They can provide

precise monitoring of the respiration state, however, the sensors tightly worn on the body could make people feel

uncomfortable, especially during sleeping. Therefore, the device-free respiration monitoring based on wireless

signals is proposed in which people do not need to wear any sensors on the body. The underlying principle of

using wireless signals for respiration monitoring is that the chest movement can affect the propagation of the

wireless signals periodically.

Recently, RF signals, e.g., WiFi [25, 37, 38], Doppler radar [29], FMCW radar [9, 36], and acoustic signals [35]

are leveraged to monitor the respiration rate in a non-intrusive way. RFID is also used for respiration monitoring

by attaching tags on the chest [21]. However, one limitation of the above works is that they can only monitor

the respiration accurately when the person is in a quasi-static state, like sleeping or sitting still. This is mainly

because when the person moves, the large body movement could overwhelm the tiny chest movement during

respiration. While for some exercise activities, the body movement could be more fierce, making the extraction

of respiration pattern suffer from greater noises.

5.3 Exercise and Respiration Rhythm Monitoring

The CPET system provides a clinical tool for monitoring the respiratory and cardiac functions during exercise

[1]. By measuring the physiological signals, including the breathing volume, heart rate, and ECG, it enables an

integral view of the exercise capacity. However, for daily exercise monitoring, it cannot be widely applied for the

following two reasons. First, the CPET system involves many sensors, e.g., the facemask, ECG electrodes, and
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tonometer, which are inconvenient to wear during regular exercise. Second, a single CPET test can cost up to

around $2, 000, which people would not like to afford for common use.

To ease the above requirements, some systems, that measure the breathing sound with the headset connected

to the smartphone [15, 16, 20] during running, are proposed. The breathing sound generated via the air flow

from the nose [24] is used to reflect the respiration cycle, and the inertial sensors in the smartphone on the

arm measure the stride frequency. The LRC ratio is then estimated by combining the respiration and stride

movement information. They provide a cost-effective solution for monitoring the exercise and respiration rhythm.

However, people still need to attach the specialized headset close to the nose and carry the smartphone along

with them while doing exercise. Furthermore, the smartphone on the arm cannot capture the leg movement

pattern, restricting the application scenarios.

Different from the existing works, our work presents a novel approach for coupling the exercise and respiration

rhythm using COTS RFID. The lightweight RFID tags are attached on the body, making people get rid of the bulky

sensors. The RFID devices can be deployed in different indoor environments for public use, so that exercisers do

not need to buy their personal devices and save the cost with the inexpensive RFID tags for monitoring LRC. In

contrast with the previous works that either only monitor the exercise activities or the mere respiration state,

our system can extract the rhythm of the exercise movement and respiration simultaneously and accurately

estimates the LRC ratio.

6 LIMITATIONS AND FUTURE WORK

ER-Rhythm realizes the coupling of exercise and respiration rhythm in a low-cost, lightweight and accurate way.

However, in the current system, we mainly target on the in-place rhythmic exercise activities, which do not incur

large position change in exercise. While there are some exercise activities, like yoga and aerobic dancing, in

which people may move around more obviously, making the torso movement effect more complicated. In the

future, we will try to broaden the application of our system for more kinds of exercise activities. In addition,

heart rate is also an important physiological indicator during exercise apart from the respiration state. Therefore,

we will also investigate the capability of the RFID signals to measure the heart rate while exercising, which could

be a quite challenging task since the heartbeat effect is even smaller than the respiration effect.

7 CONCLUSION

In this paper, we propose ER-Rhythm to simultaneously measure the exercise and respiration rhythm and estimate

the LRC using the lightweight and COTS RFID. The RFID tags are attached on the limbs and chest to capture

the exercise limb movement and respiration pattern. The limb movement rhythm is estimated by analyzing the

signals of the tags on limbs via peak detection. However, the minute respiration activity is overwhelmed by the

large torso movement during exercise. To obtain clear respiration pattern, we employ the respiration mechanism

to measure the chest movement while breathing by combining the signals of the pair of tags on the front and

back chest. Meanwhile, the torso movement effects are eliminated by fusing the information of multiple tags. We

can also reduce the number of antennas for interrogating the multiple tags by employing the multi-path effects

of the RF signals. Finally, the LRC is estimated with a correlation-based approach to determine the coupling

between the exercise locomotion and respiration. Experimental results show that we can achieve an average

0.0225 Hz MAE on respiration rate estimation during exercise, and the LRC ratio can be correctly estimated for

92% − 95% of the time.
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