
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Joint Computation Partitioning and Resource
Allocation for Latency Sensitive Applications in

Mobile Edge Clouds
Lei Yang, Member, IEEE, Bo Liu, Jiannong Cao, Fellow, IEEE, Yuvraj Sahni, and Zhenyu Wang

Abstract—The proliferation of mobile devices and ubiquitous access of the wireless network enable many new mobile applications
such as augmented reality, mobile gaming and so on. As the applications are latency sensitive, researchers propose to offload the
complex computations of these applications to the nearby edge cloud, in order to reduce the latency. Existing works mostly consider
the problem of partitioning the computations between the mobile device and the traditional cloud that has abundant resources. The
proposed approaches can not be applied in the context of mobile edge cloud, because both the resources in the mobile edge cloud
and the wireless access bandwidth to the edge cloud are constrained. In this paper, we study joint computation partitioning and
resource allocation problem for latency sensitive applications in mobile edge clouds. The problem is novel in that we combine the
computation partitioning and the two-dimensional resource allocations in both the computation resources and the network bandwidth.
We develop a new and efficient method, namely Multi-Dimensional Search and Adjust (MDSA), which is an offline algorithm, to solve
the problem. We compare MDSA with the classic list scheduling method and the SearchAdjust algorithm via comprehensive
simulations. The results show that MDSA outperforms the benchmark algorithms in terms of the overall application latency. Moreover,
we also design an online method, named by Cooperative Online Scheduling (COS), which can be easily deployed in practical systems.
By extensive evaluations, we show that COS outperforms the benchmark methods by 25% on average.

Index Terms—computation partitioning; latency sensitive applications; mobile edge clouds

F

1 INTRODUCTION

THE proliferation of sensors on the mobile devices and
the increasing wireless bandwidth enable several new

mobile applications such as augmented reality, mobile gam-
ing, mobile biometric, touch free human-device interaction-
s an so on. The applications are latency sensitive, since
it directly affect the user experiences. Traditional mobile
cloud computation offloading approaches rely on the pow-
erful resources in the cloud to accelerate the execution of
computation-complex application in order to achieve low
latency. Recently as the edge cloud dmodel begins to be
deployed in the real world, the mobile applications are
offloaded to the edge cloud because of the closer distance
and lower delay to the mobile users than the Internet cloud
[17].

Computation partitioning is an effective way to optimize
the decisions on which parts of an application should be
offloaded to the edge cloud and which others are executed
on the local devices. Existing works mostly focus on the
partitioning of the applications from the viewpoint of the
mobile users [3] [4] [6]. The optimization is often done for
a single mobile user such that the execution cost in terms
of time or energy consumption on the device is minimized
[1] [2] [7]. However, in the context of the edge cloud, the
traditional methods of optimizing a single user’s partition-

• L. Yang, B. Liu, and Z. Wang are with the School of Software En-
gineering, South China University of Technology, China. Email: sely,
wangzy@sely.scut.edu.cn; boliu168@gmail.com

• J. Cao and Y. Sahni are with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong. E-mail: csjcao, csysah-
ni@comp.polyu.edu.hk

ing may not be applied. The resources of the edge cloud
are quite constrained compared with the traditional cloud
on Internet. The users compete with each other for both
the computation resources in the edge cloud and the access
bandwidth to the edge cloud. The partitioning decisions are
highly dependent on the resources allocated from the edge
cloud. It is more important to partition the user’s applica-
tions cooperatively from the standpoint of the edge cloud in
order to achieve high overall application performances for
all the users.

In this paper, we study the joint computation partition-
ing and resource allocation for latency sensitive application
in the mobile edge cloud. Our problem is novel in that
we combine the computation partitioning with the two
dimensional resource allocation. In recent related work, the
authors propose the similar idea, but they consider the
resource allocation in the cloud and neglect the bandwidth
allocation [18] [19]. We model the new problem as a joint
optimization for the three decisions, i.e., the partitioning
of each user’s application, the allocation of computation
resources in the edge cloud, and the allocation of band-
width to the mobile users. The problem is challenging since
the decisions are affected by each other. In particular, the
partitioning decisions of the users have various resources
by demand, and meanwhile the resource allocation affects
the user’s partitioning. Furthermore, we need to balance the
resource allocation among the users, and balance the two
dimensional resources including the computation resources
and the bandwidth allocated for a user.

To solve the problem, we develop an efficient heuris-
tic, named Multi Dimensional Search and Adjust (MDSA),

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

which is an offline solution. The method divides the net-
work bandwidth into a few virtual channels. It first relaxes
the resource constraints and generates an initial partition-
ing and execution schedule for every user. The method
searches the earliest time when there exists a violation of
the constraint either on the network bandwidth or on the
edge cloud computation resources, and adjusts the user’s
partitioning to avoid the violation at that time. The search-
ing and adjustment are done alternatively and iteratively
until the initial partitioning converges to a feasible solution.
We evaluate our off-line method through extensive numeric
simulations. The results show that MDSA achieves much
lower overall application delay than the benchmark meth-
ods including the classic list scheduling [16], and the single
dimensional SearchAdjust which is a heuristic proposed in
our previous work [18].

On the basis of the off-line solution, we further develop
an online solution named by Cooperative Online Scheduling
(COS) for the problem. COS makes the partitioning and
allocation decision for the users every time a new task
is released, and it makes use of the adjustment (or re-
scheduling) strategy to balance the workloads onto the
network and edge cloud. The load balancing avoids ex-
tremely long waiting time in the network transmission and
edge cloud execution. Through extensive simulations, it is
shown that COS has better performance than the benchmark
methods especially when the workload is high. As an online
method, COS can be easily deployed in the practical sys-
tems for mobile edge offloading. More importantly, COS is
considered as a general method for online scheduling with
multiple types of resources. As follows we highlight our
contributions of this paper.

• We propose and formulate a new problem, named as
Joint Computation Partitioning and Resource Alloca-
tion Problem (JCPRP). To the best of our knowledge,
this work is the first one to study the problem in the
mobile edge computing.

• We develop a novel heuristic, named as Multiple
Dimensional Search and Adjust (MDSA) to solve the
problem. We compare MDSA with the benchmark
methods through extensive numeric simulations. The
results show MDSA outperforms the benchmark
methods in terms of the overall application latency.

• We design an online method, i.e., Cooperative On-
line Scheduling (COS), including the implementation
architecture, algorithms and mechanisms. COS can
be easily deployed and implemented in practical
systems. Our methods for the problem can be used in
solving general scheduling problems with multiple
types of constrained resources.

2 SYSTEM MODELS AND PROBLEM FORMULA-
TION

2.1 An Example of the Real Application

One mobile application that can leverage the edge cloud to
accelerate its execution is Augmented Reality (AR), which
continuously recognizes the scene in reality from the camera
streams, and augments the streams with related informa-
tion. Fig. 1 shows an AR application scenario in a campus

Fig. 1: An Augmented Reality application scenario in the
campus environment

environment. The users take pictures of the buildings when
they walk around the campus. The application recognizes
the building in the campus and displays interesting things
on the video streams, e.g., the events happening in the
building. The application helps visitors who are not familiar
with the campus to easily find their interested places and
activities. The core function in AR is object recognition from
the video frames. The device usually executes the function
periodically while the user moves, aiming to recognize the
varying scene of the surrounding environment in time. We
measure the execution time of the recognition function on
the main-streaming hardware with 1.7 G Hz 4 Core CPU
and 2G RAM. It takes at least 60 seconds to process one
1000*800 frame in the video. If the resolution increases, it
can take longer time. In our previous work [17], we have im-
plemented a platform to partition the application between
the device and cloud and thus significantly speed up the
execution. However, the platform lacks the mechanism of
resource allocation in case of serving multiple users.

2.2 System Model
We consider the latency sensitive applications running on
the mobile device. The application is usually composed of
several functional modules which have data dependency be-
tween each other. Thus, to simplify the problem, we model
the application as a sequential task graph. The application
is composed of n modules, and its input data and output
data can be abstracted as two virtual modules with no
computation load. The application latency is defined by the
summation of the execution time of the modules and the
transmission time on the edges.

Fig.2 shows the system model. The edge cloud is de-
ployed behind the cellular Base Station (BS) or the wireless
Access Point (AP). We consider the users who connect to the
edge cloud via one BS or AP. The users share the bandwidth
provided by the wireless network. When the users start to
execute the applications, the execution cost of each module
on their mobile device is sent to the edge cloud. These
execution costs are usually obtained in advance by offline
profiling. With knowing the execution cost of all the users,
the edge cloud makes the partitioning decisions for the
users on which modules are offloaded to the cloud and
which others are executed on the mobile devices, and at
the meanwhile allocates the shared bandwidth to the users.
The aim is to minimize the average application latency of
the users. The edge cloud has a constrained number of
servers which can accommodate the offloaded modules,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

1 2 n

1 2 n

1 2 n

Edge Cloud

Wireless AP or

BS

Mobile devices
Mobile

applications

Fig. 2: The system model

TABLE 1: Mathematical notations in this paper

λ the total number of users;
r the number of servers on the edge cloud;
B the total bandwidth of the access network;
n the total number of modules in the application

graph;
T the length of the whole time period;
i index of the user (or the mobile device);
j index of the module in the application graph;
τ index of the time slot;
Dj the amount of data that needs to be transmitted

from module j to j + 1;
wi,j the execution cost (time) of the module j on the

user device i;
cj the execution cost (time) of the module j on the

edge cloud server;
xi,j a binary variable indicating whether the module j

of the user i is executed on the edge cloud;
ti,j the time when the module j of the user i starts to

execute;
yi,j,τ the bandwidth allocated to the data transmission

from the module j to the module j+1 for the user
i at the τ -th time slot;

Nch the number of network channels;
Rj the priority of allocating the module m to an idle

resource;
µj estimated average edge server’s execution time for

module;
ϕ the number of modules to be adjusted;
γ constant ratio to constrain the number of modules

adjusted ;
Qedge the number of modules waiting in the edge cloud

queue;
Qnet the number of data flows waiting in the cloud

queue;

so the partitioning decision guarantees that at any time
the number of offloaded modules in execution from the
users would not exceed the number of servers. To simplify
the problem, we assume that all the users run the same
application. However, our models and proposed solution
can be easily extended to the generalized cases where the
users run various applications.

2.3 Problem Formulation

Suppose there exists λ users offloading computations to the
edge cloud. The edge cloud has a number r of servers. The
users access the edge cloud through the commonly shared
wireless AP or cellular base stations. The total bandwidth
provided by the AP or the BS is B. We assume the users’
mobile devices are heterogeneous, while the servers in the
edge cloud are the same. The execution time of each module
in the application on the mobile devices is denoted by wi,j ,
which in particular indicates the execution of j-th module

on the user i-th device, where 1 ≤ i ≤ λ and 1 ≤ j ≤ n. The
execution time of each module j on the edge cloud server is
denoted by cj . Let Dj denote the amount of data required
to transmit between the j-th module and the j + 1 module
if the two modules are executed at the different sides.

Decision variables. The problem is to: 1) partition the
computations for the user’s applications, i.e., to decide
whether each module is executed at the mobile side or at
the edge cloud side; 2) schedule the offloaded computations
onto the edge cloud servers; 3) allocate the bandwidth to the
data transmissions arising from the edges in the application
graph whose two connective modules are executed at the
different sides. We introduce the binary variable xi,j to de-
note whether the j-th module from the i-th user is executed
on the edge cloud. xi,j = 1 if the j-th module of the user
i is executed on the edge cloud; otherwise xi,j = 0. We
introduce the variable ti,j to represent the start execution
time of the j-th module of the user i.

Suppose the time is divided into small slots. All the
time related variables such as wi,j , cj and ti,j are measured
in slots. We consider the whole time period with the total
number T of slots. Let τ be the index of the time slots, and
we have 1 ≤ τ ≤ T . Under the module placement xi,j , we
define the edge in the application graph with its two con-
nective modules placed at different sides as the cross edge.
The cross edge actually causes a data transmission (or flow)
in the network. Let fi,j denote the flow from the module j to
the module j + 1 for the user i. We define the release time of
the flow fi,j by the completion time of its precedent module,
which is formulated by ti,j + (1− xi,j) · wi,j + xi,j · cj . We
define the deadline of the flow fi,j by the start time of its
successive module ti,j+1. Now we introduce the variable
yi,j,τ to denote the bandwidth allocated to the flow fi,j at
the time τ .

Objectives. The objective is to minimize the average
application delay of all the users. For the convenience of
formulating the objective, we add two virtual modules into
the application graph including the start module denoted by
j = 0, and the end module denoted by j = n+ 1. Since the
application normally gets the input data from the mobile
device and is required to output the result to the mobile
device as well, we have xi,0 = 0 and xi,n+1 = 0 for each
user i. With the two virtual modules added, ti,0 indicates
the start execution time of the application of user i, which is
usually equals to the release time of the user’s application.
ti,n+1 denotes the end time of application. Therefore, the
objective can be formulated by

min
1

λ

λ∑
i=1

(ti,n+1 − ti,0), (1)

Constraint on the dependency of the modules. The
execution time of the modules should satisfy the depen-
dency constrained in the application graph. The module
can not be executed until its precedent module is finished.
We assume that the module’s execution is not preemptive.
Once it is scheduled on one of the edge cloud servers, it will
be finished without suspension. Thus, we can represent the
execution interval of the j-th module from the i-th user by
[ti,j , ti,j+(1−xi,j)wi,j+xi,jcj]. The dependency constraint
among the modules is formulated by

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

ti,j ≥ ti,j−1 + (1− xi,j−1) · wi,j−1 + xi,j−1 · cj−1,
∀i ∈ [1, λ],∀j ∈ [1, n+ 1].

(2)

Constraint on the resources on the edge cloud. Suppose
that every server in the edge cloud can not process multiple
modules in parallel at the same time. At every time slot,
the number of modules that are executed in the edge cloud
should be less than the total number r of servers. The
constraint is formulated by

∀τ,
λ∑
i=1

n∑
j=1

xi,j · F(τ − ti,j) · F(ti,j + cj − τ) ≤ r

.

(3)

Note that F(x) is the sign function. The value of the function
is equal to 1 if the variable x ≥ 0; otherwise it is zero.

Constraint on the network bandwidth. It is required
that at every time slot, the total bandwidth allocated to
the flows in the network should be less than B. For a
particular time point, we first identify the flows that have
the transmission interval covering the time point. We then
calculate the total bandwidth according to the bandwidth
allocation yi,j,τ , and guarantee that it can not exceed the
network bandwidth B. The constraint is formulated by

∀τ,
λ∑
i=1

n∑
j=0

(xi,j − xi,j+1)2 ·G(i, j, τ) ≤ B, (4)

where G(i, j, τ) is a function to test whether the transmis-
sion interval of the flow from the module j to j + 1 of the
user i covers the time point τ . If it covers, then the value of
the function is 1; otherwise it equals to zero. We represent
G(i, j, τ) using the sign functions

G(i, j, τ) = F[τ − ti,j − (1− xi,j) · wi,j − xi,j · cj].
× F(ti,j+1 − τ),

(5)

At the meanwhile, the allocated bandwidth to the flow
should be enough to transmit the amount of data before
the flow’s deadline. Thus, we also have the constraint as
follows.

(xi,j − xi,j+1)2 · [
ti,j+1∑

δ=ti,j+(1−xi,j)·wi,j+xi,j ·cj

yi,j,δ −Dj] = 0,

∀i ∈ [1, λ],∀j ∈ [0, n].
(6)

Definition 1 Joint Computation partitioning and Bandwidth
allocation Problem (JCBP). Given the application graph and
associated parameters {n, Dj}, the execution cost of each
module on both the local devices and the edge cloud {wi,j ,
cj}, the execution cost on the edge cloud cj , the number of
servers on the edge cloud r, and the network bandwidth B,
the problem is to partition the modules between the mobile
devices and the edge cloud servers, and meanwhile allocate
the bandwidth to the arising data transmissions, such that
the average application latency is minimized. The problem
is formulated as follows.

min
xi,j ,ti,j ,yi,j,τ

1

λ

λ∑
i=1

(ti,n+1 − ti,0), (7)

s.t. (2), (3), (4), (6).

3 OFFLINE SOLUTION

3.1 A Naive Solution
We introduce a naive solution to the problem. In the solu-
tion, we first assume that the resources in the edge cloud
are unconstrained, and every single user is allocated with
the total bandwidth B. We then obtain the optimal par-
titioning for every user’s application graph by using the
algorithm for Single user Computation Partitioning Problem
(SCPP) which has been introduced in our previous work
[18]. Having determined the places where the modules are
executed, we schedule the offloaded modules onto the edge
cloud servers and as well as schedule the data transmissions
(flows) within the network according to a first-come-first-
serve policy.

In the scheduling, we abstract the offloaded modules
and data flows as tasks. Each task has a release time which
can be calculated according to the initial partitioning and an
execution cost. The r servers on the edge and the network
channel can be abstracted as r + 1 machines. The tasks are
assigned with priorities based on their release time. The one
with an early release time has a high priority. The algorithm
schedules the task with the highest priority, and selects the
machine which can execute the task at the earliest time. If
the actual execution time of the task is later than its release
time, which means it has to be delayed due to the resource
unavailability, we update the release time of its precedent
tasks in the corresponding application graph. The algorithm
selects the next task to be scheduled, and determines the ma-
chine where it is executed. The task selection and machine
determination are done iteratively until all the tasks are
scheduled. Note that during the machine determination, we
constrain that the offloaded modules should be placed on
one of the edge cloud servers, while the data flows should
be allocated to the network channel.

3.2 Muti-Dimensional Search and Adjust (MDSA)
We propose a new heuristic algorithm, named Multi-
Dimensional Search and Adjust (MDSA), to solve the joint
computation partitioning and resource allocation problem.
The algorithm divides the whole bandwidth resource into
a number of Nch virtual channels. Each channel has the
bandwidth B

Nch
. Assume that multiple flows can not be

transmitted concurrently in one channel. Nch is a parameter
in the algorithm, and usually much less than the number
λ of users. Similar to the naive algorithm, we first neglect
the constraints of the servers in the edge cloud and the
network bandwidth, and calculate the optimal partitioning
for every single user. Note that each user has the bandwidth
B
Nch

while computing its optimal partitioning.
According to the initial partitioning, we calculate the

execution schedule of the users, which indicates the execution
time of the modules and transmission time of the data flows.
From the execution schedule, we can count at which interval
and how many modules are executed concurrently in the
edge cloud. We search the earliest time when the number of
modules being executed exceeds the constraint r, which is
defined as the server critical point. By the same method, we
can also search the earliest time when the number of flows
being transmitted concurrently is large than the constraint
Nch. We call this time point as network critical point. If the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

server critical point occurs before the network critical point,
we will adjust the modules by moving them back to the
mobile device and/or delaying the execution of modules at
the corresponding servers, such that the constraint violation
is resolved at this critical point; otherwise, we will adjust
the flows by changing the execution places of their adjacent
modules or delaying the transmission of flows. Either the
server critical point or the network flow point is resolved,
we will update the users’ execution schedule and search
the next critical point in terms of servers and network
utilization.

The searching of critical points and adjustment of mod-
ules or flows are done iteratively until no critical point is
found. In our previous work, we only consider the con-
straint of the cloud servers, while neglecting the bandwidth
constraints. In our method, we extend the method into the
case of constraints in multi-dimensional resources. That is
why we name our algorithm as multi-dimensional search
and adjust. Algorithm 1 shows the pseudocode of MDSA,
in which the related data structures and terminologies are
defined as follows.
• Execution Schedule. Execution schedule is a data

structure to store the time intervals of the execution of
modules and transmission of flows for a user. Assuming
that the edge cloud has unconstrained servers and network
channels, under the initial partitioning xi,j of the user i, we
can calculate the start execution time of the module j by

ti,j =

j−1∑
j′=0

[(1− xi,j′)wi,j′ + xi,j′cj′ + (xi,j′ − xi,j′+1)2 · Di,j′

∆B
],

(8)
where ∆B = B

Nch
. With knowing ti,j , we can easily obtain

the completion time of the module j and the transmission
interval of the flow fi,j . Our algorithm maintains the execu-
tion schedule for every user.
• Servers Utilization List. Servers utilization list in-

cludes a set of time intervals, and the number of servers
being utilized by the modules during the intervals. Accord-
ing to the execution schedule of the users, we select the
execution intervals of all the modules offloaded to the edge
cloud. The bounds of these intervals divide the whole time
period into a number of short intervals. For every short
interval, we count the number of modules whose execution
interval covers this short interval. If the number of an
interval exceeds the number r of servers, it means during
this interval the server constraint is violated.
• Network Utilization List. Network utilization list

includes a set of time intervals and the number of network
channels being utilized by the data transmissions during the
intervals. We can also count the number of data flows being
transmitted during each interval according to the user’s
execution schedule. This number indicates the number of
the demanded channels.
• Servers Critical Point. Server critical point is defined

as the earliest time when the violation of the servers con-
straint in the edge cloud occurs. We can easily obtain it
based on the server utilization list.
• Network Critical Point. Network critical point is de-

fined as the earliest time when the violation of the network
constraint occurs, which means the number of demanded

network channels exceeds the maximum value Nch. It can
be calculated based on the network utilization list.

Algorithm 1: MDSA Algorithm
Input : A set of λ users, r servers, network bandwidth

B
Output: the execution schedules of the users

1 Divide the network bandwidth into Nch channels;
2 Compute the optimal partitioning for the users by

assuming each user is allocated with bandwidth B
Nch

;
3 Compute the execution schedule for the users ;
4 Obtain the server occupation list and network occupation

list ;
5 Search the server critical point tSCP and network critical

point tNCP ;
6 if tSCP < tNCP then
7 Find the modules which are executed in the edge

cloud and have the execution interval covering
tSCP ;

8 for each of the modules do
9 Compute the reward of adjusting the module

including moving the module to the mobile
device or delaying the execution of module;

10 Select the modules with the α greatest rewards to
adjust ;

11 else
12 Find the data flows which have the transmission

interval covering tSCP ;
13 for each of the flows do
14 Computing the reward of adjusting the flow,

including changing the execution place of the
flow’s adjacent module or delaying the
transmission of the flow;

15 Select the modules with the β greatest rewards to
adjust;

16 Update the execution schedule of the selected modules ;
17 Update the server occupation list and network occupation

list;
18 if search the tSCP or search the tSCP then
19 Go to Line 5 ;

20 return the execution schedule of the users

3.2.1 Adjustment of Modules
As shown in Algorithm 1 (Line 9), to eliminate the resource
violation at the servers critical point, we have two ways to
adjust the modules: 1) moving the module from the edge
cloud to the mobile device; 2) delaying the execution of the
module on the server. Our algorithm compares the reward
of the two ways for each candidate module, and chooses
the maximum one as the adjustment reward. The algorithm
selects modules with the top α rewards to adjust, where α
is equal to the number of demanded servers at the critical
point minus the constraint r.

We define a reward function to evaluate the benefit of
doing the adjustment by

Reward = tserver + tnet − tdelay, (9)

where tserver represents the decreased occupation period
on the server due to the adjustment, tnet represents the
decreased occupation period of data transmission in the
network due to the adjustment, and tdelay is the increase of
application delay caused by the adjustment. In calculating

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

wi,j-1 cj cj+1 πi,j-1

wi,j-1 wi,j πi,j cj+1

cj-1 cj wi,j+1

 πi,j-1cj-1 wi,j wi,j+1

πi,j

c'j

π'i,j-1

tserver = c'j

tnet = - πi,j

tdelay =wi,j+ πi,j - πi,j-1 - cj

tserver = c'j

tnet = πi,j - π'i,j-1

tdelay =wi,j + πi,j-1 - πi,j - cj

c'j

Exec. on Edge Cloud Exec. on Mobile Data Trans. Critical point

(a)

(b)

Fig. 3: Module adjustment at the servers critical point

the tserver and tnet, we compare the execution schedule of a
user after the adjustment with the original execution sched-
ule. Starting from the critical point to the end of the user’s
application, we count by how much the server occupation
time is decreased and by how much the data transmission
is decreased by. Fig.3 illustrates how to calculate the three
parameters.

Under this reward function, if adjusting a module re-
leases much server or network resources, and causes slightly
longer application delay, this module will have high reward,
and thus has high priority to be adjusted finally. For the way
of delaying the module, the reward only depends on tdelay ,
since it does release some resources on the server or the
network channel. Now we ask the question to what time
the execution of module is delayed when we evaluate the
reward of delaying a module. In our algorithm, we delay
the execution of module to the nearest time point when the
number r of servers are not all occupied.

Note that moving a module to the mobile device may
cause the violation of network constraint before a servers
critical point. Fig.3(b) illustrates the case as an example,
in which the triangle marks the interval that may cause a
new network critical point before the current servers critical
point. The case should be avoided, because in each iteration
of our algorithm, we want to guarantee that the new critical
point due to the adjustment should occur after the original
one in the time axis. By achieving this, our algorithm is able
to converge fast. If moving a module to the mobile device
causes new network critical point before the servers critical
point, we only consider to delay the module and assign the
delay to the module as its adjustment reward.

3.2.2 Adjustment of Data Flows

The adjustment of a flow include two ways: 1) changing the
execution place of the adjacent module that the flow points
to; and 2) delaying the transmission of flow in the network
channel. We use the same reward function in Equation (9)
to calculate the reward of adjusting a flow. For each flow
whose transmission interval covers the network critical point,
we compute the rewards of both the adjustment ways, and
assign the maximum one to the module as its reward. If
changing the execution place of the flow’s adjacent module
leads to the violation of server constraint before the network
critical point. We will only consider the delaying of flows.
Similar to the determination of α, the parameter β in Line
15 is equal to the number of the demanded channels at the
critical point minus the constraint Nch.

4 ONLINE SOLUTION

Since MDSA is an offline algorithm, it could be used in
real system if the arrival time of the users requests could
be predicted. In most cases where the workloads of the
users are not predictable at the start time, MDSA will not be
used in practical deployment but in theoretical performance
analysis. In this section, we will develop an online solution,
named by Cooperative Online Scheduling (COS), and its
implementation architecture for more general cases. In con-
trast to the offline solution, the online solution only requires
the release time of the current request but does not need
the knowledge about the future requests. The partitioning
decision for one user’s request will not be determined until
the request is released.

4.1 COS Architecture
First, we introduce some terminologies frequently used in
the description of the online solution.

Job and Task. We regard the users request for executing a
mobile application as a job request. As shown by the appli-
cation graph in Section 2.2, a job is divided into n modules,
and each module is an indivisible unit of computation. Here
the module is also called by task.

Job Release Time, Task Release Time and Task Release
Place. The job release time is defined as the time when the job
request arrives at the system. We define the release time of
a task as the completion time of its precedent task. If a task
is the first task of a job, the task release time is equivalent to
the job release time. The release place of a task is defined as
the place where its precedent task is executed. It could either
be on the mobile device or on the edge cloud. By default, the
first task of a job is released on the mobile device, since we
assume that the input data of the application are from the
mobile device.

COS is a task oriented online scheduling method. Fig.4
shows the system architecture of COS. It contains two sched-
ulers, i.e., edge cloud scheduler and network scheduler.
The edge cloud scheduler is responsible for allocating the
computational resources on the edge cloud to the tasks,
while the network scheduler takes charge of allocating the
network resources to the arising data transmission. The two
schedulers work cooperatively to balance the workloads on
the two types of resource, aiming to avoid long waiting
time on either of the two types of resources. Note that the
network resource is modeled as multiple channels, each of
which has the same bandwidth.

Trigger Message for the Schedulers. The schedulers are
triggered by various messages. The edge cloud scheduler
is triggered whenever a task is released. More specifically,
the trigger time could be the time when a new job is
released or the time when a task is completed. The trigger
messages respectively correspond to Job Release Message
(JRM) and Module Completion Message (MCM). The net-
work scheduler is triggered when a data transmission (flow)
is completed on a network channel. The trigger message is
named as Data Flow Completion Message (DFCM).

Furthermore, the two schedulers trigger each other by
exchanging messages, which include Edge Cloud Triggered
Message (ECTM) and Network Triggered Message (NTM) in
Fig.4. The edge cloud scheduler generates a ECTM when it

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Network
 Scheduler

User 1

User 2

User 3

User 4
Edge Cloud

Edge Cloud
Servers

Network
Channel

AP

BS

Edge Cloud
Resource Monitor

Network
Resource Monitor

Network

DFCM
MCMNTM

ECTM

JRM

Network Queue

Edge Queue

Edge Cloud
Scheduler

DFCM: Data Flow Completion Message

NTM: Network Triggered Message MCM: Module Completion Message

JRM: Job Release Message ECTM: Edge Cloud Triggered Message

Fig. 4: Architecture of Cooperative Online Scheduling

allocates a task released on the mobile device onto the edge
cloud or allocates a task released on the edge cloud onto
the mobile device. In both situations, the execution place
of a task is different from its release place, which causes
additional data transmission overhead. At this moment, the
network scheduler is triggered by the message to deal with
the data transmission. The network scheduler sends a NTM
to the edge cloud scheduler as a data flow is completed. This
moment indicates that the successive task of the completed
data flow is ready to be executed, and the edge cloud
scheduler needs to deal with the task in ready.

The two schedulers have associated queues and resource
monitors. The edge cloud queue is implemented at the edge
cloud, and it is used to queue the tasks which are ready
to be executed. The network queue stores the data flows
which are waiting to be transmitted over the network. The
two resource monitors detect the idleness of the resources
and provide relevant information to the schedulers.

4.2 COS Algorithms and Strategies
When a user initiates an application on the mobile device,
a Job Release Message (JRM) arrives at the edge cloud
scheduler. The scheduler then considers to determine the
execution place of the first task of the job. It compares the
cost of executing it on the mobile device and the cost of
remote execution by assuming zero waiting time of data
transmission on the network. If the execution on mobile de-
vice is faster than remote execution, the task is then allocated
to the mobile device; otherwise, the task is allocated to the
edge cloud. The data needed by the task will be transmitted
from the mobile device to the edge cloud at first. The edge
cloud scheduler adds a data flow into the network queue,
and notifies the network scheduler by sending a ECTM

message. When a task is completed on the edge cloud,
the edge cloud scheduler directly puts the successor of the
completed task into the edge cloud queue if the completed
task is not the last task of a job. It then selects a task from the
queue and executes it on an idle server of the edge cloud.
The edge cloud scheduler frequently check the length of
the queue, and moves some of the tasks back to the mobile
devices if the workload on the edge cloud is high. We call
this phase as module adjustment. This strategy is to avoid
waiting too long time for the tasks on edge cloud. If a task
released on the edge cloud is adjusted to run on the mobile
device, the edge cloud scheduler adds the data flow into
the network queue, and wakes up the network scheduler
by sending an ECTM message. The adjustment in this case
reduces the load on edge cloud but would bring additional
transmission load on the network.

Upon receiving ECTM message, the network scheduler
checks if there exists any idle channels. If it exists, the
scheduler allocates a channel to one of the data flow in the
queue. The allocation strategy will be described in details
in Section 4.2.1. When a data flow is completed on the
network channel, the network scheduler selects a data flow
from the queue and allocates it to the channel based on
the same allocation strategy. The network scheduler also
monitors the loads in its queue, and will cancel the data
flow by changing the execution place of the task to which
the data flow is adjacent. The algorithm only allows the
change of the successive task of the data flow. If a data
flow to be adjusted is from the edge cloud to the mobile
device, the network scheduler adds the successive task of
the data flow to the edge cloud queue, and notifies the edge
cloud scheduler by sending a NTM message. Although this
adjustment alleviates the transmission loads on the network,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

Algorithm 2: The scheduling algorithm running in
the edge cloud scheduler

1 if receive the message MCM then
2 if the completed module is executed on the mobile

device then
3 if (Tlocal)>((Tchannel)+(Tserver)) then
4 add the the module’s successive data flow

into network queue, and send a message
ECTM to the network scheduler;

5 else
6 execute the module on the mobile device;

7 return;

8 if the completed module is the last module of a job then
9 add the module’s successive data flow into

network queue, and send a message ECTM to
the network scheduler;

10 return;

11 add the successive module into edge cloud queue;
12 execute edge cloud server allocation strategy;
13 while the number of modules adjusted is less than

ϕ× γ do
14 select a module from the queue with maf = 0

to adjust;
15 if the module is released at the mobile device then
16 execute the module on the mobile device

immediately;

17 else
18 add the successive data flow of the module

into the network queue, and send a
message ECTM to the network scheduler;

19 update the module’s maf value;

20 else if receive the message NTM then
21 repeat line 12 to 19;

22 else if receive the message JRM then
23 repeat line 3 to 7;

24 return;

it could increase the computation load on the edge cloud. In
contrast, if a data flow to be adjusted is from the mobile
device to the edge cloud, the adjustment will decrease the
loads both on the network and the edge cloud.

The novel idea of COS lies in the cooperation of the
two schedulers. The cooperation not only includes the
message based notification with each other but also in-
cludes the adjustment strategies. As explained above, the
adjustment done by either of the schedulers would affect
the performance of the other one. Through design of the
adjustment strategies, COS will balance the workload on
the network resources and the edge cloud resources, and
therefore achieves a good trade-off between the waiting
time of the tasks for the network transmission and that
for the edge cloud execution. Algorithm 2 and Algorithm
3 respectively shows the pseudo-code of the algorithms in
the edge cloud scheduler and network scheduler.

4.2.1 Allocation Strategy

In the following section, we describe the task allocation s-
trategy in the online solution. Whenever a task is completed
on a server in the edge cloud, the edge cloud scheduler

Algorithm 3: Scheduling algorithm in the network
1 if receive the message DFCM then
2 if the completed data flow is from mobile device to the

edge cloud then
3 add the data flow’s successive module into

the edge cloud queue, and send a message
NTM to the edge cloud scheduler;

4 else
5 execute the data flow’s successive module on

the mobile device ;

6 execute the network channel allocation strategy ;
7 select φ data flows from Badj to execute network

channel adjustment strategy;
8 while the number of data flows that have been

adjusted is less than ϕ× γ do
9 select a data flow with maf = 0 to be

adjusted;
10 if the data flow is from the edge cloud to the

mobile device then
11 add the data flow’s successive module

into the edge cloud queue, and send a
message NTM to the edge cloud
scheduler;

12 else
13 execute the data flow’s successive

module on the mobile device;

14 update data flow’s maf value;

15 else if receive the message EGTM then
16 repeat line 6 to 14;

17 return;

selects the module which has the largest Rj from the edge
cloud queue, where Rm is defined by

Rj =
µj + cj
cj

. (10)

In Equation(10), µj denotes the waiting time of the task so
far in the queue. cj denotes the execution time of the task
on the edge cloud server. The task that has waited for a long
time and has short execution time will be scheduled with
high priority.Rj is usually named by response ratio in many
scheduling systems. In COS, both the edge cloud scheduler
and the network scheduler use the high-response-ratio-first
policy to allocate the tasks and data flows.

4.2.2 Adjustment Strategy

In order to alleviate the workloads of the edge cloud, the
edge cloud scheduler will iteratively pick up some of the
modules to the mobile device from the edge cloud queue.
The number of modules that is returned to the mobile device
in each iteration depends on the minimum value of the
following three variables: (i) the number of modules in the
edge cloud queue minus r (ii) the number of modules whose
execution time is greater than the average execution time
over all the modules; (iii)the number of modules whose
waiting time in the queue is greater than the average waiting
time over all the modules. Suppose we use d, e, f respec-
tively to denote the three variables above. The number of
modules to be adjusted ϕ is shown by

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

TABLE 2: Parameters of the workloads

Parameters Values
The number of users λ 100
The number of servers r 25
The network bandwidth B 240 Mbps
Modules in the application graph n 4
The average execution time of modules on edge
cloud

0.15 s

The average execution time of modules on mobile
devices

0.6 s

The average data transmission size 0.75 MB

ϕ = Min{d, e, f}. (11)

In Equation(11), ϕ should be positive. When ϕ is d, we
select the first d released modules to return to the mobile
devices for execution. If ϕ is equal to e, the e modules
with the greatest execution time will be returned to the
mobile devices. If ϕ is f , the modules whose waiting time
µj exceeds the average waiting time will be adjusted to the
mobile device. For the simplicity of analysis, we use a list
ϕlist to store all the information about these modules to be
adjusted. Apart from the adjusted modules, the remaining
modules in the edge cloud queue will be still waiting.
The pseudocode of module adjustment is described in the
algorithm 2.

Cooperative Load Balancing. At each time of adjust-
ment, the edge cloud scheduler determines the number of
modules to be adjusted according to Equation (11). The
number is then multiplied by a constant ratio γ which is
defined by

γ =
Qedge/r
Qnet/Nch

, (12)

where Qedge represents the number of modules waiting
in the edge cloud queue, and Qnet is the number of data
flows waiting in the network queue. r is the number of
servers in the edge cloud. Nch is the number of network
channels. γ indicates the ratio of load between the edge
cloud and network. γ < 1 represents that the network has
relatively higher load than the edge cloud. In this case,
the number of modules to be adjusted should be reduced
by multiplying a ratio γ. If γ is greater than 1, the edge
cloud is busier than the network. In this case, we will
constrain the value of γ by 1. The number of modules to be
adjusted remains the same with the initial value calculated
by Equation (12).

The adjustment in the network follows the same policy
with that in the edge cloud. However, the difference is that
the constant ratio γ should be replaced by 1

γ . By introducing
the constant ratio γ, our adjustment strategy reduces the
workload on one of the scheduler, but meanwhile avoids
overloading the other scheduler.

4.2.3 Avoidance of Adjustment Oscillation
Oscillation is defined as a procedure in which the same
workload is adjusted from one queue to the other queue
repeatedly, and can not be executed all the time. For in-
stance, if a module released on the edge cloud is adjusted,
the associated data flow would be added into the network

queue. After waiting some time in the network queue, this
data flow is then adjusted by re-allocating the successive
task onto the edge cloud. The task in the edge cloud queue
is then adjusted after waiting some time. This procedure
could continue in our algorithm and the task would not be
executed. To avoid the oscillation, we mark each module
and data flow in the queues with a count variable which
represents the times that it has been adjusted. Each time
when a module or data flow is adjusted, we update the
count variable. At the time we select the modules or data
flows to be adjusted, the ones that have been adjusted
for several times will not be adjusted any more. In our
algorithms, we define a threshold maf to constrain the
times of adjustment of the same module or data flow.

5 PERFORMANCE EVALUATION
In this section, we will respectively evaluate the perfor-
mance of the proposed offline solutions and online solu-
tions. In the offline solutions, the release time of all the
requests are assigned to zero for simplicity. In the online
solution, the release time of all the requests are different
and random. Through the evaluation of various offline and
online solutions, we aim to answer two questions: 1)which
solution performs the best; 2)which factors influence the
performance in terms of the average application latency;
3)how the application performance varies depending on the
factors such as the edge cloud resources, network resources,
and the workloads.

5.1 Evaluations of offline solutions

5.1.1 Environment Setting
In the simulation, we generate an application graph with
4 modules. The number of users is 100 by default. On the
edge cloud, we set the number of servers as 20, which is
usually much less than the number of users. The average
execution time of the modules at the edge cloud server
is 0.15s. The execution time of the modules on the mobile
devices are different with the users, since their device have
different processing capability. We generate local execution
time randomly with the average time of a module being
0.6s. The amount of data transmission on the edges in the
user’s application graph are generated randomly with the
mean of 0.75MB. The total bandwidth of the access network
is 240 Mbps. The number of network channels is 30 and
each channel has the bandwidth 8 Mbps. Table 2 shows the
default values of the environment parameters.

We compare the proposed MDSA algorithm with two
benchmark algorithms, which are described as follows.
• List Scheduling (LS). List scheduling is a classic

method for scheduling tasks on the constrained resources
[16]. It contains two steps: task selection and resource
assignment. The naive algorithm presented in Section 3.1
pertains to the list scheduling methd, where the tasks in-
cluding the modules and data transmissions are selected
to be scheduled according to a first-come-first-serve policy,
and the resource assignment is determined by the initial
partitioning. For fairness in the comparison, we also allow
the division of the bandwidth into multiple channels as we
do in MDSA algorithm.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execute time(s)

P
ro

ba
bi

lit
y

LS
SA−EC
MDSA

(a) The CDF of application latency (λ = 100)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execute time(s)

P
ro

ba
bi

lit
y

LS
SA−EC
MDSA

(b) The CDF of application latency (λ = 300)

50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

4

4.5

5

The number of users

A
ve

ra
ge

 la
te

nc
y

(s
)

LS
SA−EC
MDSA

(c) The impact of λ to the average latency

10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

The number of channels

A
ve

ra
ge

 la
te

nc
y

(s
)

LS
SA−EC
MDSA

(d) The impact of Nch to the average latency

10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

The number of servers

A
ve

ra
ge

 la
te

nc
y

(s
)

LS
SA−EC
MDSA

(e) The impact of r to the average latency

30 35 40 45 50 55 60
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The network bandwidth

A
ve

ra
ge

 la
te

nc
y

(s
)

LS
SA−EC
MDSA

(f) The impact of B to the average latency

Fig. 5: Performance results of the three off-line algorithms

• SA-EG. The algorithm does the searching and ad-
justment of the users’ partitioning when scheduling the
modules onto the servers in the edge cloud, while uses the
list scheduling to deal with the data flows in the network.
The method pertains to the single dimension Search and
Adjustment, named as Search and Adjust for Edge Clouds
(SA-EG), which is introduced in our previous work [18].

The primary metric we concern on is the average la-
tency of the user applications. Fig.5a and Fig.5b shows the
cumulative distribution function of the application latency
respectively when λ = 100 and λ = 300. We can see
that in both cases MDSA achieves lower latency than the
other benchmark algorithms. Specially when λ = 300, the
average execution time (or latency) is less than the bench-
mark algorithms by 34%. SA-EG does not have obvious
better performance than the list scheduling. That means
the searching and adjustment only for the resources in the
edge cloud does not improve the performance, since the
application latency is affected by both the resources in the
edge cloud and the bandwidth.

Fig.5d indicates the impact of the number of users onto
the average application latency. It is obvious that the av-
erage latency increases as the number of users increases,
since the resources on the edge cloud and network keeps
unchanged. It is important to note that MDSA has much
better performance over the benchmark algorithms when
there exists a large number of users. The reason is that when
the number of users increase, MSDA has high chance to
avoid the network congestions by adjusting the partitioning
of the user applications.

Next, we want to know how the numberNch of channels
affects the performance of the algorithms. In this evaluation,
we test the performance when the number of channels

ranges from 10 to 40. Fig.5d shows that MDSA achieves the
shortest average latency when Nch = 10. As Nch increases,
MDSA has an increasing average latency. It is because the
more channels may cause the lower utilization of network
bandwidth. If Nch is too large, the users do not have
conflict in the data transmission in the networks. In such
case, MDSA has the same performance with the benchmark
algorithms.

We evaluate the sensitivity of the performance to the
number of servers. In the evaluation setting, we change
the number r of servers from 10 to 40, and keep the other
parameters as the default values. Fig.5e shows that how the
performance changes depending on r. The average latency
of MDSA decreases as r increases, while the two benchmark
algorithms are not sensitive to the change of r. It is because
the benchmark algorithms adopt the list scheduling for data
transmissions which causes long delay and becomes the
bottleneck of the performance. The increasing of edge cloud
servers do not lead to the performance enhancement. We can
also find that the performance of MDSA is better than the
benchmark algorithms in most cases, while as the number
of servers is less than 2, MDSA has worse performance.

Fig.5f shows how the performance changes depending
on the total bandwidth. The average latency would be
reduced as the bandwidth increases. We can find that MDSA
has lower average latency than the list scheduling in the case
that the total bandwidth is relatively constrained. However,
if the bandwidth is abundant, i.e., greater than 48 Mbps,
MDSA does not have advantage over the list scheduling,
because there exists no competition among the users for the
bandwidth in such case. It is not necessary to adjust the
partitioning to avoid the network congestions.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

5.2 Evaluations of online solutions
We still use the same application with previous simulations,
in which the number of modules is n = 4. The users’
requests for executing the applications do not arrive at
the same time. Instead, we assume that the arrival time
of requests are uniformly distributed in a certain interval.
With the release pattern of these requests, we evaluate
the performance of the online methods. In particular, we
increase the scale of the simulated system. The number of
users ranges from 100 to 500. The total bandwidth of the
network is 602 Mbps. The number of network channel is 80
and each channel has different bandwidth in a range of (7,
8) Mbps. Similarly, the amount of data transmission in the
user’s application graph are generated randomly from 2 Mb
to 2.3 Mb. Table 3 shows the default parameter settings for
the online simulation.

TABLE 3: Parameters of the workloads

Parameters Values
The number of users λ (100, 500)
The number of servers r 60
The network bandwidth B 602.5280 Mbps
The number of modules in the application graph
n

4

The number of network channels Nch 80
The network bandwidth of each channel (7, 8) Mb/s
The execution power of each edge cloud server (12, 13) Mb/s
The execution time of modules on mobile devices (0.8, 1) s
The data transmission size (2, 2.3) MB

We compare the proposed COS with two benchmark
methods, which are described as follows.
• Local Execution (Local). Local execution means all the

computation modules are executed on the mobile device.
• Edge cloud Scheduling (Ecloud). If we delete the

adjustment strategies in the Cooperative Online Schedule,
we then get a naive scheduling method which is named by
Edge cloud Scheduling (Ecloud). In this method, if a task is
released on the mobile device, the scheduler compares the
cost of offloading it to the edge cloud and the cost of local
execution, and chooses the decision with the lower cost. If a
task is released on the cloud, the scheduler directly allocates
the task onto the edge cloud. The tasks allocated to the edge
cloud are scheduled on the servers according to a First-
Come-First-Serve (FCFS) policy. Meanwhile, the arising data
flows are allocated to the network channels based on the
FCFS policy. In Ecloud, the scheduling of the tasks and data
transmissions are independent. There exists no interactions
and knowledge sharing between the two schedulers.

The major performance metric we concern is the average
completion time of applications of all users. Fig.6a shows
the results of the cumulative distribution of the users com-
pletion time when the user number λ = 500. The completion
time of the users by using COS is located in the interval (1.2,
4.0) with an average around 2.7s. The completion time by
using the local execution method is from 3.2s to 3.9s with an
average of 3.6s. Our online algorithm COS has 25 % lower
completion time over the local execution method. It is also
shown that Ecloud has the worst performance compared
with the other two methods, because Ecloud without the
adjustment strategy would cause long waiting time at the
edge cloud.

The completion time of a user’s application contains
five parts, i.e., the execution time on the mobile device,
the waiting time for data transmission, data transmission
time, the waiting time for the edge cloud execution, and the
execution time on the edge cloud. Fig.6b and Fig.6c show
how much time is spent on each of the five procedures,
which are respectively labeled by local, net wait, net, edge
wait, and edge in the figures. When λ = 100, by using
COS algorithm, the time in data transmission contributes
the most to the total completion time, which is slightly
more than the time in edge cloud execution and mobile
execution. When λ increases to 500, by using the COS
algorithm, the most time-consuming procedure changes to
be the mobile execution, because COS allocates most of
the modules onto the mobile devices when the workload
is high. Through comparing COS and Ecloud, we found
that COS algorithm has significantly less waiting time for
the edge cloud execution than Ecloud. The reason is that
COS adjusts the tasks in the edge cloud queue back to
the mobile device if the workload in the edge cloud is
high. Accordingly it leads to more time spent in the local
execution as shown by the first bar in Fig.6b. In particular,
when λ = 500, as shown in Fig.6c, COS has much less time in
both the waiting time for the network transmission and edge
cloud execution than Ecloud. Fig.6d and Fig.6e compares
COS and Ecloud in terms of the waiting time in network
transmission. Fig.6f and Fig.6g compares COS and Ecloud
in terms of the waiting time in edge cloud execution. This is
because COS can balance the workloads of the network and
the edge cloud by the cooperation of the network scheduler
and edge cloud scheduler.

Next, we want to know how the network bandwidth
influences the performance of the algorithms. In the e-
valuation settings, we change the total bandwidth from
361Mbps to 1084Mbps, and keep the other parameters as
the default values in Table 3. Fig.6h shows that as the net-
work bandwidth increases, the average completion time de-
creases. COS per- forms better than Ecloud under different
bandwidths. When the network bandwidth exceeds a large
value, the completion time would not decrease obviously
with the increase of bandwidth. In this case, the network
bandwidth is no longer the bottleneck resource that affects
the performance.

Fig.6i shows how the release rate of jobs affects the
performance. By default in the evaluation setting, we have
500 requests from users which are released randomly during
a time interval of 1 second. Now, we change the length
of the time interval from 1 second to 7 seconds, and keep
the number of the users as the default value. We can see
that as the time interval increases, which means the release
rate of jobs gets slow, the average completion time for both
COS and Ecloud deceases. This is because the load on the
network and edge cloud gets low as the jobs arrive with a
low rate. The performance of the local execution method is
not affected by the release rate because no competition for
resources exists among users if all the modules are executed
locally.

Then, we will evaluate how the performance varies
depending on the number of edge cloud servers. In this e-
valuation, the number of servers ranges from 50 to 80. Fig.6j
shows as the number of servers r increases, the average

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Completion time(s)

P
ro

b
a
b
ili

ty

COS

Local

Ecloud

(a) The CDF of average completion
time(λ=500)

local net_wait net edge_wait edge
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The time spent in each procedure

T
im

e
 (

s
)

COS

Ecloud

(b) The time spent in the five
procedures(λ=100)

local net_wait net edge_wait edge
0

0.5

1

1.5

2

2.5

3

The time spent in each procedure

T
im

e
 (

s
)

COS

Ecloud

(c) The time spent in the five
procedures(λ=500)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The waitting time spent on the edge cloud (s)

P
ro

ba
bi

lit
y

OCS
Ecloud

(d) The waiting time for the edge cloud
execution(λ=100)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The waitting time spent on the edge cloud (s)

P
ro

ba
bi

lit
y

OCS
Ecloud

(e) The waiting time for the edge cloud
execution(λ=500)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The waitting time spent on the network (s)

P
ro

ba
bi

lit
y

OCS
Ecloud

(f) The waiting time for the network
transmission(λ=100)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The waitting time spent on the network (s)

P
ro

ba
bi

lit
y

OCS
Ecloud

(g) The waiting time for the network
transmission(λ=500)

400 500 600 700 800 900 1000 1100

3

3.5

4

4.5

5

Network bandwidth(Mbps)

A
v
e
ra

g
e
 c

o
m

p
le

tt
io

n
 t
im

e
 (

s
)

COS

Local

Ecloud

(h) The impact of the bandwidth to the
average completion time

1 2 3 4 5 6 7
2

2.5

3

3.5

4

4.5

The time interval of job release

A
v
e
ra

g
e
 c

o
m

p
le

tt
io

n
 t
im

e
 (

s
)

COS

Local

Ecloud

(i) The impact of the job release rate to
the average completion time

50 55 60 65 70 75 80

3

3.5

4

4.5

5

5.5

The number of servers

A
v
e
ra

g
e
 c

o
m

p
le

tt
io

n
 t
im

e
 (

s
)

COS

Local

Ecloud

(j) The impact of the number of servers
to the average completion time

60 80 100 120 140 160

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

The number of network channels

A
v
e
ra

g
e
 c

o
m

p
le

tt
io

n
 t
im

e
 (

s
)

COS

Local

Ecloud

(k) The impact of the number of
network channels to the average

completion time

100 200 300 400 500 600 700

2

2.5

3

3.5

4

4.5

5

5.5

6

The number of users

A
v
e
ra

g
e
 c

o
m

p
le

tt
io

n
 t
im

e
 (

s
)

COS

Local

Ecloud

(l) The impact of the number of users to
the average completion time

Fig. 6: Performance results of the online algorithms

completion time for COS decreases. COS achieves the least
average completion time when r = 80. It is shown that COS
has obviously better performance than Ecloud under all the
values of r. The local execution method does not change
with the variance of the edge cloud resources.

Now, we evaluate the sensitivity of the performance to
the number of Nch, which is shown in Fig.6k. We set Nch
as various values located in the range of (60,160) with-
out changing the other parameters. COS has the optimal
performance when Nch = 60. As Nch increases from 60
to 160, the performance of COS degrades. The reason is
that the number of network channels is relatively abundant
when the number of users is 500 by default. Increasing Nch
in this case leads to the decrease of the bandwidth that a
channel has, and thus the data transmission in one single
channel gets slower. Meanwhile, it is possible that some
of the channels may be idle all the time, which causes a
low utilization of the network resources. Moreover, in our
model we assume that the virtual channels almost have
the same bandwidth. We also evaluate the performance
of COS when the channels have various bandwidth. The

data flow being ready for transmission is always allocated
with the channel with the maximum bandwidth. We find
that the performance degrades greatly if the variance of the
channels’ bandwidth is high. When the variance changes
with a threshold, the performance will be not obviously
affected.

Finally, we compare the performance of the three algo-
rithms under the changing number of users. Fig.6l shows
how the performance changes with the increase of λ. When
λ =100 and λ=200, COS and Ecloud almost have the same
performance. It is because that when the number of users
is small, network resources and edge cloud resources are
relatively adequate. In such case, the adjustment strategy
in COS does not have much benefit. However, when λ
increases to 440 or even more, Ecloud performs the worst
among the three methods, while our proposed COS algorith-
m still has better performance than the other two benchmark
algorithms. The reason is that the adjustment strategies in
COS reduce the loads on the network and edge cloud. It
takes effect in improving the performance especially when
the system has a high workload.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

6 RELATED WORKS

We first present an overview of the related works in Mo-
bile Edge Cloud (MEC), and then present the research on
computation partitioning and resource allocations in MEC.

Mobile Edge Clouds. One fundamental research in MEC
is about the architecture design [11] [12] [22] [24]. Tong
et al proposes a tree-based topology for the MEC system,
in which the edge clouds are geo-distributed and form a
hierarchical architecture [11]. Chen et al developed a D2D
Crowd system model in mobile edge computing and solved
the energy-efficient D2D Crowd task assignment problem
[22]. The architecture can efficiently migrate the peak work-
load from the mobile users among the edge clouds. Ceselli
et al studies the placement of edge cloud and corresponding
access points among the candidates sites [12].

According to the functionality that the edge cloud sup-
ports in MEC applications, related researchs are catego-
rized into computation offloading [9] [10] [20] [23], content
caching [13] [14] [27] [28], content adaption [21]. Rodrigues
et al presents a method for minimizing service delay in two-
cloudlet scenario [20]. Zeydan et al studies the models and
methods of caching the big data on the edge cloud in order
to avoid long latency in accessing the data from remote
Internet [13]. Yang et. al study the optimal data placement
problem on the geo-distributed edge cloud [14]. Yan et al
proposes a hybrid edge cloud and application framework
for HTTP adaptive streaming [21]. Other functionalities by
the edge cloud include network transmission controlling
[30] [31], content aggregation [29], and virtual machine
migration [25] [26].

Computation Partitioning. Computation partitioning
has been studied a lot in the past years. The earliest works
consider the single user computation partitioning model.
The problem is to decide for a single user which parts
of an application should be executed locally and which
parts are executed remotely. MAUI [1] and CloneCloud [2]
are representative systems that support the partitioning of
mobile applications to reduce the execution time and/or
save energy consumption. The work in [5] [7] partitions
the execution of mobile data stream applications and aim
to achieve high throughput. Yang et al developed a method
for achieving the optimal partitioning in dynamic mobile
cloud environment [8].

By combining the computation partitioning with the
workload scheduling within the cloud, researchers propose
the multi-user computation partitioning model. The aim
is to solve the issue arising from the competition among
multiple users for the resources in the cloud [18] [19]. Yang
et al [18] proposed a novel multi-user computation par-
titioning algorithm to minimizing the average application
latency for the mobile users. Besides the competition for
cloud resources, existing works on multi-user computation
partitioning also considers the users’ competition for physi-
cal layer communication resources. Chen et al [9] studied a
multi-user computation offloading game in a multi-channel
wireless interference environment. You jointly considers the
offloading and the communication resource allocation in a
TDMA model [10]. [23] propose a computation offloading
model by considering multiple objectives including energy
consumption, execution delay, payment cost and so on.

However, the work above neglects the competition for
bandwidth among the users at the wireless access points or
base station. The bandwidth allocation impacts the overall
application performance of the users. Our paper jointly opti-
mizes the computation partitioning and the two dimension-
al resource allocation which includes both the computing
resources at the cloud and bandwidth resources in the net-
work. Although recent work studies the joint optimization
of the two dimensional resource allocations in MEC, it does
not do the partitioning decision for the users [10].

7 CONCLUSION

In this paper, we study the joint computation partitioning
and resource allocation for latency sensitive application in
mobile edge cloud. We developed an efficient heuristic,
named by Multi-Dimensional Search and Adjust (MDSA),
to solve the problem. On basis of the MDSA, we further
develop an online solution, named by Cooperative Online
Scheduling (COS). Through extensive evaluation, we con-
clude that both MDSA and COS has better performance
over the benchmark methods. As massive data are now
generated by the mobile devices, edge clouds will be the
primary places for provisioning the application services for
the purpose of low latency. The problem solved in the paper
is related to the service deployment which is one of the
fundamental problem in service computing, and aims to
optimize the binding of the computational services to the
physical resources including the edge clouds and mobile
devices. Our proposed models and solutions will provide
new insight for solving the service deployment in a mobile
edge cloud environment.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grant 61502312, Hong
Kong RGC General Research Fund under Grant PolyU
152244/15E, Science and Technology Fund of Guangzhou,
China, under Key Grant 201802010025, Guangzhou Edu-
cation Bureau-University Innovation and Entrepreneurship
Platform Construction Key Project 2019PT103 and Funda-
mental Research Funds for the Central Universities.

REFERENCES

[1] E. Cuervoy, A. Balasubramanianz, and D. Cho. Maui: Making
smartphones last longer with code offload. In Proc. of MobiSys,
pp.277-289, ACM Press, 2010.

[2] B. Chun, S. Ihm, et.al. Clonecloud: Elastic execution between mobile
device and cloud. In Proc. of EuroSys, pp.301-314, 2011.

[3] I. Giurgiu, O. Riva, et.al. Calling the cloud: Enabling mobile phones
as interfaces to cloud applications. In Proc. of Middleware, pp.1-20,
2009.

[4] S. Kosta, A. Aucinas, et.al. Thinkair: Dynamic resource allocation
and parallel execution in cloud for mobile code offloading. In Proc.
of INFOCOM, pp.945-953, 2012.

[5] L. Yang, J. Cao, et.al. A framework for partitioning and execution
of data stream applications in mobile cloud computing. In ACM
SigMetrics PER, vol. 40, no. 4, pp.23-32, 2013.

[6] M. Gordon, D. Jamshidi, et.al. Comet: code offload by migrating
execution transparently. In Proc. of OSDI, pp.93-106,2012

[7] M. Ra, A. Sheth, et.al. Odessa: enabling interactive perception
applications on mobile devices. In Proc. of MobiSys, pp.43-56, 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[8] L. Yang, J. Cao, et.al. Runtime application repartitioning in dynamic
mobile cloud environment. In IEEE Transactions on Cloud Computing,
vol. 4, no. 3, pp.336-348, 2016.

[9] X. Chen, L. Jiao, et.al. Efficient Multi-User Computation Offloading
for Mobile-Edge Cloud Computing. In IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp.2795-2808, 2016.

[10] C. You, K. Huang, et.al. Energy-efficient resource allocation
for mobile-edge computation offloading. In IEEE Transactions on
Wireless Communications, vol. 16, no. 3, pp.1397-1411, 2017.

[11] L. Tong, Y. Li, et.al. A hierarchical edge cloud architecture for
mobile computing. In Proc. of INFOCOM, pp.1-9, 2016.

[12] C. You, K. Huang, et.al. Mobile edge cloud network design
optimization. In IEEE/ACM Transactions on Networking, vol. PP,
no. 99, pp.1-14, 2017.

[13] E. Zeydan, E. Bastug, et.al. Big data caching for networking:
moving from cloud to edge. In IEEE Communication Magazine,
vol. 54, no. 9, pp.36-42, 2016.

[14] L. Yang, J. Cao, et.al. Cost aware service placement and load
dispatching in mobile cloud systems. In IEEE Transactions on
Computers, vol. 65, no. 5, pp.1440-1452, 2016.

[15] Z. Yan, J. Xue, et.al. Prius: hybrid edge cloud and client adaptation
for HTTP adaptive streaming in cellular networks. In IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 27, no. 1,
pp.209-222, 2017.

[16] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. In
IEEE Trans. on Para. and Dist. Sys., vol. 13, no. 3, pp.260273, 2002.

[17] H. Liu, F. Eldarrat, et.al. Mobile edge cloud system: architectures,
challenges, and approaches. In IEEE Systems Journal, vol. PP, no. 99,
pp.114, 2017.

[18] L. Yang, J. Cao, et.al. Multi-user computation partitioning for
latency sensitive applications in mobile cloud computing. In IEEE
Transactions on Computers, vol. 65, no. 5, pp.1440-1452, 2016.

[19] S. Guo, B. Xiao, et.al. Energy-efficient dynamic offloading and
resource scheduling in mobile cloud computing. In Proc. of Infocom,
pp.1-9, 2016.

[20] T. G. Rodrigues, K. Suto, et.al. Hybrid Method for Minimizing
Service Delay in Edge Cloud Computing Through VM Migration
and Transmission Power Control. In IEEE Transactions on computers,
vol.66, no.5, pp.810-819, 2017.

[21] Z. Yan, J. Xue, et.al. Prius: hybrid edge cloud and client adap-
tation for HTTP adaptive streaming in cellular networks. In IEEE
Transactions on Circuits and Systems for Video Technology, vol.27, no.1,
pp.209-222, 2017.

[22] X. Chen, L. Pu, et.al. Exploiting Massive D2D Collaboration
for Energy-Efficient Mobile Edge Computing. In IEEE Wireless
Communications, vol. 24, no. 4, pp.64-71, Aug. 2017.

[23] L. Liu, X. Guo, et.al. Multi-objective Optimization for Computa-
tion Offloading in Fog Computing. In IEEE Internet of Things Journal,
DOI: 10.1109/JIOT.2017.2780236, 2018.

[24] C. Sarros, S. Diamantopoulos, et.al. Connecting the Edges: A
Universal, Mobile-Centric, and Opportunistic Communications Ar-
chitecture. In IEEE Communications Magazine, vol. 56 , no. 2 , pp.
136-143, 2018.

[25] A. Machen, S. Wang, et.al. Live service migration in mobile edge
clouds. In IEEE Communications Magazine, vol. 25 , no. 1 , pp. 140-
147, 2018.

[26] L. Chaufournier, P. Sharma, et.al. Fast transparent virtual machine
migration in distributed edge clouds. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, 2017.

[27] Q. Yuan, H. Zhou, et.al. Toward Efficient Content Delivery for
Automated Driving Services: An Edge Computing Solution. In
IEEE Network, vol. 32, no. 1, pp. 80-86, 2018.

[28] D. Zhang, Y. Zhou, et.al. A Multi-Level Cache Framework for
Remote Resource Access in Transparent Computing. In IEEE
Network, vol. 32, no. 1, pp. 140-145, 2018.

[29] E. Fitzgerald, M. Piro, et.al. Energy-Optimal Data Aggregation
and Dissemination for the Internet of Things. In IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 955-969, 2018.

[30] X. Li, D. Li, et.al. Adaptive Transmission Optimization in SDN-
based Industrial Internet of Things with Edge Computing. In IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1351-1360, 2018.

[31] G. Aujla, N. Kumar, et.al. Optimal Decision Making for Big Data
Processing at Edge-cloud Environment: An SDN Perspective. In
IEEE Transactions on Industrial Informatics, vol. 14, no. 2, pp. 778-
789, 2018.

Lei Yang is currently an associate professor at
the School of Software Engineering, South Chi-
na University of Technology, China. He received
the BSc degree from Wuhan University, in 2007,
the MSc degree from the Institute of Computing
Technology, Chinese Academy of Sciences, in
2010, and the PhD degree from the Department
of Computing, Hong Kong Polytechnic Univer-
sity, in 2014. He has been a visiting scholar at
Technique University Darmstadt, Germany from
Nov. 2012 to Mar. 2013. His research interests

include edge computing, mobile cloud computing and Internet of Things
with particular focus on task scheduling and resource management.

Liu Bo is a 2nd-year master student in the
School of Software Engineering, South China
University of Technology, China. He got his BSc
degree from Hengyang Normal University, Chi-
na, 2015. Since September 2016 he has been a
post-graduate student working in the laboratory
of mobile cloud computing. His research inter-
ests include cloud computing, edge computing,
and Internet of Things.

Jiannong Cao is a Chair Professor of Distribut-
ed and Mobile Computing of the Department of
Computing at The Hong Kong Polytechnic Uni-
versity. He is also the director of the Internet
and Mobile Computing Lab in the department
and the director of University Research Facility
in Big Data Analytics. He received the B.Sc.
degree in computer science from Nanjing Uni-
versity, China, in 1982, and the M.Sc. and Ph.D.
degrees in computer science from Washington
State University, USA, in 1986 and 1990 respec-

tively. His research interests include parallel and distributed computing,
wireless networks and mobile computing, big data and cloud computing,
pervasive computing, and fault tolerant computing. He has co-authored
5 books in Mobile Computing and Wireless Sensor Networks, co-edited
9 books, and published over 500 papers in major international journals
and conference proceedings. He is a fellow of IEEE, a member of ACM,
a senior member of China Computer Federation (CCF).

Yuvraj Sahni is a Ph.D. student at the Depart-
ment of Computing, The Hong Kong Polytechnic
University, Hong Kong. He received B.E. (Hons)
degree in Electrical and Electronics Engineering
from Birla Institute of Technology and Science,
Pilani, India in 2015. His research interests in-
clude wireless sensor network, middle-ware, and
Internet of Things.

Zhengyu Wang is a professor and the dean of
the School of Software Engineering, South Chi-
na University of Technology, China. He received
the BSc degree from Xiamen University, China,
in 1987, and the MSc and the PhD degrees
from Harbin Institute of Technology, China, in
1990 and 1993, all in computer science. His
research interests include distributed computing
and SOA, operating systems, software engineer-
ing, and large-scale application design and de-
velopment.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2018.2890603

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

