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Abstract—Recently, non-intrusive respiration monitoring has
attracted much attention. Many respiration monitoring systems
using the commercial off-the-shelf WiFi devices have been de-
veloped. However, these systems mainly have difficulties in the
presence of multiple persons. The difficulty generally comes from
the separation of the effects of multiple persons’ respiration on
the received WiFi signals. Another problem is that even though
the separation can be feasible with some complicated algorithms,
it is still impossible to map the multiple identified respiration
states to the corresponding persons. In this paper, we study
the problem of multi-person sleeping respiration monitoring and
try to address the above challenges. Instead of focusing on
developing complicated signal processing algorithms, we take
another approach: via the deployment of WiFi transceivers. The
key insight comes from the WiFi Fresnel zone model, which
indicates that a carefully placed WiFi transceiver may only
be affected by the person in a certain location. Furthermore,
we consider the sleeping movements of people as well as the
sleeping posture change to improve the robustness of the system.
Extensive experiments show that we can successfully estimate
the respiration rate of multiple persons, with the Mean Absolute
Error (MAE) of 0.5 bpm− 1 bpm.

Index Terms—Respiration monitoring; Multi-person scenario;
WiFi Fresnel zone.

I. INTRODUCTION

Recently, non-intrusive respiration monitoring, particularly

those based on the commercial off-the-shelf (COTS) WiFi de-

vices [1]–[3], attracts much attention. These systems leverage

features extracted from the Channel State Information (CSI) of

WiFi signals, and from which to infer important information

like the respiration rate and the presence of apnea [2], [4].

However, most existing work on WiFi-based respiration

monitoring only works for the single-person scenario and have

difficulties in the presence of multiple persons. One major

difficulty of tracking multiple persons’ respiration states comes

from the fact that, the chest movement of multiple persons will

have accumulative effects on the received WiFi signals that

cannot be easily de-coupled. There are many well-designed

and complicated algorithms proposed to separate multiple

persons’ respiration [5]–[7]. However, these methods generally

rely on the assumption that the respiration rates of multiple

persons are different from each other. Most importantly, ex-

isting work for multi-person respiration monitoring is unable

to map the identified respiration states to the corresponding

persons, which is however of vital importance for performing

targeted health analysis for each person exclusively.

In our work, the above problem is addressed through a new

perspective: via the deployment of WiFi transceivers. The idea

comes from the Fresnel zone model. In [8], [9], the Fresnel

zone model is proposed with regards to respiration monitoring.

According to the Fresnel zone model, a person at different

locations can have different levels of amplitude change for the

respiration pattern on the received WiFi signal. Therefore, to

capture clear and obvious respiration pattern, the deployment

of WiFi transceivers needs to be finely tuned so that the person

is located at the good location in the Fresnel zones.

The basic idea of our approach comes from the observa-

tion that, under certain deployment of WiFi transceivers, the

received WiFi signals can show notable respiration pattern at

some locations in the Fresnel zones. While, at some other lo-

cations, the respiration pattern can be quite obscure. Delighted

by this, we can optimize the deployment of WiFi transceivers,

so that each person is only at the good location of a specific

transceiver pair, meanwhile at the bad location of all the other

transceiver pairs. In this way, we can assign the multi-person

respiration monitoring task to multiple transceiver pairs and

map the identified respiration state of each transceiver pair to

the corresponding person.

However, there are many challenges when realizing the

above idea in practice. First, the deployment of WiFi

transceivers may lose its effectiveness when people move

around and change posture while sleeping, as the respira-

tion pattern is sensitive to the person’s location. To ensure

decent performance, the deployment of transceiver antennas

should still work properly when the person moves. Second,

although the effects of other persons’ respiration on the target

person’s received signals can be decreased to the least under

the optimized deployment of transceivers, it still cannot be

removed completely. However, the minor effects of other

persons’ respiration can lead to the misinterpretation on the

apnea detection for the target person who stops breathing.

To make the deployment more robust when the person

moves, the movement of the person on the bed during sleeping

is configured to comply with Gaussian distribution. Mean-
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while, when the person changes sleeping postures, there would

be a vertical displacement change l to the location. So, we

combine the Gaussian movement model and vertical change

into the optimization process to find the optimal deployment

of the transceivers, so that even if the person moves around

or changes posture, each transceiver pair can still work prop-

erly. In order to precisely detect the presence of apnea, we

leverage the observation that the received CSI measurements

of the person who stops breathing are quite disordered across

different subcarriers compared with that of the person who

keeps breathing. Thus, we employ the difference between the

maximum and minimum value and the variation of the peak

amplitude extracted from the frequency domain among the CSI

streams of all the subcarriers to detect the apnea.

To verify the performance of the proposed approach, we

implement the system with COTS WiFi devices and evaluate

it with extensive experiments which test the precision for the

respiration rate estimation and apnea detection.

The main contributions of our work are: (1) Guided by the

Fresnel zone model, we find that it is possible to decouple

the respiration of multiple persons by carefully deploying the

WiFi transceivers. As as result, we can not only monitor

multiple persons’ respiration simultaneously, but also map the

respiration states to the corresponding persons with the specific

transceiver pairs, which has not been addressed by previous

work. (2) To improve the proposed method in terms of the

movement during sleeping and the change of postures, we

configure the movement into a Gaussian model and convert

the posture change into a vertical displacement to optimize

the deployment of transceivers. Furthermore, we draw on the

observation of disordered patterns in the received signals to de-

tect the presence of apnea. (3) Through extensive experiments,

the multi-person respiration monitoring system can estimate

the respiration rate with the Mean Absolute Error of 0.5 bpm
- 1 bpm, and the percentage of missed alarm and false alarm

for apnea detection is around 8.2% and 7.8% respectively.

II. SYSTEM OVERVIEW

The respiration monitoring system is implemented with

COTS WiFi devices. The sketch of the system, with an exam-

ple of two-person scenario, is shown in Fig. 1. Two persons are

lying on the same plane, breathing with different respiration

rates. We employ one transmitting (Tx) and two receiving

antennas (Rx1 and Rx2), forming two pairs of transceiver

antennas (Tx-Rx1 and Tx-Rx2). Each transceiver antennas pair

creates a series of concentric Fresnel zones. The dashed lines

in Fig. 1 refer to the boundaries of the Fresnel zones.

The key insight of our system is to leverage the fact that

the chest movement of breathing can cause different levels

of amplitude change on the received WiFi signals at different

locations in the Fresnel zones. The observed respiration pattern

from the CSI measurements can be stronger and more obvious

for the person who is located in the middle of the Fresnel

zones, whereas for the person who is on the boundary of the

Fresnel zones, the respiration pattern can be weaker and more

obscure. Thereby, we deploy the WiFi transceiver antennas at

the specific positions such that each person’s respiration only

dominates the signals received from a specific receiver.

For the deployment in Fig. 1, the person P1 is in the

middle of the Fresnel zones formed by Tx-Rx1, and also on

the boundary of the zones for Tx-Rx2. Inversely, P2 is in the

middle of the Fresnel zones created by Tx-Rx2 while on the

boundary of the zones for Tx-Rx1. In this way, there would be

more clear respiration pattern for P1 on the received CSI of

Rx1 than that of P2. Besides, the signals of Rx2 show stronger

pattern for P2 than P1. We can see from Fig. 1, the received

signals of Rx1 and Rx2 mainly reveal the respiration patterns

for P1 and P2, respectively. So, we can monitor the respiration

of each person with the specific receiver separately and map

the identified respiration states to the corresponding persons,

i.e., map the state of Tx-Rx1 to P1 and Tx-Rx2 to P2.

III. PRELIMINARIES ON RESPIRATION MONITORING WITH

WIFI SIGNALS

In this section, preliminaries of the respiration effects on

WiFi signals is given with respect to the Fresnel zone model,

and the effects of different locations in the Fresnel zones on

respiration monitoring are discussed.

A. Effects of Respiration on WiFi Signals

During respiration, the chest movement can induce Δd dis-

placement in the anteroposterior and mediolateral dimension

of the human body. Δd can vary from 2mm to 14mm [10],

[11]. When the person lies on the back, signals are affected by

the anteroposterior change of chest. If the person lies on the

side, the change of mediolateral dimension will influence the

signals. While breathing, apart from the signals of dynamic

paths reflected by the human body, there are also static paths

of signals, including the direct signals and those reflected by

the stationary objects. Thus, the overall received signals is a

combination of the direct and reflected signals.

To characterize the propagation of wireless signals during

respiration, the CSI is leveraged. Denote H(f, t) as the CSI

measurement for the subcarrier with carrier frequency f at

time t. For the indoor environment with static and moving

objects, H(f, t) can be expressed as H(f, t) = Hs(f, t) +
Hd(f, t). The static vector Hs(f, t) involves the signals of

static paths, and the dynamic vector Hd(f, t) contains the

reflected signals of the moving object. The amplitude of

H(f, t) can be derived as [8]:

|H(f, t, θ)|2 = |Hs(f, t)|2 + |Hd(f, t)|2
+2 |Hs(f, t)| |Hd(f, t)| cosθ,

(1)

θ is the phase difference between the vector Hs(f, t) and

Hd(f, t). Since the respiration only causes minute change of

the signals path, |Hs(f, t)| and |Hd(f, t)| remain almost the

same. So, |H(f, t, θ)| is only affected by the cosθ term.

B. WiFi Fresnel Zone Model

In indoor environment, wireless signals travelling between

the transmitter and receiver can experience the direct path and

reflected paths. Fresnel zone is presented to show the effects of
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Fig. 1. Sketch of the multi-person sleep respiration monitoring system

the reflected signals on the overall received signals [12]. The

Fresnel zones are formed by a series of concentric ellipses with

the transmitting and receiving antennas acting as the foci. The

boundaries of the Fresnel zones are formulated as:

|TPn|+ |RPn| − |TR| = n · λ
2

(2)

T and R are the transmitting and receiving antennas, λ is

the wavelength, and n is the number of the Fresnel zones. An

example of the Fresnel zones is depicted in Fig. 1. The dashed

ellipses are the boundaries of the Fresnel zones. In [8], [9],

the existence of the WiFi Fresnel zones has been verified via

elaborate theoretical analysis and experiments.

The boundaries of the Fresnel zones are the places where

the reflected signals and direct signal are in-phase or out-of-

phase with each other. Hence, if the chest movement travels

between the Fresnel zones, there will be periodic increasing

and decreasing patterns in the received CSI amplitude.

C. Respiration at Different Locations in the Fresnel Zones

The chest displacement (Δd) while breathing can induce

about 2Δd change of the signal propagation path. Thus,

the phase difference Δθ resulting from the chest movement

during respiration can be derived as Δθ ≈ 2π · 2Δd
λ . Assume

that Δd = 10mm and λ = 12cm (for 2.4GHz WiFi),

then the Δθ is π/3. To investigate the respiration pattern at

different locations in the Fresnel zones, we consider the phase

difference covers the range of [−π/6, π/6] or [π/6, 5π/6]. If

the person is located at the boundary of the Fresnel zones,

then the θ in Eq. (1) is 0. If the person is in the middle of the

Fresnel zones, then θ = π/2. As shown in Fig. 2, if θ = 0
and the phase difference changes between [−π/6, π/6], the

magnitude of A1 is quite small. While for θ = π/2, with the

phase difference covers [π/6, 5π/6], there can be a notable

waveform (A2 � A1). This shows that the received signals

show different levels of the amplitude for the respiration

pattern at different locations in the Fresnel zones.

Therefore, in order to obtain more obvious respiration

pattern with the received CSI measurements, the person is

supposed to be in the middle of the Fresnel zones. That is, the

θ = 0

θ= π/2

π/3

Boundary of Fresnel
zone

Middle of Fresnel
zone

θ= π

θ=3π/2

A1

A2

Worst

Best
3/π

Fig. 2. Received signal at different locations of Fresnel zones

locations of the transmitting antenna (T ), receiving antenna

(R) and the person (P ) should meet the following equation:

|TP |+ |RP | − |TR| = 2n+ 1

4
λ (3)

While when the person is on the boundary of the Fresnel

zones, following Eq. (2), the received signals are more likely

to show an unclear respiration pattern.

To give an intuitive presentation, we place the transceiver

antennas accordingly to make the person located in the middle

and the boundary of the Fresnel zones, respectively. Then, we

measure the CSI while the person is breathing. We depict the

denoised CSI measurements of all the 30 subcarriers when the

person is in the middle (Fig. 3(a)) and on the boundary (Fig.

3(b)) of the Fresnel zones. It shows that, when the person

is in the middle of the Fresnel zone, all the CSI streams

exhibit notable respiration pattern. While the CSI streams are

obscure to show the periodic pattern when the person is on the

boundary of the Fresnel zones. This means that the positions

of the WiFi transceivers need to be finely adjusted to make the

target person located in the middle of the Fresnel zone, so that

the observed pattern is clear enough for respiration monitoring.

In our work, we leverage this observation to make it as a

solution for multi-person sleeping respiration monitoring.

IV. RESPIRATION MONITORING FOR MULTI-PERSON

SCENARIO

In this section, we first demonstrate the realization of

multi-person sleeping respiration monitoring by optimizing

the deployment of WiFi transceiver antennas. Afterwards, we
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Fig. 4. Lateral view of multi-person respiration monitoring system

perform respiration rate estimation and apnea detection to

obtain the respiration states for multiple persons.

A. Optimization of the Deployment of Transceivers

To realize sleep respiration monitoring for multi-person

scenario, we need to find the optimal deployment of the

transceiver antennas. In this part, we first start from a simple

case, where people are fixed at the specific locations and then

take the sleeping movement and posture change into account

for optimizing the positions of the transceiver antennas.

1) Optimal Positions of Transceiver Antennas for Fixed
Locations of Multiple Persons: For the multi-person scenario,

suppose we have 1 transmitting antenna, n receiving antennas,

and n concerned persons accordingly. The lateral view of the

system setting is depicted in Fig. 4. The target persons and the

transceiver antennas are displaced in the same plane for the

simplicity of deployment. The original point is the center of

the multiple persons. To leverage each pair of transceivers for

monitoring multiple persons’ respiration separately, we need

to set the positions of the transceivers according to Eqs. (2)

and (3). For the person Ps, only the antenna pair Tx-Rxs can

show notable respiration patterns, while other pairs cannot.

Then the positions of transmitting antennas (Tx) and receiving

antennas (Rxi) should meet the following equations, where T
and Ri denote Tx and Rxi:

|TPs|+ |RiPs| − |TRi| = (2ni
s + 1) · λ
4

, i = s

|TPs|+ |RiPs| − |TRi| = ni
s · λ
2

, i �= s

(4)

However, the above equations may not be satisfied at the

same time. Therefore, we transform it into an optimization

problem, which is to find the optimal positions of the transceiv-

er antennas according to the fixed and known locations of mul-

tiple persons. The objective is to maximize the amplitude of

the received CSI for Tx-Rxs for the person Ps and minimize the

amplitude of the received CSI for Tx-Rxi, where i �= s. This

means that, with phase difference |θs − θs′ |, the amplitude of

|cos(θs)− cos(θs′)| should be maximized for the person Ps

of Tx-Rxs, and minimized for Tx-Rxi when i �= s. θs and θs′
are the phase values when the person does not breathe and

breathes to the highest magnitude respectively, derived as:

θs,i =
2π

λ
(|TPs|+ |RiPs| − |TRi|) (5)

Then, the objective function F (s, i) can be formulated as:

max
Rxi

F (s, i) =

n,n∑
s,i=1

f(s, i),

f(s, i) =
|cos(θs′,s)− cos(θs′,s)|∑n
i�=s |cos(θs,i)− cos(θs′,i)|

(6)

We test the above optimization process with the initial

settings in Table I and Table II for two-person and three-person

scenarios. For the simplicity of the system deployment, the Tx

is fixed and the receivers are traversed along the x-axis with a

step of 0.02m. We plot all the values of the objective function

for the two-person and three-person scenarios in Fig. 5(a) and

Fig. 5(b). Then, we retrieve the positions of receivers of which

the objective function reaches the maximum. In this example,

for the two-person scenario, Rx1 and Rx2 are placed to

(1.32m, 0.8m) and (1.38m, 0.6m). While for the three-person

scenario, Rx1, Rx2 and Rx3 are obtained as (1.28m, 1m),
(1.42m, 0.8m) and (1.14m, 0.6m). The computation time of

the optimization process for the two-person and three-person

scenarios is 0.53s and 16.7s respectively.
2) Optimal Positions of Transceiver Antennas with Human

Movement and Posture Change: In practice, it is not enough to

settle down the optimal positions of Tx and Rx with only fixed

locations of the concerned persons, since the person will move

around and change posture in the sleeping area. Empirically,

people tend to move to the points closer to the fixed location

with higher probability and it is less likely for them to move

far away. So the movement model Ps is configured to comply

with the Gaussian distribution as follows:

Ps ∼ N(μ, σ2),

g(x) =
1√
2πσ

exp(− (x− μ)2

2σ2
)

(7)

TABLE I
INITIAL SETTINGS FOR TWO-PERSON SCENARIO

Tx, Δd (-1m, 1m), 0.08m
P1, P2 (-0.3m, 0m), (0.3m, 0m)
R1, R2 (1m, 0.8m) ∼ (2.5m, 0.8m), (1m, 0.6m) ∼

(2.5m, 0.6m)

TABLE II
INITIAL SETTINGS FOR THREE-PERSON SCENARIO

Tx, Δd (-1.3m, 1m), 0.08m
P1, P2, P3 (-0.5m, 0m), (0m, 0m), (0.5m, 0m)
R1, R2, R3 (1m, 1m) ∼ (2.5m, 1m), (1m, 0.8m) ∼

(2.5m, 0.8m), (1m, 0.6m) ∼ (2.5m, 0.6m)
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Fig. 5. Optimal positions of receivers for (a) fixed locations of two persons (b) fixed locations of three persons (c) dynamic locations of two persons.

g(x) is the probability density function of the movement model

regarding the moving distance x. In addition, there are cases

when people change sleeping posture. The common sleeping

postures can be classified into two categories: one includes the

Starfish, Soldier and Freefaller, which belong to the posture

of lying on the back; the other consists of the Log, Foetus

and Yearner, regarded as lying on the side [13]. Changing

from the above two kinds of postures, there will be a vertical

displacement change l for the person’s location. Thus, we also

need to consider the presence of l in the optimization process.

To make the deployment more robust in face of the move-

ment and posture change, the Gaussian movement model and

vertical change of l are integrated into the objective function.

The Ps in Eq. (6) is replaced by P (g(s)) to represent the

location distribution resulting from the movement for the target

person, and the vertical change l is also added, creating the

revised objective function as follows:

max
Rxi

F (s, i) =

n,n∑
s,i=1

∫ r

−r

[
1

2
f(g(s), i) +

1

2
f(g(s) + l, i)], (8)

r is the upper bound of the moving distance. For the Gaussian

model, μ = 0 and the effects of variance σ and l will be

discussed in the evaluation part. Here, we give an example on

the two-person scenario for the above optimization process.

The initial setting is the same as Table I, and μ = 0, σ = 0.06,

l = 0.2m, r = 0.2m. The visualization of the objective

function is shown in Fig. 5(c). The positions of Rx1 and

Rx2 are changed to (1.06m, 0.8m) and (1.64m, 0.6m). The

computation time for running the above optimization process

is around 460s, since it takes longer time for the iterated oper-

ation of performing integral. The above optimization process

for determining the optimal positions of transceiver antennas

is performed off-line. It only requires one-time preparation for

the deployment of transceivers before respiration monitoring.

B. Respiration State Estimation

In this part, we identify the respiration states, including the

respiration rate and the presence of apnea with the CSI mea-

surements via frequency-domain and time-domain analysis.

1) Respiration Rate Estimation: Since raw CSI measure-

ments contain many signal noises, we apply the Hampel [14]

and wavelet filter [15] on the CSI series to remove outliers and

high-frequency noises. Next, the respiration rate is estimated

by performing the Fast Fourier Transformation (FFT) on all the

CSI streams. Within the range [0.1Hz, 0.6Hz] of respiration

rate, the highest peak of the summation of all the FFT results

can refer to the respiration rate of the target person, since each

time series shows periodic respiration pattern. However, we

find that there is a frequency leakage induced by the default

rectangular window added on the CSI stream for the FFT

calculation. To eliminate the frequency leakage on respiration

rate estimation, we add a hamming window on each CSI

stream, and apply the method mentioned in [16] to give a

precise estimation on the respiration rate.

We use the above method to estimate the respiration rate

under multi-person scenario as shown in Fig. 6. When people

breathe with different respiration rates, there are multiple

peaks in the FFT results, e.g., the two peaks in Fig. 6(a) and

three peaks in Fig. 7 for two-person and three-person scenario.

In Fig. 6(a), the highest peak in the FFT result of Tx-Rx1 is

incurred by the breathing of P1, as Tx-Rx1 is set to monitor

P1’s respiration. While the frequency of highest value in Tx-

Rx2 is the respiration rate of P2. In this way, we can not

only estimate the respiration rate, but also map the identified

respiration state of Tx-Rx1 to P1 and that of Tx-Rx2 to P2.

Similar observation is also applied to three-person scenario as

in Fig. 7. When people are breathing with similar respiration

rate, there is only one peak in the FFT results as in Fig. 6(b).

2) Apnea Detection: Intuitively, when multiple persons

breathe with different rates, the apnea can be detected by

observing the disappearance of the peaks in the FFT results.

However, if one person stops breathing, there is still a minor

peak value in the FFT result incurred by other persons’

respiration, which can result in a false judgement that the

person is still breathing. Furthermore, as the variation of the

respiration rate while sleeping is only 2.2−3.0 bpm [17], there

will be times when different persons have similar breathing

rate. If people have similar respiration rate, apnea can be more

difficult to be detected from change of the peak value in the

FFT results, as only one major peak is left in the FFT results.

For apnea detection under multi-person scenario, we find

that the peak amplitude in the FFT results for the person who

stops breathing is smaller than those who are still breathing.

For example, Fig. 6(c) shows the FFT results for the two per-
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Fig. 6. (a) FFT results for two-person scenario with different respiration rates. (b) FFT results of two-person scenario with similar respiration rates. (c) FFT
results of two-person scenario when P1 stops breathing.
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sons with similar respiration rate, in which P1 stops breathing.

However, it is difficult to give a quantitative description of

the peak value difference for detecting the apnea. Therefore,

we also exploit another observation: when the person stops

breathing, the WiFi signals will be affected by other persons

who are on the boundary of the Fresnel zones, where the

patterns on the CSI measurements are pretty disordered and

obscure. This means the amplitude of the highest peak in the

FFT results can vary greatly among different subcarriers.

The distribution of the highest peak amplitude for all the

subcarriers is illustrated in Fig. 8. It shows that when the

person stops breathing, the peak value varies in a larger

range than that of the person who keeps breathing. So, we

calculate the difference between the maximum and minimum

peak amplitude, and the variation of the peak amplitude among

subcarriers from the FFT results for each pair of antennas.

Then, the following condition is used to detect apnea:

Diffi,j =
|sum[peaki(n)]− sum[peakj(n)]|

max(sum[peaki(n)], sum[peakj(n)])

Devi,j =
|var[peaki(n)]− var[peakj(n)]|

max(var[peaki(n)], var[peakj(n)])

Diffi,j +Devi,j > σ2

(9)

peaki(n) is the vector of the peak amplitude of all the

subcarriers. Once the above term is met, we claim that the

person who stops breathing can be settled as the one whose

difference and variance of the peak amplitude are above the

threshold. σ2 is empirically set to be 0.8.

V. EVALUATION

In this section, the results from the extensive experiments on

the respiration rate estimation and apnea detection are given,

and the effects of different parameters influencing the system

performance are also discussed.
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Fig. 8. Histogram distribution of peak amplitude for two persons (P1 stops
breathing, P2 breathes)

A. Implementation

The system is built with COTS WiFi devices, i.e. Intel

5300 NIC and TP-Link WR841N wireless router. The NIC is

installed on the Lenovo B460 laptop. CSI measurements are

collected with a CSI tool [18] which can be operated on the

Ubuntu 12.04 system, and processed using MATLAB 2016a.

The wireless router operates on 2.4GHz with 20MHz band-

width channels, which is commonly used in people’s daily life.

An example of the system implementation is shown in Fig. 9.

After obtaining the locations of all the concerned persons, the

transmitting and receiving antennas can be displayed according

to the positions automatically calculated by the optimization

process to monitor peoples respiration.

B. Evaluation Metrics

To evaluate the performance of the respiration monitoring

system, 5 subjects, including 2 males and 3 females with

different figures are recruited during two months to collect

the CSI measurements while breathing. While breathing, the

ground truth of the respiration state is recorded by the chest

strap worn on the subject’s body. To evaluate the accuracy of

respiration rate estimation, we calculate the Mean Absolute

Error (MAE) between the estimated result and the actual
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Fig. 9. Illustration of system implementation

respiration rate. The respiration rate is in the form of bpm
(breath per minute).

MAE =

∑n
i=1 |R′

i −Ri|
n

, (10)

Ri and R′
i correspond to the estimated and the actual respira-

tion rate of the person, respectively.

Then, we carry out experiments on the apnea detection

and obtain the percentage of the missed and false alarm for

detecting the apnea. The missed alarm (MA) is the percentage

of the missed cases of apnea among all the real apnea

cases, while the false alarm (FA) is the percentage of the

misjudgment of apnea among the samples with no apnea.

C. Respiration Rate Estimation

To verify the performance of the proposed method for

respiration rate estimation, we evaluate the accuracy of res-

piration rate estimation with respect to the effects of different

locations, window size, sampling rate, respiration patterns, size

of variance σ for the Gaussian model and vertical change l.

1) Effect of different locations in Fresnel zone: First, we

investigate the effects of different locations in the Fresnel

zones on respiration rate estimation. In Fig. 10, when the

subject is in the middle of the Fresnel zones, the average MAE

is 0.614 bpm, which means that the error of estimating the

respiration rate in a minute does not exceed one breath. We

also give results of the respiration rate when the person is on

the boundary of the Fresnel zones, of which the mean value

is 3.130 bpm. It is around 5 times higher than the MAE when

the person is in the middle of the Fresnel zones, indicating

worse performance on respiration rate estimation.

2) Effects of window size and sampling rate: Next, we

investigate the impact of the window size and sampling rate for

estimating respiration rate. Figure. 11(a) shows the MAE with

different window sizes. It can be seen that larger window size

can achieve a smaller MAE, and the MAE of the window sizes

of 20s and 25s is similar. To increase the realtime performance

and ensure the accuracy, we choose the window size of

20s. While for different sampling rates, 100p/s, 200p/s and

300p/s are set for CSI measurements collection. The sampling

rate of 200p/s is selected because of its higher accuracy due

to it higher resolution in frequency domain and smaller noises

in the CSI measurements, as shown in Fig. 11(b).
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3) Effects of different respiration patterns: The MAE of

the estimated respiration rate for different numbers of people

with different respiration patterns is shown in Fig. 12(a). The

average MAE for the multi-person scenario under different

respiration patterns is 0.750 bpm, which is slightly higher than

the single-person scenario. The MAE of similar respiration

rate is smaller than that of different respiration rates, because

similar respiration pattern suffers from less noises. In addition,

the MAE of the two-person scenario is slightly lower than

that of the three-person scenario, in that the more number of

persons involved, the more compromises need to be made for

finding the optimal positions of the transceiver antennas.

4) Effects of variance σ in the Gaussian model: The effects

of the variance σ in the Gaussian movement model are investi-

gated with the σ change from 0.04 to 0.065 with step of 0.005
for three cases: the person does not move (L = 0cm), move

L = 5cm and L = 10cm around the fixed position. From Fig.

12(b), it can be seen that the larger distance of the movement,

the higher the MAE will be with the loss of deployment

effectiveness steadily. Since the probability density function

has the highest probability at the fixed location, i.e., the

location of the mean value (μ = 0), the MAE of L = 0cm
becomes the smallest. Meanwhile, the MAE under movement

scenarios reaches the minimum when the variance σ is 0.06.

5) Effects of vertical change of l: To see the effects of the

size for the vertical change of l considering the change of two

categories of sleeping postures, three persons with different

shoulder breadth: No.1 : 36cm, No.2 : 41cm No.3 : 45cm
are selected. The results on respiration rate estimation under

different vertical change l when they change the posture from

lying the back to lying on the side is shown in Fig. 12(c).

For the person with shorter shoulder breadth, better result can

be achieved with smaller l, while larger l brings better results
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Fig. 12. (a) MAE of different respiration patterns (b) MAE of different σ
and L (c) MAE of different l (d) Effects of σ2 on the apnea detection

for bigger-size person. It also indicates the difference among

the MAE results is not too much. Hence, to make it more

adaptive for different people, we can take the average value

as the vertical change in the optimization process.

D. Apnea Detection

In the multi-person scenario, we evaluate the accuracy of

apnea detection from two aspects: (1) the performance of

apnea detection under similar and different respiration rates.

(2) the performance of apnea detection under moving around

and posture change scenarios.

1) Impact of the σ2: The σ2, as the threshold to compare

the difference and variation of peak amplitude of different CSI

streams, can affect the result of apnea detection. Therefore,

we adjust σ2 in the range of [0.3, 1.1] and calculate the (MA)

and (FA). The values of MA and FA under different σ2 are

illustrated in Fig. 12(d). It can be seen that the MA increases

steadily with the rising of σ2 while FA is smaller with larger

σ2. Since both MA and FA would be the lower the better,

therefore we make the σ2 to be 0.8 since MA and FA are

relatively low at this point with a overall better performance.

TABLE III
RESULTS OF APNEA DETECTION

MA FA
Different rates 5.42% 5.17%
Similar rates 8.75% 8.42%

Average 7.09% 6.80%

TABLE IV
RESULTS OF APNEA DETECTION

MA FA
Move 5cm 7.52% 7.61%

Move 10cm 9.23% 8.54%
Lie on back 6.95% 6.23%
Lie on side 8.74% 8.82%

2) Accuracy of apnea detection: The results of apnea

detection with different and similar respiration rates are shown

in Table III. The MA and FA for multiple persons who have

different respiration rates are both lower than that of similar

respiration rates. Although the apnea detection for the persons

with similar respiration rates tends to be more difficult, the MA
and FA are still at a relatively low level with our method.

The results of apnea detection under moving around and

posture change scenarios are shown in Table. IV. The MA
and FA increase with the extension of moving distance, and

both higher than the average result in Table. III at the fixed

location. Furthermore, the performance of apnea detection is

better for lying on the back scenario than that of the lying the

side scenario. It is because the posture change does not result

in the same vertical change in practice, so that the performance

cannot reach the expected results.

VI. RELATED WORK

Our work on multi-person respiration monitoring is mostly

related to non-intrusive respiration monitoring using wireless

signals, summarized as follows.

A. Human Respiration Monitoring with WiFi Signals:

In recent years, with the popularity of WiFi devices, re-

searchers are dedicated to leverage the COTS WiFi devices

for device-free respiration monitoring. At first, the RSSI is

leveraged [1], [19]–[22] for respiration monitoring, however

RSSI is less sensitive to the chest movement, since it only

provides coarse-grained information of the WiFi signals. Thus,

it requires a densely deployed wireless network to achieve

decent results. Comparing with RSSI, CSI can provide more

fine-grained information of the wireless links, and it can better

detect the minute chest movement from the wireless signals

[2]–[4], [8]. In [8], authors introduce the Fresnel zone and lay

the general theoretical foundation for human behavior recogni-

tion with RF signals, with emphasis on respiration monitoring

using WiFi signals, which provides a basic understanding for

wireless human sensing.

B. Multi-person Respiration Monitoring via Wireless Signals:

There are many studies into the problem of respiration

monitoring with wireless signals. However, only few of the

present work deals with the problem of multi-person respi-

ration monitoring using WiFi signals, as listed in Table V.

Existing work provides many feasible plans for multi-person

respiration monitoring via WiFi signals. Some perform the

Power Spectrum Density (PSD) algorithm on the received

TABLE V
COMPARISON OF WORKS IN MULTI-PERSON RESPIRATION MONITORING

Work Number Accuracy Mapping
[3] 2 persons 0.5-1 bpm No
[8] 2 persons – No
[7] multi-person 0.5-1 bpm No
[5] multi-person 0.5-1.2 bpm No

Our work multi-person 0.5 - 1 bpm Yes
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WiFi signals to extract the respiration rates of two persons

[3], [8]. In [7], Root-MUSIC algorithm is leveraged to obtain

the respiration rates of multiple persons. [5] applies tensor

decomposition on the phase difference to create a CSI ten-

sor and estimate multiple persons’ respiration rates. These

methods are based on the assumption that different people

have different respiration pattern. Moreover, these approaches

cannot map the estimated respiration rates to each of the

monitored persons, which is essential to perform respiratory

state analysis of each target person. In [16], [23], FMCW radar

is applied to separate the signals reflected by different persons

based on their reflection time. However, it requires specialized

and expensive hardware and cannot give precise estimation if

the two persons are too close to each other.

VII. LIMITATION AND FUTURE WORK

For respiration monitoring with WiFi signals, the respiration

pattern on the received signals has different levels of amplitude

change for different locations in the Fresnel zones. Although,

this feature brings opportunities for multi-person respiration

monitoring, and we can even map the identified respiration

states to the corresponding persons, the performance will

degrade with the increasing of number of people, as there

will be more constraints in the optimization process, making

the deployment not well suited for each of the person.

For the future work on multi-person respiration monitoring

with WiFi signals, insight can be given to the 60GHz millime-

ter wave WiFi devices, in that the 60GHz millimeter wave

has shorter wavelength (5mm) [24], which is much smaller

than that of the 2.4GHz and 5GHz WiFi devices. Therefore,

while breathing, the chest movement is more like to go through

multiple Fresnel zones. However, 60GHz millimeter wave

has high directionality which also poses challenges and multi-

person respiration monitoring and the 60GHz WiFi devices

are quite expensive currently for wide deployment .

VIII. CONCLUSION

In this paper, we develop a multi-person sleeping respi-

ration monitoring system with COTS WiFi devices. We try

to separate the effects of multiple person’s respiration on the

received WiFi signals, and map the identified respiration states

to individual persons. The key insight of our system comes

from the WiFi Fresnel zone model, which indicates that the

chest movement of breathing can cause different levels of

amplitude change on the received WiFi signals at different

locations. Thereby, we manage to find the optimal deployment

of the WiFi transceiver antennas with optimization process

and take the movement model and sleeping posture change

into account. Then, the WiFi transceiver antennas are placed

at specific places such that each person’s respiration only

dominates the signals received from a specific receiver.
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