
TSAR: a fully-distributed Trustless data ShARing
platform

Hanqing Wu∗, Jiannong Cao∗, Shan Jiang∗, Ruosong Yang∗, Yanni Yang∗, Jianfei He†
∗The Hong Kong Polytechnic University, Hong Kong, China

†Huawei Technologies Co. Ltd., Shenzhen, China

{cshwu,csjcao,cssjiang,csynyang,csryang}@comp.polyu.edu.hk, jeffrey.he@huawei.com

Abstract—Nowadays is the big data era. A large amount of
data are generated which can be valuable for business, healthcare,
transportation, etc. To promote the dissemination of the valuable
data, researchers have been trying to design and develop data
sharing platforms. However, the existing platforms fail to address
at least one of the three issues: trustworthiness, data hetero-
geneity, and authenticability. To this end, we propose TSAR,
a fully-distributed Trustless data ShARing platform. In detail,
we architect TSAR on Blockchain to remove the dependency
on reliable third parties, which realizes the trustworthiness.
Moreover, we propose a general data schema to represent raw
data, which handles the problem of data heterogeneity. Finally,
we record the data transaction as well as user-group information
on Blockchain to achieve authenticability. To demonstrate the
practicability and effectiveness of TSAR, we implement it in a
minimal-viable-product fashion and evaluate the performance in
terms of throughput and response time.

Index Terms—Blockchain, distributed systems, data sharing,
access control

I. INTRODUCTION

Human beings benefit a lot from big data analytics. For ex-

ample, the companies analyze the behaviors of their customers

based on the collected data and produce the products more

suitable for the customers [1]; the hospitals take advantage of

the gene data and daily data of the individual for more precise

disease treatment and prevention [2]; the airports schedule the

boarding of thousands of planes more efficiently by fusing

data of weather, ground transportation [3], etc.

Concerning big data analytics, usually data from multiple

sources are required for one application. Take the taxi as

an example. To allocate the taxi drivers more appropriately,

various data are needed such as weather data, POI data, traffic

data and so on [4] [5] [6]. These data are from various

institutions such as the bureau of weather, road transport, and

geology, etc . In such case, data sharing is in urgent need to

achieve taxi driver allocation.

However, data sharing is performed in a primitive way in

most of the big data analytics applications [7]. That is, the

companies figure what data is needed and ask other institutions

whether they can offer the desired data. Then, the question is

why the data owner does not want to publish their data directly.

It is because of the following reasons. On the one hand, the

institutions who own the data are not aware of the value of

data. On the other hand, it is complicated, inefficient, or unsafe

for the data owners to publish data. Also, it is not guaranteed

that the agency will not leak the data. Indeed, the data owners

have an alternative to put the data on their official websites

which can be hardly guaranteed that the sites can be found by

the demander.

To this end, it is essential and urgent to build a data sharing

platform. In research community and market, there are few

data sharing platforms [8][9][10]. However, they all suffer

from at least one of the following issues. First, they require

full trustworthiness from the data owners. Second, the shared

data can be heterogeneous, thus requires significant efforts to

be managed. Third, the users can have various requirements

on the access control policy, for example, to share the data

with a specific organization whenever they request it.

In this paper, we propose TSAR, a fully-distributed Trust-

less data ShARing platform. TSAR addresses the above

three issues successfully as follows. TSAR is architected on

Blockchain [11], which achieves decentralization. Since there

is no third party involved, TSAR is trustless which requires no

trust from the data owners. Moreover, we propose a metadata

schema for the data owners to publish their data. In this way,

only the metadata can be accessed publicly not the raw data

stored locally. Finally, TSAR provides a Blockchain-based

authentication mechanism, which automates the access control

of the shared data. The data owners can specify the access

control rules in the shared metadata.

The contributions of this paper are summarized as follows:

• We propose TSAR, a fully-distributed data sharing plat-

form, which addresses three critical issues, namely trust-

worthiness, data heterogeneity, and lack of automatic

access control mechanism, in existing systems.

• A Blockchain-based authentication mechanism is pro-

vided in TSAR. It allows the data owners to specify

the access control rules in the shared metadata, which

enhances the user-friendliness of TSAR.

• We implemented TSAR in a minimal-viable-product fash-

ion. The implementation demonstrates its practicability.

We further evaluate the performance of TSAR concerning

throughput and response time.

This paper is organized as follows. Section II introduces

related works. Section III demonstrates the system and module

design, and the architecture of TSAR and three main functions.

Section IV shows the system implementation and evaluation.

Finally, section V concludes the paper.

350

2018 IEEE International Conference on Smart Computing

978-1-5386-4705-9/18/$31.00 ©2018 IEEE
DOI 10.1109/SMARTCOMP.2018.00028

II. RELATED WORKS

A. Data Sharing Platforms and Tools
The need of providing easy-to-use tools for sharing big data

has resulted in a number of platforms and tools. The large scale

organized communities, like High Energy Physics [12], have

already developed their own data management systems which

is out of scope for this research. We also consider general

file hosting services such as Google Drive [13] out of scope.

Four closely related systems that have emerged in the past few

years are discussed in detail below: Zenodo [14], CKAN [15],

Figshare [16] and IPFS [17].
Zenodo [14] is a research data repository as created and

hosted by OpenAIRE and CERN to provide a place for

researchers to deposit datasets. Zenodo code is open source,

and is built on the foundation of the Invenio digital library.

It is a general-purpose open access repository and it sup-

ports all type of files. Data can be published under different

types of licences and it can be flexible controlled. Zenodo

assigns a unique DOI to the data and provides APIs for

uploading data and harvesting metadata. The Comprehensive

Knowledge Archive Network (CKAN) [15] is a web-based

open source management system for the storage and distri-

bution of open data. It has developed into a powerful data

catalogue system which mainly used by public institutions

seeking to share their data with the general public. CKAN

supports permanent URIs for citation, e.g. DOIs, by extension

packages. It supports RESTful JSON API with required tools

for querying and accessing data. Figshare [16] is an online

digital repository where researchers can preserve and share

their research outputs, including figures, datasets, images, and

videos. In adherence to the principle of open data, it is free

to upload content and free to access. Users can upload files

in any format, and items are attributed a DOI. Figshare has

different functionalities dependant on being authenticated user

or not. InterPlanetary File System (IPFS) [17] is a content-

addressable, p2p hypermedia distribution protocol. Nodes in

the IPFS network form a distributed file system. It is a p2p

distributed file system that seeks to connect all computing

devices with the same system of files. IPFS could be seen

as a single BitTorrent swarm, exchanging objects within one

Git repository. In other words, IPFS provides a high through-

put content-addressed block storage model, with content-

addressed hyperlinks. IPFS combines a distributed hashtable,

an incentivized block exchange, and a self-certifying names-

pace.

B. Traditional Data Sharing and Transaction Models
Since there is a need for data sharing and data transactions,

traditional models exist and are providing services for data

sharing and trading. However, the traditional models can not

protect the security and interests of both data supplier and data

demander. Here we classify the traditional data sharing and

transaction models into twofold: Data Hosting Center (DHC)

and Data Aggregation Center (DAC).
In DHC model, each agency will host, upload and publish

its own data to the central database which is controlled and

maintained by the DHC. The DHC is responsible for the data

exchanging and trading with external agency. After the data

is hosted, the data is completely owned by the DHC. All the

follow-up applications of the data are independent from the

agency. This model is widely used in the current data sharing

platform due to its character of convenience, easily operating

and low cost.

In DAC model, the Center links data services through the

API interface among agencies. Data agencies do not need to

report, upload to the DAC in advance. The data is still owned

and managed by the data agencies. When an agency needs

to search the data, it will use the real-time interaction with

the DAC to send the data request. The DAC will relay and

broadcast this request to other agencies. Once other agencies

with the target data response to this request and return the

data, the DAC will collect all the data and send back to the

data demander. However, it is not hard to find that the DAC

has the ability and the opportunity to retain the data. The DAC

can accumulate the data during sharing, and it will gradually

become a DHC.

III. SYSTEM AND MODULE DESIGN

In this section, we first describe the architecture of TSAR

in subsection. III-A. Then, we introduce the three modules,

i.e., data publishing, data retrieval, and data sharing in detail

from subsection. III-B to subsection. III-D.

A. System Overview

The system architecture is illustrated in Fig. 1. For each

user who is using TSAR, he/she uses five local components

to perform three network functions. The five components are

the raw data, the metadata, the metadata chain, the sharingdata

chain, and the TSAR interface, while the three network

functions are data publishing, data retrieval, and data sharing.

First, if a user owns some raw data to be shared, the user

need to notify the other users in TSAR network that there is a

piece of newly published data. The process of data publishing

involves with the components of raw data, metadata, and

metadata chain. Specifically, the raw data stored by each

user locally is transferred into metadata, and the metadata is

published on the metadata chain, which is accessible by all the

users on TSAR network. The metadata chain is a Blockchain,

which stores metadatas as transactions. Second, the function of

data retrieval is required when a user wants to search data with

some keywords. Finally, when a user wants to get a certain

data, data sharing is needed.

B. Data Publishing

In traditional data sharing platform, the users have to upload

their raw data or metadata to achieve publishing data. Under

this schema, a centralized server collects the uploaded data

and display them. This method heavily relies on a trustworthy

service provider. By saying trustworthy, it means that the

service provider is not supposed to make any modification

on the uploaded data. To remove such a centralized service

351

Raw Data Metadata Metadata
Chain

Sharingdata
Chain

TSAR Interface

User 1

Raw Data Metadata Metadata
Chain

Sharingdata
Chain

TSAR Interface

User 2

Raw Data Metadata Metadata
Chain

Sharingdata
Chain

TSAR Interface

User 3

Raw Data Metadata Metadata
Chain

Sharingdata
Chain

TSAR Interface

User 5

Raw Data Metadata Metadata
Chain

Sharingdata
Chain

TSAR Interface

User 4

Raw Data Metadata Metadata
Chain

Sharingdata
Chain

TSAR Interface

User 6

TSAR Interface:

1. Data Publishing

2. Data Retrieval

3. Data Sharing

Fig. 1. System Architecture of TSAR

Raw Data Metadata

Data Record

URL to display Metadata

Encrypted
Data Record

TSAR Interface

User ID

Metadata Chain

User

Fig. 2. Flowchart of Data Publishing

provider, we propose to use metadata chain for publishing data

in this subsection.

Fig. 2 shows the proposed procedure for a user to publish

data which is divided into three steps: 1) packing raw data

into data record with signature; 2) broadcasting and verifying

the data record; 3) synchronize of metadata chain.

The input of the data publishing procedure is the user’s

raw data. The raw data can be gigabytes and even terabytes.

If the raw data is directly published, it is nearly impossible

to guarantee its copyright. Also, it is a huge burden to the

network. To this end, we define a new data type, metadata,

for purpose of describing and publishing the raw data.

The metadata is a description of the raw data which contains

the data schema, a set of keywords, a small amount of sample

data, the acquisition time and the data size. The format of the

metadata is defined so to fully describe the raw data and for

purpose of high-performance retrieval. The size of a piece of

metadata is around several hundreds of kilobytes. Compared

to the huge-size raw data, it significantly reduces the burden

of the network.

After transforming the raw data to metadata, the metadata

is published via HTTP service. In this way, everyone in the

network can view the metadata via the corresponding URL.

Also, the published metadata cannot be modified by others.

However, there are still two issues to handle. The first issue

is how to make other users in the network aware of the newly

published data. The second issue is how to guarantee that

the metadata is not modified by its owner after publishing.

To address these two issues, we propose a metadatachain

mechanism for decentralized recording of data publishing.

After a user generates the URL to display the metadata,

a data record which composes of user ID, checksum of raw

data, checksum of metadata, and the the URL to display the

metadata is generated. The data record is encrypted using the

user’s private key and broadcast to the whole network using

the TSAR interface.

If a user receives a data record, the data record will be

verified as follows:

• identify the user using the signature in the record;

• acquire the public key of the data publisher;

• use the public key to decrypt the data record;

• whether the data format is as defined;

• whether the signature is the same with publisher;

• whether the URL contained in the data record is acces-

sible;

• whether the metadata in the URL is as defined;

• whether the metadata checksum is the same with the one

in the data record;

The conditions are checked one by one. If there is any

unsatisfied condition, the data record will be aborted. Everyone

in the network will check every data record to make the data

records consistent. If a data record is verified by a user, it will

be put into the user’s local metadata pool. Note that it does

not mean that a data record is published if it is in the metadata

pool. At a fixed frequency, the data records in the metadata

pool will be packed into MetadataChain. If a data record is

packed into the MetadataChain, it is published. Each node in

352

the network will synchronize the MetadataChain.

C. Data Retrieval

As for data retrieval, there exists a central server to respond

to users’s query in traditional data sharing platform. And for

P2P network, each user sends own query to the neighbor peer

and the neighbor peers respond the query and send the query

to its neighbor peer. It is obviously, the central one needs a

central sever and how to balance load is a difficult problem,

and the later one, broadcasting the query to all the peers is a

time-consuming operation, and users may get response with

large delay.

In our system, we design a totally decentralized one, and

do not need server and broadcast the query. As mentioned in

former section, each metadata would publish on a Metadata

Chain, and users’ own client of our system respond to its own

query according to the Metadata Chain. The procedure is as

following:

1) Client Metadata Chain synchronization

2) Word extension and similarity

3) Data retrieval and show results

For the users who have attended the system will have

performed Metadata Chain Synchronization as mentioned in

former section. However, for new user, or the user who only

want to search the data they need and have not published any

data, in their client, they have not synchronize the Metadata

Chain. So in data retrieval, client Metadata Chain block

Synchronization is the first step. The procedure of Metadata

Chain Synchronization is same to the former section. However

synchronize the total chain may be a time-consuming cost, we

may consider how to avoid download the whole chain in the

future.

1) Word Extension and Similarity: The aim of data retrieval

is to respond the user’s query, and in the Metadata Chain,

especially in each metadata recorded in each block, there

are some key words to describe the semantic information of

the data, the retrieval process actually is to backtrack each

metadata and match the query to the key words.

In this section, we will introduce how to extend query key

words and how to match the query key words and the metadata

key words.

In practical system, like search engine, users query is always

short and contain very little information. So only use the

query words could not get available results, and common

method to solve this problem is to extend the query words

with extra knowledge. There are so many human-designed

knowledge base such as WordNet[18] which contains syn-

onyms, antonyms, word definitions and so on. In our system,

for each query word wi, we extract the synonyms 1 of the

word through wordNet, and use all these words as the query

words. And in order to avoid different word form, such as

“traffic” and “traffics”, we utilize the NLTK [19] interface to

get the stemming form of each key words. 2 is the final query

keywords set and we use Q to search for the related data.

S = {wk|wk ∈ Syn(wi)} (1)

Q = {Stem(w)|w ∈ S} (2)

T = {Stem(w)|w ∈ R = Syn(wtag)} (3)

Jacarrd(Q,T) =
Q ∩ T

Q ∪ T
(4)

Then it is important to match the query key words with

each metadata key words. In order to publish more data in

each block, each metadata have very little tags as key words,

and directly compare these tags with query key words it is

also difficult to find the semantical related one. We extend the

tags of the metadata using the similar method of that with

query words. We could get the final tags T 3. And we use the

Jacarrd Similarity 4 to calculate the distance between query

key words and metadata tags.

2) Data Retrieval and Show Results: Data retrieval is

similar to Search Engine, and we want to return a list of

data which may semantically similar to user’s query. In this

subsection, we introduce the whole procedure of data retrieval

and how to rank the data. And in order to speed the retrieval

process and according to the locality principle, we build a

cache for each user to record recent search results. The key

idea of the data retrieval is to traverse the cache data. After

getting preliminary results of the semantically similar data,

we want to rerank the results so that the data with smaller

rank number will be more needed. Following a simple idea,

the data published more early, the data will be less important.

So we add a weight decay to the data similarity according

to the published date, shown in Formula 5. FS means the

final similarity, S means the similarity calculated the former

algorithm, D means the publish date of the current data, DR

means the latest publish date during all the list DL.

FS = S ∗ e(D−Dr) (5)

D. Data Sharing

The goal of distributed big data sharing platform is to

ensure the authenticity of the data, reliability of the sharing

mechanism and legality of user behavior. The module of data

sharing is composed of two functions: (1) data usage under

flexible and safe control; (2) reliable data sharing mechanism.

With the above two functions, users can not only freely set

different permission modes for sharing data, but protect the

data ownership. Meanwhile, for the data requester, they can

also guarantee the authenticity for the data they want.

1) Data Usage Mechanism: The data usage module of the

system is mainly designed to ensure the controllability and

reliability for the data sharing. For the controllability of data

sharing, the user can set different permissions to the data

requester to obtain and use the data through the ID of the

requester. The way of data usage is divided into following

two models according to the identity of the data requester.

2) Unlimited Data Usage: Data requesters with unlimited

data usage permission search the intended data through Meta-

dataChain, retrieve the data, and send a data-sharing request

to the owner. Once the request has been approved by the

owner, the intended data can be sent to the requester. Since

353

Data A1

①

② Metadata A1

TSAR
Inter.

Data A1 check
Data A1 encryption

③
 ④

A

⑤

TSAR Inter.

B

A1 QueryA1 Query

Fig. 3. Mechanism to guarantee data authenticity

TSAR is distributed without centralized party involved, there

are times when the data sent by the data owner does not match

the original data information posted by the data owner in the

Metadata Chain. In order to guarantee the authenticity of the

data obtained by the requester, the data authenticity verification

function is involved in the TSAR interface, as shown in Fig.

3. After B retrieves Data A1 from the Metadata Chain, he

broadcasts his request for Data A1 to the entire network. Data

owner A sends the data to B via the TSAR interface after

receiving B’s request. Before the Data A1 is sent to B, the

TSAR interface first checks the data. If the metadata parsed

from the data is the same as the metadata A posted before,

TSAR will encrypt Data A1 and send it to B. B will get the

encrypted data of Data A1. If the metadata parsed by TSAR

does not match Metadata A1, the system will reject the data

sharing action and ask A to send the original data of Data A1.

3) Limited Data Usage: Users with limited data usage

permission cannot directly access the data owner’s original

data, but can obtain the desired processing result by sending

an operation instruction to the data owner. In this case, the

system not only needs to ensure that the data owner’s data

is not maliciously acquired or damaged, but also ensures that

the data requester can obtain the data processing result more

conveniently and accurately.

4) Data Sharing Mechanism - Sharingdata Chain: Data

ownership protection is one of the key functions in distributed

big data sharing platform. There are cases when the data

requester tampers and republishes the data obtained from

other users or even derives profits from it, which seriously

infringes the ownership of the data owner. Therefore, through

the mechanism of Sharingdata Chain, the system stores the

record of data sharing information in the Sharingdata Chain.

The data sharing records on the Sharingdata can be regarded

as the evidence for the data ownership, and it can also be used

for tracking the behavior of data sharing.

The design of Sharingdata Chain follows the concepts of

blockchain. Sharingdata Chain makes some innovations on the

basis of blockchain technology for the scenario of big data

sharing. The main role of Sharingdata Chain is to store the

data recording record as a proof for the data ownership. A data

sharing record in the Sharingdata Chain contains the following

information:

1) Data owner, data requester and their signatures

2) metadata pointer, verification code and URL of the

shared data

3) Sharing time and the permission mode

4) Other additional terms

For users with permission of unlimited data usage, the

workflow of the Sharingdata Chain is shown in Fig. 4). Data

requester B publishes the request and data sharing contract for

requesting Data A1 to the entire network. After receiving the

request, user A checks and sends the encrypted Data A1 to user

B. During this period, A packs the decryption key (Decryption)

of the encrypted Data A1 data together with the signed data

sharing contract into Sharingdata Chain. After the Sharingdata

block containing the data sharing record is authenticated, B

can obtain the decryption key and then recover the encrypted

Data A1.

Data A1

①

② Metadata A1

TSAR
Inter.

Data A1 check
Data A1 encryption

③
 ④

A

⑤

TSAR Inter.

B

A1 QueryA1 Query

Data A1
⑧ ⑦

Decryption
Contract

④
①

Decryption
Contract

④
①+

Sharingdata
Chain⑥

Sharingdata
Chain⑥

o

Proof

Fig. 4. Workflow of Sharingdata Chain for unlimited data usage

For users with permission of limited data usage (as shown

in Fig. 5), data requester B publishes the request and contract

for using Data A1 to the whole network and then sends the

code and its results on the data sample. Afterwards, user A

processes the Data A1 with the code and sends the encrypted

processing result to B through TSAR interface. At the same

time, user A packs the decryption key (Decryption) together

with the signed data sharing contract as a data usage record

into the Sharingdata Chain. As long as the block with this

record is authenticated, user B will get the decryption key to

retrive the encrypted data result.

①

②

TSAR Inter.

③

④
A

⑤

TSAR Inter.

B

A1 QueryA1 Query

Data A1
Sandbox

Code Data A1
Sandbox

Code

Code Test result

Metadata A1
A1 Sample

result

result Decryption
Contract

④
①

Decryption
Contract

④
①+

Sharingdata
Chain⑥

Sharingdata
Chain⑥

onon

Proof

⑦⑧
result

Fig. 5. Workflow of Sharingdata Chain for limited data usage

IV. SYSTEM IMPLEMENTATION & EVALUATION

The key challenge in implementation is the two

Blockchains, i.e., metadata chain and sharingdata chain. In

TSAR, we implement Blockchain under the framework of

354

gRPC [20]. A transaction in TSAR is defined to consist of six

fields, namely timestamp, source, destination, hash value, type,

and body. The timestamp and hash value are the approximate

submitting time and the SHA256 [21] hash value of the

transaction.

30

25

20

15

32.5

12.5
5 6 8 10 12 14 16 18 20

Number of nodes

27.5

22.5

17.5

T
hr

ou
gh

pu
t i

n
tr

an
sa

ct
io

ns
 p

er
 se

co
nd

Fig. 6. Throughput v.s. Number of Nodes

60

50

40

30

20

10

0
5 6 8 10 12 14 16 18 20

Number of nodes

R
es

po
ns

e
tim

e
in

 se
co

nd
s

Fig. 7. Response Time v.s. Number of Nodes

We evaluate the performance of the implemented

Blockchain by investigating how the number of nodes

affects the throughput and response time. We conduct

experiments on 5, 8, 10, 15, and 20 nodes respectively. In

each set of experiment, each node serves as both client and

server. That is, each node generate transactions and pack

transactions at the same time. The transaction generation rate

for each node is 5 transactions per second. The evaluation

result is shown in Fig. 6 and Fig. 7. The evaluation results

indicate that as the number of nodes increases, the system

throughput decreases and the response time increases. This is

true since the system becomes more robust if there are more

replica of the data in the network. However, it requires more

network resources, which results in degradation of the system

performance.

V. CONCLUSION

In this paper, we propose TSAR, a fully-distributed Trust-

less data ShARing platform. There are three key innovation

points in the design of TSAR. First, we architect TSAR

on Blockchain, which removes the need of dependable third

parties. Second, we propose to share metadata, which is a

description of the data, rather than raw data, which decreases

the demand of network resources and copes with the issue

of data heterogeneity. Third, we record the data transaction

on Blockchain, which achieves non-repudiability. We imple-

ment TSAR in a minimal-viable-product fashion and evaluate

the system performance concerning throughput and response

time. The experimental results indicate the practicability and

effectiveness of TSAR.

ACKNOWLEDGMENTS

This work is supported by Huawei Technologies Co. Ltd.

with project code P15-0540 and RGC CRF with project

number CityU C1008-16G.

REFERENCES

[1] S. Erevelles, N. Fukawa, and L. Swayne, “Big data consumer analytics
and the transformation of marketing,” Journal of Business Research,
vol. 69, no. 2, pp. 897–904, 2016.

[2] W. Raghupathi and V. Raghupathi, “Big data analytics in healthcare:
promise and potential,” Health information science and systems, vol. 2,
no. 1, p. 3, 2014.

[3] M. Batty, “Big data, smart cities and city planning,” Dialogues in Human
Geography, vol. 3, no. 3, pp. 274–279, 2013.

[4] W. Li, J. Cao, J. Guan, M. L. Yiu, and S. Zhou, “Efficient retrieval
of bounded-cost informative routes,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 10, pp. 2182–2196, 2017.

[5] X. Liu, K. Li, G. Min, Y. Shen, A. X. Liu, and W. Qu, “Completely
pinpointing the missing rfid tags in a time-efficient way,” IEEE Trans-
actions on Computers, vol. 64, no. 1, pp. 87–96, 2015.

[6] S. Jiang, J. Cao, Y. Liu, J. Chen, and X. Liu, “Programming large-scale
multi-robot system with timing constraints,” in Computer Communica-
tion and Networks (ICCCN), 2016 25th International Conference on.
IEEE, 2016, pp. 1–9.

[7] D. Lazer, R. Kennedy, G. King, and A. Vespignani, “The parable of
google flu: traps in big data analysis,” Science, vol. 343, no. 6176, pp.
1203–1205, 2014.

[8] C.-K. Chu, S. S. Chow, W.-G. Tzeng, J. Zhou, and R. H. Deng, “Key-
aggregate cryptosystem for scalable data sharing in cloud storage,” IEEE
transactions on parallel and distributed systems, vol. 25, no. 2, pp. 468–
477, 2014.

[9] B. Cui, Z. Liu, and L. Wang, “Key-aggregate searchable encryption
(kase) for group data sharing via cloud storage,” IEEE Transactions on
computers, vol. 65, no. 8, pp. 2374–2385, 2016.

[10] R. A. Poldrack and K. J. Gorgolewski, “Making big data open: data
sharing in neuroimaging,” Nature neuroscience, vol. 17, no. 11, p. 1510,
2014.

[11] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “Blochie:
a blockchain-based platform for healthcare information exchange,” in
Smart Computing (SMARTCOMP), 2018 IEEE International Conference
on (to appear). IEEE, 2018, pp. 1–8.

[12] “High energy physics (hep),” https://science.energy.gov/hep/, accessed:
2018-01-25.

[13] “Google drive,” https://www.google.com/drive/, accessed: 2018-01-25.
[14] “Zenodo: a research data repository,” https://zenodo.org, note = Ac-

cessed: 2018-01-25,.
[15] “Ckan: Comprehensive knowledge archive network, the open-source

data portal platform,” http://ckan.org, note = Accessed: 2018-01-25,.
[16] “Figshare - credit for all your research,” https://figshare.com/, accessed:

2018-01-25.
[17] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.
[18] “Wordnet,” https://wordnet.princeton.edu/, accessed: 2018-01-25.
[19] “Natural language toolkit,” http://www.nltk.org/, accessed: 2018-01-25.
[20] “grpc: A high performance, open-source universal rpc framework.” https:

//grpc.io/, accessed: 2018-01-25.
[21] “Device for and method of one-way cryptographic hashing,” https:

//www.google.com/patents/US6829355, accessed: 2018-01-25.

355

