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Abstract—Collaborative edge computing (CEC) is a recently popular paradigm enabling sharing of data and computation resources
among different edge devices. Task offloading is an important problem to address in CEC as we need to decide when and where each
task is executed. However, it is challenging to solve task offloading in CEC as tasks can be offloaded to a multi-hop neighbouring
device leading to bandwidth contention among network flows. Most existing works do not jointly consider network flow scheduling which
can lead to network congestion and inefficient performance in terms of completion time. Another challenge is to formulate and solve
the problem considering the dependencies among dependent tasks and conflicting network flows. Few recent works have considered
multi-hop computation offloading; however, these works focus on independent tasks and do not jointly consider the dependencies with
network flows. In this work, we mathematically formulate the problem of jointly offloading multiple tasks consisting of dependent
subtasks and network flow scheduling in CEC to minimize the average completion time of tasks. We have proposed a joint dependent
task offloading and flow scheduling heuristic (JDOFH) that considers both dependencies in task DAG and start time of network flows.

Performance comparison done using simulation for both real application task graph and simulated task graphs shows that JDOFH
leads to up to 85% improvement in average completion time compared to benchmark solutions which do not make a joint decision.

Index Terms—Offloading, DAG tasks, Network flow scheduling, Collaborative Edge Computing, Internet of Things.

1 INTRODUCTION

Collaborative edge computing (CEC) has become a pop-
ular computing paradigm recently in which multiple stake-
holders (IoT devices, edge devices, cloud, or end-users) col-
laborate with each other by sharing data and computation
resources to satisfy individual and/or global goals. There
are many challenging issues to be addressed in CEC, includ-
ing collaboration space formation, social trust-based incen-
tive policies, cooperation policies, inter-domain cooperation,
smart collaborative networking, and mobility management
[1]. Many existing works such as [2], [3], [4], [5], [6]], etc. have
studied different problems related to collaborative edge
computing. The work in [4] proposed a framework called
CVEC to support large-scale vehicular services by using
both horizontal and vertical collaboration. Another work
[6] proposed CEC among small-cell base stations (SBSs) by
forming SBS coalitions to share computation resources. In
our previous work, we proposed Edge Mesh [7] that pushes
the computation within the network by sharing data and
computation tasks among mesh network of edge devices
instead of sending all the data to a centralized server.
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One fundamental problem in CEC is to offload and
schedule computation tasks among edge devices. However,
unlike many existing works that offload computation to
a single-hop neighbour, tasks in CEC can be offloaded to
a device at a multi-hop distance depending on resource
availability. Multi-hop offloading has an advantage over
single-hop by enabling the use of underutilized resources
in a mesh network of devices. Furthermore, application
scenarios such as unmanned aerial vehicle (UAV) robot
swarms, autonomous vehicles, etc. have few ground stations
or road-side units that can be connected through a multi-
hop network with the other devices. Multi-hop offloading
is essential in such scenarios as we can utilize computation-
intensive edge devices which can be at a multi-hop distance
from many resource-constraint devices. There are some re-
cent works in literature such as [8], [9], [10], [11]], etc. that
have studied multi-hop computation offloading problem.
These works, however, focus on independent tasks and
usually do not jointly consider network flow scheduling.
Network flow scheduling includes making a decision on
the start time of the flows. Task offloading without jointly
considering network flow scheduling leads to network con-
gestion and inefficient performance as network links have
limited bandwidth capacity.

This paper studies the problem of multi-hop dependent
task offloading in CEC with the objective of minimizing the
average completive time of all tasks. The problem considers
jointly offloading tasks, where each task consists of multiple
dependent subtasks, and scheduling network flows that are
generated to transfer data between dependent subtasks. The
task offloading problem includes making a decision on both
offloading the subtask to a remote device and scheduling
start time of each subtask within the task. The task offload-
ing decision is dependent on the decision of start time of
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flows made in network flow scheduling problem. One of
the main challenging issues with the problem is that com-
munication cost associated with transfer of data between
dependent subtasks is not constant and difficult to estimate
as there can be multiple simultaneous network flows due
to different subtasks within multiple tasks. The decision on
the start time of network flows changes the communication
cost of transferring data and hence, the start time of different
subtasks. The problem also considers different release time
of different tasks. This overall dependence among different
decision variables makes it difficult to formulate and solve
the problem.

Many existing works have studied scheduling and of-
floading of dependent tasks such as [12], [13], [14], etc. These
works, however, make task scheduling decision without
jointly considering network flow scheduling. Some works
such as [[15] consider network resources but do not leverage
dependency among tasks to make task offloading decision.
Other works such as [16] assume the underlying network
scheduler to make task scheduling decisions. Compared to
these works, our work considers jointly making a decision
on offloading of multiple DAG tasks and scheduling net-
work flows. Our proposed solution leverages the knowl-
edge of both parallelism and dependency among subtasks
in a DAG task to make offloading decisions. Our work
does not just consider network bandwidth to decide task
offloading but also jointly makes decisions on the start time
of network flows to avoid network congestion. We have
shown in evaluation that joint decision leads significantly
better performance, in terms of average completion time,
compared to making task offloading and network flow
scheduling decision separately.

This problem is useful for applications such as large-
scale multi-camera video analytics where video and image
data from multiple cameras is used for generating situa-
tional awareness. The idea of collaboration among different
edge devices for video processing has been discussed in
some recent works such as [17], [18]], etc. The work in [17]
discusses the conceptual idea of collaborative edge comput-
ing for video processing. The work in [18] developed a real-
time Edge video analytics system named REVAMP?T for
multi-camera privacy-aware pedestrian tracking. The use
of collaborative edge computing has also been studied for
other application domains such as vehicular networks [4],
small-cell base stations [6], etc. The work in [19] developed
a lightweight virtualization model to support collaboration
among edge devices in smart city and other related applica-
tions.

The main contribution made in this paper are:

1) We have mathematically formulated the problem of
multi-hop offloading of multiple DAG (directed acyclic
graph) tasks in CEC with the objective of minimizing
the average completion time of tasks. We consider the
tasks to be heterogeneous in terms of the computation
load of subtasks and input data. The tasks can set to be
generated at any device at different release times. The
formulated problem is shown to be NP-hard.

2) We propose a joint dependent task offloading and flow
scheduling heuristic (DOFH) which solves the problem
by considering the start time of associated network
flows to determine the offloading device for each sub-
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task. JDOFH also leverages the global knowledge of all
task graphs by considering each task graph as a set of
cosubtask stages. The execution schedule is determined
based on priority of each cosubtask stage.

3) We have conducted simulation experiments to evaluate
the performance of JDOFH and compare it against other
benchmark solutions. The performance comparison is
done for both real application task graph of FFT with 4
points and randomly generated task graphs by varying
different input parameters including the number of
tasks, number of subtasks, number of devices, and
communication-to-computation ratio of task graphs.
The performance comparison JDOFH leads to up to
25% and 85% improvement in average completion time
compared to joint scheduling solution based on list
scheduling algorithms and other benchmark solutions
respectively.

The rest of the paper is as follows. In Section 2, we
discuss some related works. In Section 3, we give the system
model and problem formulation. In Section 4, we describe
the proposed solution, JPOFH, for the multi-hop dependent
task offloading problem. In Section 5, we explain the results
obtained during performance evaluation. Finally, we give
the conclusion in Section 6.

2 RELATED WORKS

Existing works in literature have addressed different types
of computation offloading problem. Table [1| gives a com-
parison of existing works on computation offloading. Most
of existing works consider the single-hop computation of-
floading problem. Some recent works such as [9], [8], [10],
[11]], etc. have addressed multi-hop computation offloading
problem. These works usually consider offloading of inde-
pendent tasks to a single remote site and routing path se-
lection in a multi-hop network. Compared to these existing
works, this work considers offloading of multiple tasks, each
consisting of dependent subtasks. Our work also considers
scheduling of network flows arising due to transfer of data
between dependent subtasks which has not been much
explored in these works.

Scheduling and offloading problem of tasks with a di-
rected acyclic graph (DAG) model has been studied exten-
sively in the literature. The work in [23] proposed hetero-
geneous earliest finish time (HEFT) algorithm for placing a
DAG task on heterogeneous processors. Many other works
proposed similar list scheduling algorithms based on the
work in [23]. Recently some have studied the problem of
scheduling dependent tasks for various scenarios including
single DAG task [12], multiple DAG tasks [[13], within a clus-
ter [14], across geo-distributed clusters [15], etc. The work
in [14] proposes a scheduler, Graphene, to place multiple
tasks with dependencies within a cluster by identifying the
troublesome subtasks within each task. The work in [15]
proposes Tetrium for scheduling tasks with dependencies
in geo-distributed clusters by considering both computation
and network resources. The work in [12]] gave a lower bound
solution for scheduling a single DAG task. Another recent
work [21] has proposed a solution to schedule multiple
DAG tasks by proposing a new abstraction branch and
considering the urgency of different branches within a DAG
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TABLE 1: Comparison of existing works

Existing works | Multiple tasks Dependency- Bandwidth- Joint  network
aware aware flow decision

| [14] (2016) No Yes No No

|16] (2016) Yes Parallel stages Yes No

[12] (2018) No Yes No No

[15] (2018) Yes Parallel stages Yes No

[20] (2018) No Yes Yes Yes

[13]] (2019), Yes Yes No No

[21] (2019) Yes Yes No No

[9] (2019) Yes No Yes No

[10] (2019) Yes No Yes No

122] (2020) Yes Yes No No

This paper Yes Yes Yes Yes

task. These works, however, either do not jointly consider
network flow scheduling such as in [14], [12], [21], or do
not take dependencies among subtasks to make decisions
[15]. Another recent work [24], similar to our work, also
considers different stages within a DAG task to make
scheduling decisions. However, this work [24] does not
consider multiple DAG tasks and network flow scheduling.

Some works in literature such as [16], [25], [26], [27],
etc. have considered network bandwidth while making task
scheduling decisions. The work in [16] assumes the under-
lying network scheduler to make task scheduling decisions.
Another work [25] considers joint reducer placement and
coflow scheduling problem. However, compared to our
work, these works do not consider multiple DAG tasks
and jointly consider network flow scheduling. There are few
other works such as [28] and [29] which also consider cotask
stages similar to our work. Here, the cotask is usually de-
fined as a set of independent tasks related to each other by a
common application. The work in [28] considers each DAG
job as stages of cotasks and makes task scheduling decisions.
However, it does not consider network flow scheduling.
The work in [29] considered cotask offloading problem
for independent tasks and did not consider network flow
scheduling.

Our previous work in [20] studied data-aware task al-
location problem while jointly considered network flow
scheduling. However, the work in [20] made scheduling
decision for a single task DAG and did not consider het-
erogeneous release time of tasks. Besides, the work in this
paper also proposes a new heuristic solution where the task
offloading and network flow scheduling decision is made in
a single step for each subtask as opposed to different steps
in [20].

3 SYSTEM MODEL AND PROBLEM FORMULATION

This section first describes the system model including
network and application model and then the problem for-
mulation.

3.1 System Model

Fig[T]shows the system architecture of Edge Mesh based on
collaborative edge computing paradigm where the intelli-
gence is distributed and pushed within the network by shar-
ing computation resources and data between mesh network

of edge devices [7]. Edge devices is such an architecture
can be heterogeneous in computation capacity and can also
serve as routers, as shown in Fig Due to the heterogeneity
of devices, computation tasks can be offloaded to an edge
device at a multi-hop distance.

The system architecture includes an SDN controller
which is assumed to have global knowledge by collecting
network and task-related information from all the edge
devices and routers. The role of SDN controller is to act
as a centralized controller with global knowledge, which
is responsible for making the decision for offloading tasks
and scheduling flows in the network. It includes different
functional components responsible for collecting informa-
tion and making scheduling decisions, as shown in Fig
There are some previous works such as [30], [31], etc. which
have used the SDN controller to make scheduling decisions
in wireless networks. The work in [32] proposed meSDN to
extend the control of SDN to mobile devices. The work in
[33] implemented a prototype for the proposed algorithm in
[31].

Although the system model assumes that edge devices
are connected using a wireless network, we have not fully
considered all the issues due to dynamics in a wireless
network such as spatial and temporal variation of wireless
channel conditions, interference of wireless transmission
among neighbouring devices [20]. Nevertheless, these issues
in a wireless network should be considered as part of future
work. The problem formulation in this work has been done
assuming a static network condition. The problem is solved
for an offline setting where we assume the information for
all the tasks and network are already known. In practice,
the cost and other information of executing the tasks on
the different devices can be obtained using an application
profiler [34] [35]. Furthermore, the offloading problem in
this paper is solved for DAG tasks; however, we do not
focus on how the application is modelled as a dependency
graph. The work in [36] surveys different works on appli-
cation profiling and partitioning. Different algorithms have
been proposed in the literature for graph-based modelling
based on the type of graph. The works such as [37], [38], etc.
describe the profiling and partitioning method for graph-
based modelling.

The objective of the problem is to minimize the average
completion time of all the tasks. We have included both
communication and computation cost to make task offload-
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ing and network flow scheduling decisions. The compu-
tation cost includes both waiting time at the devices and
time to execute the task. The communication cost includes
waiting time to start the data transmission, and data trans-
mission cost. We do not include propagation time in com-
munication cost as it is usually very small. Further, we also
ignore the switching cost for routing between subsequent
links in the multi-hop path. In practice, these costs would
influence the total cost; however, we ignore these costs to
simplify the system model. Other works such as [12], [10],
[22] etc. have used similar assumptions to calculate the total
cost.

‘Task scheduler Flow scheduler SDN Controller

Resource discovery  Traffc rules registry

Send scheduling
___ decisions
\ ==

\

Message broker

Receive network and\\ Edge Mesh

task information

| Ed_ge
*;, Devices
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Fig. 1: System Architecture

The network and application model used in formulating
the problem are:

Network model: The communication network is a mesh
network of edge devices, shown to Edge Mesh circle in
Fig [} connected to each other using a multi-hop path. The
communication network is modelled as a connected graph
G = (V, E), where V is the set of devices, V={k|1 < k < M},
and E is the set of links connecting different devices, E =
{exw|k,w € V}. Here, M is the total number of devices. In
the problem description, we sometimes neglect the subscript
and denote the link as e. The weight of each device is PS5y,
which represents the processing speed of each device k
and weight of link ey, represents the bandwidth between
devices k£ and w. The devices can be heterogeneous in
processing speed.

The network is assumed to be connected, i.e. there is
at least one routing path between any two devices in the
network. We assume that the shortest routing path is used
to route the data between the two devices. The shortest path
can be found using Djikstra’s algorithm or another shortest
path algorithm. A binary parameter Y%, (1 for yes, 0 for no)
is used to represent if an edge e lies on routing path between
device £ to device w. The number of hops and bandwidth
of the routing path between devices k and w is represented
by Hy,, and Ry, respectively.

Application model: The application model consists of a
set of tasks, A = {i|]l < i < O}, where O is the to-
tal number of tasks. Each task i is modelled as a DAG
B; = (T;, P;), where T; is the set of dependent subtasks in
task i, T; = {j|1 < j < N;}, and P, is set of dependencies
between the subtasks in task i. Here, N, is the number of
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subtasks in task <. We do not make an assumption on the
dependency among subtasks in the DAG. Each DAG can
have general dependency as shown by an example DAG
task in Fig [2| Each task 7 is assumed to be generated at an
edge device z;|z; € V at release time Trel;. The amount
of input data required for task ¢ is I.D;. Each subtask j in
the task 7 is associated with a computation load CL;;. The
weight of link connecting subtasks j and v of task 7 is Dy,
which represents the amount of data to be transmitted if
the dependent subtasks j and v are executed on different
devices. The set of predecessors and successor subtasks
for subtask j in task % is represented by Pd;; and Sc;;
respectively.

We have assumed each task DAG includes an additional
dummy subtask corresponding to the input data of the task.
This dummy subtask can be inserted at the start without
violating the original task DAG. The total number of subtask
can be changed to N, where N; = N;+1. The dummy sub-
task is numbered N; and is connected to subtasks without
predecessors in original task DAG. The computation load
of dummy subtask, i.e. CL,,-, is set equal to zero and the
weight of link connecting dummy subtask with a successor
subtasks in the task DAG, i.e. D, NlSe, is set as the amount

i

of input data of the task.

Some of the assumptions made in the problem formula-
tion are:

1) The routing path is assumed to be known.

2) The bandwidth for each flow is assumed to be given
and equal to the minimum bandwidth of a link in the
routing path.

3) Each device can execute one task at a time, while other
tasks wait in the queue at the device.

4) Preemptive scheduling of tasks is not allowed.

5) No two flows are allowed to pass through a link at the
same time to consider the interference among simulta-
neous wireless transmissions.

cosubtask
stage

Fig. 2: Example DAG Task

3.2 Problem Formulation

This section describes the constraints and formulates the
problem as an optimization problem. Table [2| summarizes
the notations used in the paper.
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TABLE 2: Notations used in the Paper

G=(V,E) network model, where V is the set of devices and
E is the set of edges

€kw link connecting device k£ and w

PSy processing speed of device k

Yiwe binary parameter to represent if an edge e lies on
the routing path between device £ to device w

Hyw number of hops in the routing path between
devices k and w

Riw bandwidth of the routing path between
devices k and w

A set of tasks

B; = (T3, P;) DAG of task i, where Tj is the set of dependent
subtasks and P; is the set of edges

CLyj computation load of subtask j in task ¢

Dijy amount of dependent data between subtask j
and v in task 4

Pd;; predecessor subtasks of subtask j in task ¢

successor subtasks of subtask j in task %
device where task ¢ is generated

release time of task 7

number of devices

number of tasks

number of subtasks in task

zog3r g

N maximum number of subtasks in all task graphs
P maximum number of edges in all task graphs
Xijk binary variable to represent if subtask j of task ¢ is
executed on device k
Stivj variable to represent start time of data flow between
subtasks v and j of task ¢
Fltiy; variable to represent finish time of data flow between
subtasks v and j of task ¢
T'sij variable to represent start time of subtask j in task ¢
Tfij variable to represent finish time of subtask j in task ¢
F; variable to represent the completion time of task 4
Tft; variable to represent the time instance the task ¢
is finished
Tas;jk start time of the subtask j in task ¢ at device k
Tafij finish time of the subtask j in task 7 at device k
Tcommiy i start time of flow from subtask v to subtask j
in task ¢ with destination at device k
rvalij rank of subtask j in task %
rank;s rank of cosubtask stage s in task ¢
U; set of subtasks in cosubtask stage s in task ¢
S set of all cosubtask stages
i, p index used to represent task ¢ and p
k,w,l,m index used to represent device k, w, [, and m
j,v,7rq index used to represent subtasks j, v, r and ¢
3.2.1 Constraints

The task offloading decision includes making a decision on
when and where each subtask within a task is offloaded. The
constraints associated with task offloading are described in
equation (1)-(5). Each subtask is offloaded to exactly one
device as represented by equation (1).

Z Xijr =1,

keVv

Vie A, jeT; (1)

The problem assumes that processor sharing is not al-
lowed therefore, only one subtask can be executed at one
device at one time as represented by equation (2).
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[ Xiji = Xpgk| * L+ (T'sij = Tfpq)) * (T fij = Tspg) >=0
Viipe A, jeT;, qeT, keV
@
Since each task contains dependent subtasks, a subtask
can start only after preceding subtasks have finished as
represented by equation (3).

TSij > Tfiv Vie A, jetT;, wve Pdij 3)

In case the dependent subtasks are executed on different

devices, a subtask can start after receiving dependent data
from the preceding task as represented by equation (4).

Vi € A,

The relationship between finish time and start time of a
subtask is represented by equation (5). The finish time of a
subtask is equal to sum of start time and time to execute the
subtask at the device.

Tsij > Fltivj j € T;,, veE Pd” (4)

CL;,
Tfij = Tsij —+ -4 * Xijk'

i c A
PS5, Vie A,

keV
)

There are some additional constraints, equation (6)-(8),
added to satisfy the schedule of the inserted dummy sub-
task. The dummy subtask is executed at the device the task
is generated and started when the task is released.

J e,

Ts, o =Trel;, Vie A (7)
Tfn =Trel;, VicA 8)

Network flow scheduling also involves separate con-
straints that are dependent on the task offloading decision.
In this work, we consider network flow scheduling as de-
ciding the start time of flows to transfer data between de-
pendent subtasks executed on different devices. The lower
bound of the start time of a flow is the release time of task
as represented in equation (9).

Stiyj =Trel; Vi€ A, jeT;, vePdy )

The network flow start only after the preceding subtask
has finished as represented by equation (10).

Stiv; = T fin

This work assumes that two flows cannot pass through a
link at the same time as represented by equation (11). If any
two flows pass through the same link then, one of the flows
can start only after other flow is finished. This constraint
also helps to preserve the bandwidth constraint.

Vie A, jeT;,, veEPdy (10)

|kae * Xz'jk: * Xi'uw - }/lme * X;m“l * qum‘ * L +
(Stwj — Fltp,,«q) * (Fltwj — Stprq) >=0

Viipe A, jveT, rq€eT, kwlmeV
(11)
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The finish time of a flow can be calculated directly
once the start time is known. Equation (12) represents the
relationship between start time and finish time of a data
flow.

Di'u' * Hwk:
Flti'u' = Stiv' 2 Xz Xivw
N (12)
VieA, jeT;, vePdy kweV

The task is considered to be finished when the last
subtask within the task has finished execution. We do not
consider the time to send any output data from the last
subtask. This can be included, if required, by adding a
dummy subtask as done in [12]. The completion time of a
task, represented by equation (13), is the difference between
the time instance when the last subtask is finished and the
time instance when the task is released.

Fi = max /Tfij — Trelh

j=1,...N,

i

The constraint of the range of binary decision variable
Xijk is represented by equation (14).

Xijk = {0, 1}, Vi€ A, jeT;, keV (14)

3.2.2 Optimization Problem

The objective function of the problem is to minimize the
average completion time of all tasks. The objective function
considers the time instant each task is finished (7'ft;) rather
than the time period (F;) to complete the task. As T'rel;
is a constant value, it is equivalent to minimizing the time
period to complete the task. The multi-hop dependent task
offloading problem, P1, can be formatted as:

J
L Tft;
minimize M , (15)
Xijk>T fij,Tsij,Stivg,Fltiv;, Fi J
subject to (1) - (14) Vie A, jveT;, keV

This problem can be reduced to shop-scheduling prob-
lem [39] for a fully connected network and not considering
the offloading of subtasks. In the reduced problem, each
DAG task refers to a job, and the devices are referred to
as machines. The subtasks have a set of precedence order
similar to one for operations in the job. The shop-scheduling
problem has been proven to be NP-hard for 3 three jobs
in [39]. Hence, the problem in this paper is also NP-hard.
Since we cannot find an optimal solution in polynomial
time. Therefore, we have proposed a heuristic solution.

4 JOINT DEPENDENT TASK OFFLOADING AND
FLow SCHEDULING HEURISTIC (JDOFH)

We have proposed a joint dependent task offloading and
flow scheduling heuristic (JDOFH) that determines the ex-
ecution schedule which includes the decision on the start
time of execution, offloading device, and the start time
of input data flow for each subtask. JDOFH is developed
considering two main principles:
1) Leverage information of both parallelism and depen-
dency with each DAG task: The parallelism among
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subtasks is leveraged by considering each task as a set
of cosubtask stages, as shown in Fig 2} The dependency
information is utilized by assigning each cosubtask
stage a priority based on the release time of tasks
and maximum computation load of a subtask within
a cosubtask stage. Scheduling decisions are made in the
increasing order of priority metric. Existing methods
usually make scheduling decisions based on the order
of task release time or earliest task finish time which
requires other tasks to wait even if a subtask from
another task can be scheduled in the meantime. The use
of both parallelism and dependency information using
cosubtask stages helps in creating a better execution
schedule. It allows subtasks from multiple tasks to be
scheduled while considering both the release time and
finish time of tasks.

2) Make joint task offloading and network flow schedul-
ing decision: The offloading decision for each subtask
within a task is made considering the start time of input
data flows. Flows are scheduled based on the priority
of corresponding subtasks. A joint task offloading and
flow scheduling decision leads to better performance,
in terms of completion time.

The algorithm first creates a top-to-bottom rank of each
subtask, val;;, within a task using the equation (17). The
rank metric for each cosubtask stage within a task is calcu-
lated as defined in equation (18).

Div; CLjj

li': liv 5 VEA, GE
el = g (v )+ pgts Vie A g

(16)
rvaly; = valy; +Trel; Yie A, jeT; 17)
rank;s = jne%i(rvalij) Vie A 18)

Cosubtask stages are given priority in the increasing
order of rank metric calculated in Equation (18). Subtasks
within the cosubtask stage with the highest priority are
selected to be scheduled. However, since there can be
multiple subtasks within a cosubtask stage, subtasks are
selected in the decreasing order of rval. Executing a subtask
with higher rval first can help in minimizing the difference
between the completion time of different subtasks within a
cosubtask stage [28].

The schedule for the selected subtask is determined by
selecting the device, which leads to minimum finish time,
as shown in equation (22). However, in order to do that,
we need to calculate the start time of the subtask at each
device, as shown in equation (19). Start time is calculated
by considering both the available time at the device and
time to receive the input data from preceding subtasks.
Here, the available time implies that the subtask can be
scheduled to execute before other scheduled subtasks at
the device if there is enough available time to execute the
current subtask. In case, there is no such available time at the
device; the available time is equal to the waiting time until
other scheduled tasks are executed. The time to receive data
from the preceding task needs to consider other network
flows. We calculate the start time of sending the data from
preceding subtask, as shown in Equation (20), by consider-
ing the assumption that no two flows can pass through a
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link at the same time. The network flow corresponding to
the current subtask is given higher priority; therefore, we
only need to consider the flows corresponding to previous
selected subtasks.

Tasijk =
]
L J

H,
D)
k

max{Tavail;;;,, max (Tcomm;;,i +
{ 4 71}€Pd7¢j( v Rw

Vie A, jveT;, keV

Tcommiy;r, = max{T fi,, Iax (Yuke * Yime * Fltprq)}
wk

Vispe A, jveT;, rgel, kwlmeV

(20)

The finish time of the subtask for different devices is
calculated by adding the cost to execute the subtask at the
device to the start time as shown in Equation (21). The
device corresponding to the minimum finish time calculated
in equation (22) is selected for executing the subtask as
shown in Equation (23).

Tafl-jk = Tasijk + O’Tijk, Vi € A, jveTl;, keV
1)
Tfij = }Cré‘I}Tafijkv VieA, jeT; (22)
Xijk* =1, Vi€ A, JeT; (23)

The start time of executing the subtask, start time and
finish time of input data flows corresponding to the subtask
can be determined accordingly as shown in equations (24)
to (26).

Ts;; =Tasyp-, Vi€ A, jeT; (24)
Stwj = Tcommijvk*, Vi€ A, jel;, wve Pdij
(25)
Div j Hwk*
Fltyn; = Stin; + =75 6)
Vi=1,...J, 7=1,..N; ’UEPdij

The details of the proposed heuristic solution are given
in Algorithm 1. The algorithm uses the three principles and
returns the execution schedule of all subtasks within the
tasks, including the start time and finish time of correspond-
ing network flows. The finish time instance for each task can
be determined by taking the maximum of the finish time of
all subtasks within the task (Line 26-28).

The computation complexity of proposed heuristic is
O(|AP+N>«|V|2+P). The computation complexity is calcu-
lated by considering the most complex operation in the pro-
posed heuristic, which is the calculation of Tcomm ;i in
line 13. There are four for loops for calculating T'comm;;yk
one loop each corresponding to the number of stages (5),
number of subtasks in a stage (IV in worst case), number of
devices (|V]), and number of preceding tasks (N — 1 in the
worst case). The first two for loops correspond to the total
number of subtasks in all tasks which is equivalent to | A|+x N
in the worst case. Besides, the calculation of T'commy;yk
requires maximum operation over different values of the
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Algorithm 1: Joint Dependent Task Offloading and
Flow Scheduling Heuristic (JDOFH)

Input: The set of ] tasks with task graph model
consisting of dependent subtasks, the network
of M edge devices

Output: The execution schedule specifying the

selected device, start time and finish time of
executing the subtask, and the start time and
finish time of each input data flow

1 Sivj <—T7”elz-, Vi = 1,...J,j,'l): 1,NZ,

2 XiN(Zj «—1, Vi=1,..J;

3 Ts“:,_f,TfiN_/ —Trel;, Yi=1,..J;

4 Create an index I of cosubtask stages in increasing

order of rank metric;

5 fort + 1to|S]| do

6 s < I(t);

7 Create an index L of subtasks in cosubtask stage s

in increasing order of rval metric;

8 | forq<« 1to|Us| do

9 Jj < L(q);

10 fork < 1to|V]do

1 for v < 1 to |Pd;;| do

12 Calculate T'commy, ;1 using equation

(20);

13 end

14 Calculate T'as; 1, using equation (19);

15 Calculate T'a f; 1 using equations (21);

16 end

17 Calculate £*, T f;; based on k_r{linMTa fijus

18 Xijk* +—1;

19 TSZ'j — Tasijk*;

20 for v < 1 to |Pd;;| do

21 Calculate St;,5, F'lt;,; according to

equation (25) and (26);

2 end

23 end

24 end

25 fori < 1toJ do
26 ‘ Tftl — HlaXTfij
JjeVv

27 end
28 return Xijk/ TSij, Tfij, Stwj,Fltivj, Tft;;

finish time of flows corresponding to previous subtasks, i.e.
|A| * P which is calculated by considering all the edges in
all previous tasks in the worst case, and all the edges in
the routing path, i.e. |[V| — 1 in the worst case. Hence the

complexity of proposed heuristic isO(] A|? x N« V]2 % P).

5 PERFORMANCE EVALUATION

We have done simulation to evaluate and compare the per-
formance of JDOFH with other benchmark solutions. The
performance evaluation has been done for two performance
metrics: average completion time and running time of the
algorithm. The parameters used for simulation are in a
similar range to the one used previously in [12]] and [40].
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5.1

Parameters for Network Model: We generate a network of
edge devices where devices are deployed randomly using
uniform distribution. The size of the area is selected to
be M x M square units, and any two devices less than
2% M /5 units apart are connected to each other. The distance
between devices is set to be in a similar range as done in
previous works such as [40] and [20]. However, compared to
the fixed-size area used in these works, a variable area size
makes it easier to create connected mesh network topology
even with a low number of devices. Besides, maintaining
a similar network density using variable area size helps
in avoiding network topology with too little or too much
network links. All the devices are connected to each other
using a multi-hop path to form a connected graph. Each
vertex in the graph represents a device, and its weight
represents the processing power of the device. The weight of
the link (edge) connecting two devices (vertices) represents
the bandwidth capacity of the link (edge). The devices
are heterogeneous in terms of processing power which is
selected from a normal distribution with mean 50MCPS
(Million Cycles Per Second) and variance 20%. The band-
width of each link is selected from a normal distribution
with mean 20Mbps and variance 20%.

Parameters for Application Model: The ] tasks in the appli-
cation model are generated at a device selected randomly.
We implemented a random DAG generator for the task
graph using the layer-by-layer method mentioned in [41].
The parameters used for generating the task graph are num-
ber of tasks (nodes), the height of task graph (number of lay-
ers), number of tasks in each layer, and the edges between
the tasks in different layers. The number of nodes in i*" task
graph is selected to be a normal distribution in the range [1,
N;]. The number of layers in the i'" task graph is selected
to be a normal distribution in the range [1, <*]. The value
of N; is selected to be 50 for the default case. Each layer
in the task graph is constrained to have at least one node,
and the number of nodes in each layer is selected randomly.
The number of edges between two consecutive layers is
determined using a uniform distribution. The weight of the
node in the task graph represents the computation load of
subtask, which is selected from a normal distribution with
mean 300KCC (Kilo Clock Cycles) and variance 20%. The
amount of input data for each task and data transferred
between two dependent subtasks within a task graph is

Simulation Parameters

graph for FFT DAG

selected from a normal distribution with mean 120 kilobits
and variance 20%. The amount of data to be transferred
is calculated based on the communication-to-computation
ratio (CCR) of 0.5.

5.2 Benchmark Solutions

We have proposed some benchmark solutions based on
the ideas of solutions in existing works to compare the
performance of JDOFH.

1) Local Execution (LE): LE solution is obtained by ex-
ecuting the task at the local device where the task is
generated. Compared to JDOFH, LE is easy to obtain
as it does not require consideration of network flow
scheduling. The tasks are scheduled in the order of
release time.

Remote Execution (RE): RE solution is obtained by
considering each task with multiple subtasks as a single
unit. Each task is scheduled, in the order of release time,
by greedy offloading to a remote device such that the
completion time of the task is minimized. Similar to
LE, RE also does not require consideration of network
flow scheduling for data transfer between subtasks.
However, since each task is associated with input data,
there are network flows while offloading the task to a
remote device. RE uses the first-come-first-serve (FCFS)
approach to schedule the network flows by pausing
other contending flows. The scheduling order for each
flow is determined based on the scheduling order of
corresponding DAG tasks.

Separate task offloading and network flow scheduling
(SOFS): SOFS solution is obtained by first solving the
task offloading problem while ignoring the bandwidth
constraint and then solving the network flow schedul-
ing problem. Task offloading problem is solved based
on the priority order of the earliest release time. The
offloading solution for each subtask is obtained assum-
ing there is no other network flow at that time. We
use a list scheduling algorithm similar to HEFT [23]]
for task offloading. Network flow scheduling is done
based on the priority order of earliest deadline first
(EDF) approach, used in flow scheduling algorithm
PDQ [42], by pausing other contending network flows.
The deadline for each flow is determined based on
the scheduling order of corresponding subtasks deter-
mined in the previous step.

2)
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4) Joint Scheduling based on task release time (ALT):
ALT is an alternative solution that jointly solves the
dependent task offloading and network flow schedul-
ing problem. ALT determines the execution schedule
for each task based on increasing order of task re-
lease time. ALT solution is similar to an online solu-
tion where the information of future incoming tasks
is not known, and hence the tasks are scheduled in
the order of release time. Compared to JDOFH where
each task is considered as a set of cosubtask stages,
ALT determines the top-down rank for each subtask
similar to a list scheduling algorithm. ALT schedules
the tasks sequentially unlike JDOFH where cosubtask
stages from different tasks can interleave each other.
Network flow scheduling is done based on the schedul-
ing order of corresponding subtasks, similar to JDOFH.
The network flow scheduling is similar to scheduling
in order of earliest deadline first (EDF) [42] as subtask
with earliest start time will have the earliest deadline
for the corresponding network flow.

5.3 Simulation Results for Real Application Task Graph

The real application task graph used for performance com-
parison is FFT DAG with 4 points used in many other
works such as [23], [12], etc. The number of nodes, i.e. N,
in FFT DAG is 15. The computation load of each subtask
and weight of edges is the same setting mentioned earlier
for the application model. The characteristics of FFT DAG is
that both the weight of all nodes at the same level and the
weight of all edges from nodes at the same level is equal.
Table[3|gives the performance comparison of JDOFH against
benchmark solutions for default parameters. In the default
case, the number of FFT DAG, i.e. J, is 20; CCR is each FFT
DAG is 0.5; and the number of devices in the network, i.e. M,
is 50. The values have been averaged for 30 iterations, and
the error margin is calculated for 95% confidence interval.
The input values for the task graph and network model in
each iteration are different and generated randomly.

Table [3| shows JDOFH performs better than the four
benchmark solutions in terms of average completion time.
There is a significant difference in performance between
JDOFH and three benchmark solution (LE, RE, SOFS) that
do not make joint task offloading and scheduling decision.
JDOFH is around 64.39% better than LE, 52.39% better than
RE, and 56.18% better than SOFS in terms of completion
time for the default parameter setting. Both JDOFH and
ALT, which make joint decision perform better than other
benchmark solutions. JDOFH is around 7% better than ALT
in terms of completion time as ALT makes the scheduling
decision sequentially after completion of each task, how-
ever, JDOFH can interleave cosubtask stages for different
tasks which reduces the average completion time. Table
also shows a comparison between JDOFH and other bench-
mark solutions in terms of running time of the algorithm.
We can see that JDOFH running time is close to ALT. As
expected, the running time of JDOFH is higher than the
other three benchmark solutions, but it is still within range
as other benchmark solutions. There is a trade-off between
the two performance metrics; however, this paper focuses
on proposing a better solution in terms of completion time.
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We have also done performance comparison, in terms
of completion time, by varying different simulation param-
eters. Fig [3| [} and [5| show the performance comparison
by changing the number of tasks, the number of devices,
and CCR of FFT DAG, respectively. We can observe that
JDOFH performs better than other benchmark solutions for
all different range of parameters. Another main observation
is that there is a significant change in performance difference
between SOFS and JDOFH for both a large number of tasks
and a low number of devices. The reason is that SOFS
makes a separate decision, so its performance deteriorates
significantly when network flows have to compete for band-
width resources such as during both a large number of
tasks and a low number of devices. JDOFH, on the other
hand, performs better, and there is a similar performance
difference as observed for default parameter setting.

5.4 Simulation Results for Randomly Generated Task
Graphs

Besides using FFT DAG, the performance of JDOFH has also
been evaluated by using randomly generated task graphs.
The input parameters and details related to the task graph
are mentioned in Section Compared to FFT DAG, the
number of subtasks in each randomly generated DAG can
be higher and different. Table {4 shows the performance
comparison with default parameters for randomly gener-
ated DAG. The default parameters used are: number of task
DAG, i.e. ], is 20; the maximum number of subtasks, i.e.
N;, is 50, CCR of each task DAG is 0.5; and the number
of devices in the network, i.e. M, is 50. The values have
been averaged for 30 iterations with an error margin for
95% confidence interval. Similar to results observed for FFT
DAG, JDOFH performs better than other benchmark solu-
tions. There is a significant performance difference between
JDOFH and three benchmark solutions (LE, RE, SOFS)
that make task offloading and network flow scheduling
decisions separately. JDOFH is around 58.39% better than
LE, 43.33% better than RE, and 74.58% better than SOFS
in terms of average completion time of tasks. Although
both JDOFH and ALT jointly solve the problem, JDOFH is
around 17% than ALT in terms of average completion time.
These results show the benefit of making a joint decision
and better performance of the proposed solution JDOFH
compared to ALT. We can observe there is significant error
margin as input values for each iteration are generated
randomly. Besides, the number of subtasks in each task
graph is selected from a uniform distribution which leads
to a significant difference in results over different iterations.

The rest of this section gives detailed performance com-
parison, in terms of average completion time, by changing
difference input parameters including the number of tasks,
number of subtasks, number of devices, and CCR of task
graph. The different sub-sections describe the reasons be-
hind change in performance on varying different parame-
ters.

5.4.1 Effect of change in the number of tasks

Figl6|shows the effect of changing the number of tasks from
5 to 40 on average completion time. There is an increase
in average completion time for all algorithms due to both
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TABLE 3: Performance Comparison with default parameters for FFT DAG

Metric LE RE

SOFS Alt JDOFH

Completion time (sec) | 0.1143 + 0.0047 0.0855+ 0.0009
Running time (sec) 0.0023 + 0.0029 1.0151 + 0.0183

00929 =+ 0.0061 0.0438+ 0.0006
29.155 £ 0.2085 576.18 £ 6.7478

0.0407 +£ 0.0005
711.80 £ 6.6176

TABLE 4: Performance Comparison with default parameters for randomly generated DAG

Metric LE RE

SOFS Alt JDOFH

Completion time (sec) | 0.1872 £ 0.0137 0.1372+ 0.0072
Running time (sec) 0.0019 + 0.0027 0.9996 + 0.017

0.3065 £ 0.0525 0.0939+ 0.0067
92.410 £ 10.785 3022.4 £ 487.72

0.0779 +£ 0.005
3921.6 £ 641.47

increase in waiting time at the devices to execute the sub-
tasks and increase in the total number of network flows.
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Fig. 6: Effect of changing number of tasks for randomly
generated DAG

The performance difference between LE and JDOFH
decreases from 60.22% at 5 tasks to 48.85% at 40 tasks.
This decrease in the gap is observed because LE is not
affected by an increase in the number of network flows
when the number of tasks are increased. RE also shows a
similar performance trend as LE where the performance dif-
ference decreases from 49.08% at 5 tasks to 27% at 40 tasks.
Compared to LE, RE can offload the complete task which
can help in comparatively reducing the waiting time at the
devices. However, since both LE and RE are not affected by
an increase in network flows, there is a decrease in the per-
formance gap. JDOFH shows increase in performance differ-
ence with SOFS from 24.59% at 5 tasks to 86.22% at 40 tasks.
This significant increase in performance difference is similar
to the one observed for FFT DAG. Compared to JDOFH,
SOFS performance deteriorates rapidly with an increase in
the number of tasks as SOFS separates the network flow
scheduling decision. The difference in average completion
time between JDOFH and ALT also increases from 1.54%
at 5 tasks to 24.98% at 40 tasks. In case of a low number
of tasks, there is less contention among resources, so both
JDOFH and ALT perform almost equivalently. However, as
the number of tasks is increased, JDOFH performs better as
it leverages cosubtasks stages to determine the execution
schedule. ALT, on the other hand, requires considerable
waiting time at the devices to finish each task sequentially

based on the order of release time.

5.4.2 Effect of change in the number of subtasks

We have evaluated the effect of changing the number of sub-
tasks within each randomly generated task DAG as shown
in Fig [/l As mentioned earlier, the number of subtasks is
selected from a uniform distribution in the range [1, IV;].
We observe the performance trend by changing the value of
Ny, i.e. maximum subtasks in a task DAG, from 10 to 100.
All algorithms show increase in average completion time as
there is increase of subtasks in each task DAG which leads
to both increase in number of network flows and waiting
time at the devices.

12

SOFS ——ALT ——JDOFH

Average completion time in seconds

10 25 50 75 100
Number of maximum subtasks in task DAG

Fig. 7: Effect of changing number of subtasks for randomly
generated DAG

The difference in average completion time between LE
and JDOFH increases from 46.06% at 10 maximum subtasks
to 57.25% at 100 maximum subtasks. Compared to JDOFH,
LE executes the task locally at the devices it is generated,
which leads to larger waiting time as the number of subtasks
are increased. The performance difference between JDOFH
and RE increases slightly from 37.6% at 10 maximum sub-
tasks to 39.24% at 100 maximum subtasks. Compared to
LE, RE can offload the complete task to a remote device
to reduce the waiting time. The average completion time for
both JDOFH and RE increases at an approximately similar
rate with an increase in the number of subtasks. As observed
earlier, there is a significant increase in performance differ-
ence between JDOFH and SOFS from 7.98% at 10 maximum
subtasks to 84.77% at 100 maximum subtasks. Compared
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to JDOFH, SOFS does not perform well when the number
of network flows increases and have to compete for the
bandwidth resources. The performance difference between
JDOFH and ALT also increases from 1.35% at 10 maximum
subtasks to 24.28% at 100 maximum subtasks. As the num-
ber of subtasks increases, the completion time of each task
is increases as well which leads to worse performance for
ALT as tasks are scheduled sequentially. On the other hand,
JDOFH is able to utilize the knowledge of all tasks and
interleave cosubtasks stages to decrease average completion
time.

5.4.3 Effect of change in the number of devices

Fig |8 shows the effect of changing the number of devices
from 25 to 125 on the average completion time of tasks.
It is expected that an increase in the number of devices
decreases the average completion time due to availability
of more resources. However, there is a marginal decrease in
completion time after a certain number of devices.
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Fig. 8: Effect of changing number of devices for randomly
generated DAG

There is an increase in performance difference between
JDOFH and LE from 38.56% at 25 devices to 63.38% at
125 devices. LE is not able to leverage the increase in the
availability of resources as each task is executed locally
on the devices. RE shows a similar performance trend as
LE where the difference in the average completion time of
JPOFH increases from 14.68% at 25 devices to 50.47% at 125
devices. The benefit of an increase in the number of devices
is more for JDOFH as each subtask within each task can be
offloaded compared to offloading of a complete task in RE.
The difference in average completion time between JDOFH
and SOFS decreases from 84.53% at 25 devices to 21.68%
at 125 devices. The availability of more resources with an
increase in the number of devices leads to less contention
among network flows for bandwidth. However, the benefit
of joint task offloading and network flow scheduling deci-
sion is still apparent as JDOFH outperforms SOFS even with
an increase in the number of devices. ALT shows a decrease
in average completion time between JDOFH from 18.25%
at 25 devices to 2.06% at 125 devices. An increase in the
number of devices reduces the waiting time to execute the
subtasks at the devices. Therefore, both ALT and JDOFH
perform similarly when abundant resources are available.
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5.4.4 Effect of change in communication to computation
ratio (CCR)

Fig[9]shows the performance comparison done for different
types of tasks ranging from computation-intensive tasks
(CCR value equal to 0.1) to communication-intensive tasks
(CCR value equal to 2). It is expected that average com-
pletion time of tasks increases as communication cost will
increase on increasing the CCR of each task DAG. However,
solutions such as LE and RE do not show much increase as
they do not consider offloading of subtasks.
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Fig. 9: Effect of changing CCR of task graph for randomly
generated DAG

The difference in completion time between JDOFH and
LE decreases from 67.52% at 0.1 CCR to 29.11% at 2 CCR.
Since LE executed the tasks at the devices locally, it is not
affected by increasing the CCR leading to a decrease in
the performance difference. RE also shows a similar per-
formance trend where the difference in average completion
time between JDOFH decreases from 54.86% at 0.1 CCR to
6.15% at 2 CCR. Similar to LE, RE executes the task as a
whole and offloads them to a remote device leading to a
further decrease in the average completion time of tasks.
This decrease in performance trend for both LE and RE
is to be expected as when communication cost becomes
significantly higher than computation cost, the benefit of
offloading each subtask is not useful. Therefore, after a
certain threshold of CCR, both LE and RE would perform
better than algorithms which do offloading of fine-grained
subtasks. In such a case, an if-else condition could be used
to utilize RE solution beyond the CCR threshold. It is to be
noted that RE solution also utilizes the joint network flow
scheduling for the flows corresponding to the input data of
the tasks. Therefore, there is a benefit to joint task offloading
and network flow scheduling as proposed in this work.

The performance difference between JDOFH and SOFS
remains similar around 70% on changing the CCR from 0.1
to 2. The performance difference between JDOFH and ALT
decreases slightly from 15.56% at 0.1 CCR to 11.65% at 2
CCR. In both cases, the effect of an increase in CCR does not
significantly change the performance difference as the three
solutions, i.e. SOFS, ALT, and JDOFH, rely on offloading of
subtasks.
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6 CONCLUSION

This paper studies the multi-hop dependent task offloading
and network flow scheduling problem in CEC with the
objective of minimizing the average completion time of
tasks. The problem includes making a decision on when
and where each subtask within a task is executed and
the start time of each flow corresponding to data transfer
between dependent subtasks. The problem is formulated as
an MINLP optimization problem which is proven to be NP-
hard. We have proposed a JDOFH algorithm that leverages
the knowledge of each task graph and start time of flow to
make task offloading decisions. The performance of JDOFH
has been comprehensively evaluated using simulation by
considering both the real application task graph of FFT
and randomly generated task graphs. The performance
comparison has been done by varying different simula-
tion parameters, including the number of tasks, number of
subtasks, number of devices, and CCR of task graphs. We
have compared the performance of JDOFH against different
benchmark solutions considering local execution, remote ex-
ecution, separate task offloading and network flow schedul-
ing, and joint solution based on list scheduling. Performance
comparison shows that JDOFH leads to up to 25% and 85%
improvement in average completion time compared to a
joint solution based on list scheduling algorithm and other
benchmark solutions respectively.

We have solved the problem for an offline setting and
evaluate it using simulation experiments. In the future
work, we will implement the solution for an online setting,
and illustrate the efficacy of solution using a real prototype.
The proposed solution, JDOFH, schedules the cosubtask
stages sequentially based on the priority list. This design
makes it easier to extend JDOFH to an online setting where
the priority list of cosubtask stages from different tasks
can be updated regularly as new tasks are generated. The
subtasks from highest priority cosubtask stage can then
be offloaded using the same approach as JDOFH. Another
direction for future work is to implement task offloading
and network monitoring components in the SDN controller.
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