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Abstract—The recent trend in the Internet of Things (IoT) is to distribute and move the computation from centralized cloud devices to
edge devices which are closer to data sources. Researchers have proposed collaborative edge computing for IoT where the data and
computation tasks are shared among a network of edge devices. One of the important problems in collaborative edge computing is to
schedule tasks among edge devices to minimize latency and other performance metrics. Compared to existing works in wireless
sensor networks and IoT, there are two additional challenges while scheduling tasks in collaborative edge computing. First, we need to
consider the transfer of input data required by different tasks as the data is generated by sensing devices which are located at different
geographical places. Second, existing works solve the problem of task scheduling without considering network flow scheduling which
can lead to network congestion and long completion times. In this paper, we study the data-aware task allocation problem to jointly
schedule task and network flows in collaborative edge computing. We mathematically model the joint problem to minimize the overall
completion time of the application. We have proposed a multi-stage greedy adjustment (MSGA) algorithm where the task scheduling is
done by considering both placement of tasks and adjustment of network flows. Performance comparison done using simulation shows
that MSGA leads to up to 27% improvement in completion time as compared to benchmark solutions.

Index Terms—Task Scheduling, Network flow scheduling, Collaborative Edge Computing, Internet of Things.
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1 INTRODUCTION

The recent trend in the Internet of Things (IoT) is to use
Edge computing to distribute and move the computation
from centralized cloud to edge devices which are closer to
data sources. Edge computing is beneficial for Industrial
IoT applications which require real-time processing such
as determining whether a worker is not wearing protective
equipment or wearing it incorrectly [1]. It is also useful for
continuously monitoring the equipment and environment in
shop floor and alerting the responsible personnel in case of
concern [2] [3]. Edge computing can also help in improving
the efficiency of operations in Industry. One such example is
optimizing inventory management in Industrial IoT where
the data collected from workers smartphone and wearables
can be processed in real-time to dynamically track, and op-
timize various activities including storing, packing picking
and transporting products. Such a solution can help reduce
labour cost and improve efficiency in inventory manage-
ment [1]. Another important application of edge computing
is real-time video analytics [4]. Intelligent transportation
systems and other Smart City applications require a large
number of video feeds to be processed instantaneously.
Edge computing helps in reducing the amount of data to be
sent to the cloud by processing the video feeds close to the
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source. Analytics at the edge devices can help autonomous
vehicles to make decisions, for example, detect hard-to-
see pedestrians, based on the processed video feed from
surrounding cameras [4].

These applications not only require pushing the compu-
tation down from the cloud to edge devices but also collabo-
ration and exchange of data among different devices which
has led to the emergence of collaborative edge computing.
The work in [5] shows distributing tasks among collabo-
rative edge devices gives better performance than offload-
ing to a single edge server. Collaborative edge computing
can be defined as distributing the computation tasks and
data among a distributed network of edge devices, having
computation, communication, and storage capability, that
collaborate with each other. Many existing works such as
[6], [7], [8], etc. have been proposed to enable sharing of
computation tasks among devices. Based on the princi-
ple of collaborative edge computing, we have proposed a
paradigm named Edge Mesh in [9] where decision-making
is done inside the network by sharing data and computation
tasks among edge devices instead of sending all the data to a
centralized server. Edge Mesh helps in enabling distributed
intelligence in IoT and provides many benefits including
lower latency, higher reliability, etc.

A major challenge in Edge Mesh (and other systems
based on collaborative edge computing) is to distribute tasks
among edge devices. Unlike cloud computing paradigm
where all the data is sent to a server, edge devices have
direct access to only a subset of sensing devices which are
connected to it. A task executed on an edge device can
require data from different sensing devices. However, the
sensing devices which are located at different geographical
places will be connected to different edge devices. Therefore,
data needs to be shared among edge devices, which are
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connected using a multi-hop network, to enable decision
making and execution of tasks. Task allocation decisions
must be done by considering both the placement of input
data and the network bandwidth consumed in transmitting
the data.

In this paper, we study the data-aware task allocation
problem to jointly schedule task and network flows in the
collaborative edge computing with the objective of minimiz-
ing the completion time of the application. Scheduling the
tasks without considering network bandwidth consumed
by flows leads to network congestion and long completion
times as shown by the motivational example in Section 2.
The paper considers network congestion occurs when the
bandwidth of all the flows passing through a link is greater
than the link’s capacity. The problem considers the place-
ment of input data and the network bandwidth consumed
in transferring data to schedule tasks. The data transfer
results from the transfer of both the input data and the
data exchanged between dependent tasks in an application.
The problem is to decide when and where each task within
an application is allocated and how network flows are
scheduled such that there is no network congestion.

The problem is more challenging than existing works
in wireless sensor networks (WSN) [10] [11] [12] and IoT
[13] [14] as they usually assume that the data required for
tasks is already available on devices and do not consider
network congestion while scheduling tasks. There are some
existing works in grids and data centers such as [15], [16],
[17], [18], [19], [20], [21], etc. which have incorporated the
transmission cost of input data. However, these works in
grids and data centers do not consider the network con-
gestion which cannot be ignored in case of collaborative
edge computing. The work in [22] solves the problem of
placement of tasks depending on the network scheduling
policy. However, unlike data-aware task allocation, it does
not jointly schedule tasks and network flows. The data-
aware task allocation problem requires mathematical mod-
elling of the joint task and network flow scheduling for
collaborative edge computing where the edge devices are
connected using a multi-hop path.

The main contributions of this work are:
• We have mathematically formulated a data-aware task

allocation problem considering the distribution of input
data for different tasks and scheduling of network
flows for collaborative edge computing. To the best of
our knowledge, it the first work to jointly study task
and network flow scheduling for collaborative edge
computing, where the input data required for different
tasks are distributed, and the objective is to minimize
the completion time of the application.

• We have proposed a multi-stage greedy adjustment
(MSGA) algorithm. It consists of three stages: creat-
ing an initial schedule without considering network
congestion, detecting the network flow conflicts, and
resolving the network flow conflicts by adjusting both
the placement of tasks and the bandwidth of the flows.
MSGA solves the issues associated with adjusting both
the placement of tasks and bandwidth of flows.

• We have conducted simulation experiments to evaluate
and compare the performance, in terms of completion
time of application and running time, of MSGA against

benchmark solutions. The benchmark solutions sched-
ule flows based on either first-come-first-serve (FCFS)
policy or the earliest finish time (EFT) priority. We have
done performance comparisons by changing different
parameters in the simulation including the number of
tasks, the number of devices, number of input data
sources, and the amount of the input data. The per-
formance comparison shows that MSGA leads to up to
27% improvement in completion time as compared to
benchmark solutions.

The rest of the paper is as follows. In Section 2, we have
given a motivational example to illustrate the importance
of data-aware task allocation problem. In Section 3, we give
the system model and problem formulation. In Section 4,
we discuss the proposed solution, MSGA, for the data-
aware task allocation problem. In Section 5, we have done
the performance evaluation. In Section 6, we discuss some
related works. Finally, we give the conclusion in Section 7.

2 MOTIVATIONAL EXAMPLE

Fig 1 shows the task allocation example to illustrate the
importance of the joint task and network flow scheduling.
The problem is to allocate a set of tasks within an application
shown in Fig 1a to a set of devices shown in Fig 1b such that
overall completion time is minimized. Fig 1a shows the task
graph of the application where the circle nodes represent the
tasks and triangle nodes represent the input data required
by the task. The weight of circle nodes represents the com-
putation load of the task, and the weight of link connecting
circle nodes represents the dependency, i.e. if the two tasks
are allocated at different devices then an amount of data
equal to edge weight need to be transferred. The weight of
edges connecting triangle nodes and circle nodes represents
the amount of input data to be transferred to the task. Fig
1b shows a network of 3 devices where the weight on the
square nodes (or devices) represents the processing power
and the weight of the edge connecting different devices
represents the bandwidth capacity of the link. The Fig 1b
also includes triangle nodes connected to devices which
represent the location of input data. Assuming that there is
no network congestion and we can use the given bandwidth
capacity of each link for data transfer, we can easily find the
schedule shown in Fig 1c which minimizes the completion
time. The completion time of the application using this
schedule is 8 units.

The schedule shown in Fig 1c includes network flows
represented by different lines. The task schedule is: task a
is executed on the device A, task b on the device B, task
c on the device A, task d on the device C, and task e on
the device C. The figure includes a shaded area from time
1 to 2 units where two different network flows, a → b
and y → c are passing through the same link AB which
connects devices A and B. The flow from a to b is the result
to transfer of data between dependent tasks whereas the
flow from y to c is the result of transfer of input data y of
task c. As mentioned before, the network congestion occurs
when the bandwidth of all the flows passing though a link is
greater than the link’s capacity. We can resolve this network
congestion by using bandwidth sharing policy where the
overall bandwidth of the link is shared between different
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Fig. 1: Motivational example to show joint task and network flow scheduling

flows. The new schedule created using bandwidth sharing
policy, shown in Fig 1d, results in the increased completion
time of 9 units. The task schedule remains unchanged in the
new schedule. The adjusted flows are marked in red in the
figure. The bandwidth is shared for time 1 to 3 units for both
the flows in Fig 1d.

We can create another schedule by changing the start
time of each flow instead of sharing bandwidth as shown
in Fig 1e. The completion time using flow adjustment is 9
units. The schedule shown in Fig 1e only adjusts the start
time of flows without changing the destination. However,
we can achieve even better completion time of 8 units,
as shown in Fig 1f, by using both flow and destination
adjustment. Task e is executed on the device B instead
of the device C. Although in this example the completion
time under network congestion is same as completion time
without considering network congestion, it may not be the
case in other situations. Fig 1d and 1e show the schedules
where the network flows are separately considered from
task placement which results in completion time of 9 units,
whereas by jointly considering the network flows and tasks,
as shown in Fig 1f, better results can be achieved. The rest
of the paper will describe how to model the joint problem
and propose the solution where both the placement of tasks
and flow adjustment are considered to resolve network
congestion.

3 SYSTEM MODEL AND PROBLEM FORMULATION

Fig 2 shows the system architecture of Edge Mesh which is
based on collaborative edge computing. It consists of three
types of devices, i.e. end devices, edge devices, and cloud.
End devices or sensing devices are responsible for sensing
and actuation, edge devices for both decision-making and
enabling interaction between devices, and finally the cloud
which is responsible for performing big data analytics that
cannot be done using edge devices. There are also some
edge devices which do not have enough computation power
for supporting decision-making tasks and only function as
routers. The computation tasks in an application are dis-
tributed among edge devices. The system architecture also
consists of SDN controller which is responsible for making
all the decisions of allocating tasks to different edge devices
and scheduling flows in the network. The other devices
in the system architecture do not make any scheduling
decisions. The SDN controller makes the decisions based
on the network information collected from the edge devices
and routers. The problem formulation does not include the
time taken by the SDN controller to collect information
and send control commands. Although SDN controller has
been used before for making scheduling decisions in wired
networks, the system model assumes wireless networking
in Edge Mesh. There are few existing works which have
used SDN controller for the wireless network. The work
in [23] proposes meSDN that extends the control of SDN
to mobile devices. Other works such as [24] and [25] used
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SDN controller for making scheduling decisions in wireless
networks. The work in [26] also implemented the prototype
of the proposed algorithm in [25].

Wireless networking leads to further complications in
making scheduling decisions due to its unique characteris-
tics, including, spatial and temporal variations of wireless
channel conditions and interference of wireless transmis-
sion among neighboring devices. However, the problem
formulation has been done by assuming a static network
condition where the dynamic wireless channel conditions
and interference among the wireless transmissions have
been ignored to make the problem simple. The computation
tasks in an application are distributed among edge devices.
As explained earlier, the tasks require input data from end
devices which could be connected to different edge devices.
The data-aware task allocation problem is to jointly schedule
tasks and network flows in collaborative edge computing
such that completion time of application is minimized.
There are two other assumptions made in the problem,
which are:
• The problem considers the shortest path to transfer the

data. Other routing algorithms can also be selected.
• Each task starts execution after receiving all the data.

Cloud

Edge 

Devices

End Devices

Routers

Edge Mesh

End Devices

SDN Controller

Fig. 2: System Architecture

3.1 Problem Formulation

This section describes the modeling of application, network,
data, and cost functions. The problem is formulated as
a mixed-integer nonlinear programming problem. Table 1
summarizes the notations used in the paper.

Task graph Model: The application is modeled as a di-
rected acyclic graph (DAG) G = (T, P), where T is the set of
tasks, T = {i|1 ≤ i ≤ M} and P is the set of dependencies
between the tasks. The number of tasks is M. Each task i
has a computation load of processing, ci. The weight of each
link, connecting tasks i and j, is Pij, which represents the
amount of data to be transmitted if the tasks are executed on
different devices. Task i has some predecessor tasks which
is given by a set Ri.

Network Model: The communication network is a mesh
network of edge devices communicating with each other
using a multi-hop path. The communication network is
modeled as a graph C = (A, E), where A is the set of devices,

TABLE 1: Notations used in the Paper

Variable Meaning
G = (T, P) task graph, where T is the set of tasks and

P is set of dependencies among tasks
C = (A, E) network model, where A is the set of devices and

E is the set of edges
D set of all input data
H = (V, Z) dataflow model, where V is the set of dataflow tasks

and Z is the set of edges
M number of tasks
N number of devices
K number of dataflow tasks
Dti set of input data for task i
devs device where input data ds is stored
sizes amount of input data ds in bits
ci computation load of processing task i
Pij length of data in bits transferred between tasks i and j
Be bandwidth capacity of link e
tdi i-th dataflow task
cdi computation load of i-th dataflow task
Di,j length of data in bits transferred between dataflow

task i and j
xi device where i-th task is executed
pj processing speed of device j
Ri number of predecessor tasks for task i
Tsij Starting time of dataflow task i executed on device j
Tfij Finish time of dataflow task j executed on device j
availj Earliest time when device j is free after

executing all its previous tasks
Tsi Starting time of dataflow task i
Tfi Finish time of dataflow task i
Tcompi Time to compute dataflow task i
fli,i′ network flow between dataflow task i and i’
Rfl(τ) Rate of flow fl at time slot τ
Efl set of edges in the path of flow fl
fn current congested flow
Fcl list of flows that conflict with the current congested flow
Fall combined list of flows including fn and Fcl
fe flow with the earliest start time in the list Fall
Es current execution schedule specifying when and

where each task is scheduled
Ef new schedule after flow adjustment
Ed new schedule after destination adjustment
destfe list of all previous destinations for flow fe
∆tf increase in completion time after flow adjustment
∆td increase in completion time after destination adjustment

A = {j|1 ≤ j ≤ N}, E= {ejj’|j, j′ ∈ A} represents the
link connecting device j and j’. The weight of each node j
is pj which represents the processing power of the device.
The bandwidth of each link ejj′ is Bejj′ . In the problem
description, we sometimes neglect the subscript and denote
the link as e and the bandwidth as Be. The number of
devices in the communication network is N.

Data Model: Set of all input data D = {ds|s ∈ 1, 2, ...S}.
Set of data required for task i is represented by Dti which is
a subset of D. Each data source ds is located at device devs.
The amount of data, in bits, for each data source ds is sizes.

Dataflow Model: We model the application together with
data model using a data flow graph, H = (V, Z), where V
= {u|1 ≤ i ≤ K} represents the set of dataflow tasks, and
Z = {(u, v)|u, v ∈ V } represents the sets of edges. Set V
of dataflow tasks is equal to T ∪D, T is the set of tasks
in the application model, and D is the set of input data in
the data model. Each node u in set V represents a dataflow
task and the weight of the node u, cdu, which represents
the computation load of the dataflow task u. The nodes
corresponding to input data have zero computation load.
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TABLE 2: Set of input data for each task

Task Input Data
1 A (10), B(20)
2 C(20), D(10)
3 B(20), D (10)
4 E (20)
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Fig. 3: (a) Example of task graph model, (b) Corresponding
dataflow model

The total number of nodes in the dataflow graph is K. Z is
the set of all links which includes links between different
tasks in graph G and the links between input data and
the corresponding task. The weight of the link connecting
different node u and v in dataflow graph is Du,v , which
represents the amount of data to be transferred between two
dataflow tasks u and v. The weight of links connecting nodes
corresponding to input data and the task is equal to the
amount of the input data required for the task. Fig 3 shows
an example of task graph model and the corresponding data
flow model. The input data required for different tasks in Fig
3a are shown in Table 2.

Cost Model: The completion time of an application is
defined as the maximum time when the task belonging
to the application is completed. The completion time is
modeled using the EST (earliest start time) policy discussed
in [27]. We need to calculate the time cost for processing and
communicating data for each task to model the completion
time. The computation cost of executing task i at device j is
given by equation (1).

Tcompi,j =
ci
pj

(1)

The start and finish time of a task i executed at device
j, i.e. Tsi,j and Tfi,j , is given by equation (2) and (3)
respectively.

Tsi,j = max(availj , max
1≤r≤Ri

(Tfr + Ttaskr,i)) (2)

Tfi,j = Tsi,j + Tcompi,j (3)

where availj is the time when device j finishes executing
any previously scheduled task, Ri is the set of the predeces-
sor tasks of task i, Ttaskr,i is the time taken to transfer data
from predecessor task r to current task i. We can calculate
the time cost for communicating data from predecessor task
r to task i, both allocated on different devices, by dividing

the amount of data transferred between tasks, Dr,i, with the
rate of the network flow.

The problem is to determine when and where (on which
device) each task should be executed, and schedule the flow
of data transmission on the network links, such that the
completion time of the application is minimized. The term
task referred in problem description here is the dataflow
task described above. Let Tsi denotes the time that the task
i starts to execute, xi denotes the device where the task i
is executed, where 1 ≤ i ≤ K and 1 ≤ xi ≤ N . The
completion time of task i is Tfi, where Tfi = Tsi+Tcompi.
Tcompi is the time to compute task i. We check every edge
(i, i’) in the dataflow graph, if the two connective tasks i and
i’ are not assigned to the same device, i.e., xi 6= xi′ , then
a flow fli,i′ is to be scheduled in the network. Each flow is
associated with some properties such as when and where
the flow has been generated, the destination of the flow, etc.
These properties are defined as follows.

• Source: It is defined as the device from which the flow
starts. The source of flow fli,i′ is xi. If the flow is due to
the transfer of input data, then the source is the device
where input data is located.

• Destination: It is defined as the destination device
where the flow ends. The destination of flow fli,i′ is x′i.
x′i represents the device where the task i’ is executed.

• Path: It is defined as a sequence of links through which
the flow passes. We use a set Efli,i′ of links in the
network model to represent the path of flow fli,i′ . In
the following descriptions, we sometimes neglect the
subscripts, and denote it by Efl.

• Release time: The release time of flow fli,i′ is defined
as time that the data is ready by the precedent task i,
which is represented by Tsi + Tcompi.

• Start time: The start time of the flow fli,i′ is defined as
the time when the flow actually starts from the prece-
dent task i. It is represented by Stfli,i′ . In the following
description, we sometimes neglect the subscript, and
denote it by Stfl. The start time of the flow is greater
than or equal to its release time.

• Deadline: It is defined as the latest time that the data
transmission should be completed. The deadline of flow
fi,i′ is represented by Tsi′ , which is the time when the
task i’ needs to start.

• End time: It is defined as the time when the flow fli,i′
reaches its destination. It is represented by Etfli,i′ . In
the following description, we sometimes neglect the
subscript, and denote it by Etfl. The end time of the
flow is less than or equal to its deadline.

• Data amount: The data amount of flow fli,i′ is Di,i′ .
Di,i′ has been defined previously as the weight of the
edge (i, i’) in dataflow model.

• Rate: The rate of flow is defined as the data amount
transmitted per time slot. The rate represents the net-
work bandwidth allocated to the flow. The rate of flow
is associated with time, i.e. it can vary with time. The
rate of flow fli,i′ is represented by Rfli,i′ (τ) for time
slot τ . We use the short form Rfl(τ) to denote the rate
of flow fli,i′ . The rate of flow will be equal to zero for
τ greater than end time of flow or less than start time
of flow, i.e. Rfl(τ) = 0 when τ < Stfl or τ > Etfl. The
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value of the rate of flow will be some non-zero value
between the start and end time of the flow.

3.1.1 Data-Aware Task Allocation problem

The data-aware task allocation problem is formulated as an
optimization problem described as follows.

Objective:

minimize max
i∈V
{Tfi} (4)

Constraints:

∀(i, i′) ∈ Z, Tfi ≤ Tsi′ (5)

∀(i, i′) ∈ V, |xi − xi′ | ∗Q
+ (Tsi − Tfi′) ∗ (Tfi− Tsi′) ≥ 0

(6)

∀(i, i′) ∈ Z, Stfli,i′ ≥ Tfi (7)

∀(i, i′) ∈ Z,Etfli,i′ ≤ Tsi′ (8)

∀(i, i′) ∈ Z,

|xi − xi′ | ∗ (

Etfl∑
τ=Stfl

Rfl(τ)−Di,i′) = 0
(9)

∀τ ∈ [0, T − 1],∀e ∈ E,∑
fli,i′

[Rfl(τ) ∗ Y(e, Efl)] ≤ Be (10)

where Q in Equation (6) is a great positive constant
which approaches to infinity, and Y is an function of e and
Efl, which represents whether edge e is part of set Efl. If
e ∈ Efl, Y(e, Efl) = 1; otherwise Y(e, Efl) = 0.

Note that Equation (4) is the objective function to mini-
mize the total completion time of the application. Equation
(5) indicates that the dependent task can only start after
its preceding task is completed. Equation (6) shows that
one device can execute only one task at a time. In case
multiple tasks are scheduled to the same device, the tasks
are executed sequentially. This constraint comes from the
assumption that we are considering devices with single core
processor to make the problem simple. Although there are
mobile devices with multicore processors, the underlying
task scheduling problem will still remain the same. How-
ever, the constraint will have to be modified to consider the
execution of multiple tasks (equal to the number of cores)
simultaneously. A future work related to this problem can
consider devices multi-core processors. Equation (7) defines
that the flow can start only after its release time, which is the
finish time of the preceding task. Equation (8) defines that
the flow must finish before its deadline, which is the start
time of the current task. Equation (9) represents that the rate
of flow should be such that it is finished in time. Equation
(10) represents that the amount of bandwidth consumed
by each link at a given time must be less than the given
bandwidth capacity of the link.

The data-aware task allocation problem is NP-hard as
it is an extension of task scheduling problem that jointly
considers task and network flow scheduling. The decision
problem of the task scheduling has been proven to be NP-
complete [27].

4 MULTI-STAGE GREEDY ADJUSTMENT ALGO-
RITHM

We have proposed a multi-stage greedy adjustment (MSGA)
algorithm for the data-aware task allocation problem. The
flowchart of MSGA is shown in Fig 4. The advantage of
MSGA is that we can substitute part of the algorithm to
create different solutions. For example, instead of using a
greedy algorithm for creating an initial schedule we can
utilize evolutionary algorithm such as the genetic algorithm.
We can also use different policies for resolving the network
flow conflicts. The steps in the MSGA are shown in Algo-
rithm 1. The input for the Algorithm 1 includes the task
graph of M tasks, the network of N devices, and the set of
input data Dti for each task i in the task graph.

Create initial schedule without 

considering network congestion

Create initial schedule without 

considering network congestion

Detect network 

flow conflicts

End

Yes

No

Resolve network flow conflictsResolve network flow conflicts

Fig. 4: Flowchart of MSGA

The first stage is creating an initial schedule using the
greedy method based on list scheduling without consid-
ering the network congestion (Algorithm1, Line 1). The
method is similar to HEFT algorithm proposed in [27]
except we need to consider the time taken to transfer input
data additionally. We first create a priority list of tasks
where the priority of the task is calculated based on the
node and edge weight which represent the computation
and communication load of the task respectively. The task
with the longest path to the end node of the task graph is
given the highest priority. Starting with the highest priority
task, we assign the task to the device which finishes it
at the earliest time. The start and finish time of a task
i executed at device j, i.e. Tsi,j and Tfi,j , is given by
equations (11) and (12) respectively. Unlike the equations (2)
and (3), we consider the time when input data is available
at the device separately from the time taken to transfer data
between dependent tasks. We use the dataflow model for
calculation related to network flows and task graph model
for calculation related to task scheduling. This enables us
to consider the computation tasks separately and makes it
easier to create an initial schedule.

Tsi,j =

max(availj , max
1≤r≤Ri

(Tfr + Ttaskr,i),max(Tdatai))
(11)

Tfi,j = Tsi,j + Tcompi,j (12)

where availj is the time when device j finishes executing
any previously scheduled task, Ri is the set of the predeces-
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sor tasks of task i, Ttaskr,i is the time taken to transfer data
from predecessor tasks, Tdatai is the time taken to transfer
input data, and Tcompi,j is the computation time to execute
task i at device j.

The finish time of a task is dependent on the processing
time of the application on the allocated device, time to
transfer the data from preceding tasks, and time to transfer
the input data. There are two types of flows in the network.
The first type of flow corresponds to transfer of data from
preceding tasks which can only start after the completion
of preceding task. The second type of flow corresponds to
transfer of input data to the device where task is allocated.
Ideally, second flow can start at time 0, but due to the con-
stant bandwidth available on each link, it usually leads to
network congestion if all flows are started at same time. The
time to transfer data flow fi,i′ is calculated using equation
(13). We have ignored any network congestion, at this stage,
so we use the entire bandwidth of the link even if there are
multiple network flows passing through the link at the same
time.

Tfi,i′ =
Di,i′

mine∈Efl
Be

(13)

where Di,i′ denotes the amount of data to be transferred in
the flow fi,i′ , Efl denotes the set of the edges in the path of
flow fli,i′ , Be is the bandwidth of the edge e.

The initial schedule includes information about network
flows, including, start time, finish time, rate, amount of
data, source and destination of flows. This information is
recorded to be utilized later for detecting and resolving
network conflicts (Algorithm 1, Line 2). We sort the flows
in increasing order of their start time and detect the earliest
network conflict (Algorithm 1, Line 3). A conflict is de-
fined when the bandwidth utilized by all the flows passing
through a link at any given time is more than the given
bandwidth of the link. Once the conflict has been detected,
we move on to the third stage of the algorithm to resolve
conflict (Algorithm1, Line 4 -15). The second and third stage
are repeated until there is no more network conflict.

Resolving network flow conflict: The first step in re-
solving network conflict is finding a list of other flows Fcl
which are in conflict with the current congested flow fn
(Algorithm1, Line 4). We first find the list of all other flows,
Fsl which share the same time duration as the current flow
fn. Then, based on the definition of the conflict mentioned
above, we find flows in the list Fcl. The schedule before
adjustment is recorded as Es. We utilize two different
methods to resolve network flow conflicts. First is flow
adjustment where we change the start time of the flows
and second is destination adjustment where we change the
destination of the flows. We have sometimes used the term
bandwidth adjustment instead flow adjustment in the paper.
Flow adjustment method is based on first-come-first-serve
(FCFS) strategy where the flow that starts first is given
priority over other flow. The congested flow fn and flows in
list Fcl are sorted together, combined list Fall, in increasing
order of start time and the flow with the earliest start time,
fe is selected for adjustment (Algorithm 1, Line 5-6). All the
other flows, except fe, in the combined list Fall are delayed
until the flow fe is completed (Algorithm 1, Line 7). Based

on the flow adjustment, we update the schedule to Ef by
modifying when the tasks are scheduled (Algorithm 1, Line
8). All the devices are still scheduled at the same device as
in the initial schedule Es. The consideration of input data
transfer in the problem requires us to consider the complete
task nodes while updating the schedule, whereas for a
traditional task allocation the schedule could have been up-
dated by only considering the successive task nodes. After
updating the schedule, the difference in overall completion
time, ∆tf between the new updated schedule, Ef , an initial
schedule,Es, is calculated (Algorithm 1, Line 9). The second
method of destination adjustment is applied to the flow fe
selected in Line 6 of Algorithm 1 (Algorithm 1, Line 10 -
12). The detailed steps involved in destination adjustment
method are specified in Algorithm 2. The method which
leads to the minimum increase in overall completion time
is selected as the new existing schedule (Algorithm 1, Line
13 - 16). This process of detecting and resolving conflicts
continues until there is no network conflict in the final
schedule.

Destination Adjustment: The basic idea of destination
adjustment method is to change the destination of flow to
another destination which helps in removing the network
conflict. In the destination adjustment method, we first
assign the network bandwidth to the all the other flows in
list Fall except fe (Algorithm 2, Line 2). We then utilize
the remaining bandwidth to assign a new destination for
the flow which finishes the destination task of the flow in
earliest time (Algorithm 8, Line 3 - 8). There are two main
issues with changing the destination of the flow:

1. The schedule has a ”ping-pong effect” where the
destination of the flow fluctuates between two devices in
later iterations.

2. Changing the destination of a flow can result in new
network conflicts in previous flows which could prevent
resolving the current congested flow fe.

These issues take place because, unlike traditional task
allocation problem, the current problem also involves input
data transfer. Therefore, when the destination device is
changed for a flow it affects not only successive flows but
also preceding flows as the input data flows can start from
time t = 0. The destination adjustment algorithm solves the
issues by using two techniques. The first issue is resolved by
maintaining a list of destination, destfe , for each flow fe. If
after the destination adjustment the new destination is part
of the list destfe for the flow fe, then we set the increase in
overall completion time after destination adjustment, ∆td,
equal to infinity (Algorithm 2, 11 - 14). This ensures that
destination selected in the previous iteration is not selected
again, thus, preventing ”ping-pong effect”. The second issue
is resolved by checking whether the flow fe is conflicted or
not after destination adjustment. If the flow is still conflicted,
we set the increase in overall completion time after destina-
tion adjustment, ∆td, equal to infinity (Algorithm 2, 11 - 14).
This ensures that destination adjustment is only considered
if the adjustment resolves network conflict for the flow fe.

The enhancements together prevent the Algorithm 1 to
select the destination adjustment strategy instead of flow
adjustment in case of an issue (Algorithm 1, 13 - 16). The
algorithm does not consider the current destination of the
flow for adjustment (Algorithm 2, Line 3-4), which helps in
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removing redundancy as the algorithm would have rejected
the destination as it is part of the list destfe . Similar to flow
adjustment method, this method also updates the schedule
(Algorithm 2, Line 10). The destination of the flow is
changed before updating the schedule so we do not need
to change the destination while updating schedule, similar
to flow adjustment method. After the adjustment, we add
the new destination of the flow, irrespective of whether the
previous conditions are satisfied or not, to the list destfe
(Algorithm 2, Line 15).

Algorithm 1: Multi-stage greedy adjustment (MSGA)
algorithm

Input: The task graph of M tasks, the network of N
edge devices, and the set of input data Dti for
each task i in the task graph

Output: The execution schedule specifying when and
where each task is scheduled, i.e. the start
time Tsi and the device xi for each task i

1 Compute an initial schedule using a greedy method
based on list scheduling;

2 Record the execution time of each task and flow
associated with it including the start time, finish
time, data, rate, source, and destination of flow ;

3 while detect a conflict point do
4 Find list of flows Fcl ;
5 Create a combined list Fall consisting of fn and

Fcl;
6 Sort the list in increasing order of start time and

select the flow fe with the earliest start time;
7 Delay transmission of all flows in list fcl until the

flow fe is completed;
8 Create a new schedule, Ef ;
9 Calculate ∆tf ;

10 Change the destination of the flow fe in the
schedule Es to a new destination that can finish
the dependent task in the earliest time ;

11 Create a new schedule Ed ;
12 Calculate ∆td ;
13 if ∆td ≥ ∆tf then
14 Es = Ef , i.e. Set the new schedule as Ef ;
15 else
16 Es = Ed, i.e. Set the new schedule as Es;
17 end
18 return Es;

4.1 Complexity Analysis

The computation complexity of MSGA is O(|Z|*(N + M)),
where N is the number of devices in the network, |Z| is
the number of edges in the dataflow model, and M is the
number of the tasks in the task graph. The computation
complexity is calculated by considering the most complex
operation in Algorithm 1 which is the destination adjust-
ment part shown in Algorithm 2. For each conflict, the des-
tination adjustment can choose among any of the N devices
as the new destination. Once the new destination is selected,
we calculate the modified schedule by considering all M
tasks in the task graph model. This destination adjustment

Algorithm 2: Destination adjustment algorithm
Input: The task graph of M tasks, the network of N

edge devices, and the set of input data Dti for
each task ti in the task graph, congested flow
fe, list of flows Fcl congested at same time, list
of destination, destfe , for flow fe

Output: The updated schedule Ed after adjustment
and the increase in completion time ∆td

1 Find the destination task, ti for the congested flow fe ;
2 Calculate the remaining bandwidth after scheduling

other flows in the list Fcl using the initial bandwidth
for i ≤ N do

3 if i == devi then
4 ti,f =∞ ;
5 else
6 Calculate the finish time of task ti considering

remaining bandwidth
7 end
8 Select the device which finishes the task ti in earliest

time;
9 Update the information of flows directly affected by

destination adjustment;
10 Create a new schedule Ed ;
11 if fe is no more congested and new destination of fe is

not part of destfe then
12 ∆td = Newcompletiontime−Oldcompletiontime;
13 else
14 ∆td = Inf ;
15 Add the new destination of fn into the list fe;
16 return Ed,∆td;

is done for all conflicts which is equal to the total number of
edges in the dataflow model, i.e. |Z|. Hence, the complexity
of the Algorithm 1 is O(|Z|*(N + M)).

5 EVALUATION

We have done the simulation using MATLAB to evaluate
and compare the performance of the MSGA with benchmark
solutions. The performance evaluation has been done using
two performance metrics: completion time of the application
and running time of the algorithm. The parameters used for
the simulation are similar to the one used previously in [12]
and [28].

5.1 Simulation Setting
Parameters for Network Model: We generate a network of edge
devices where devices are randomly deployed in a 100m x
100m area, and any two devices less than 35m apart are
connected to each other. The size of the area is similar to
the one used in [29]. Other works related to wireless sensor
networks have also used the network area of the same size.
It is All the devices are connected to each other using a
multi-hop path. The weight of the device represents the
processing power, and weight of the link connecting two
devices represents the bandwidth capacity of the link. The
devices are heterogeneous in terms of processing power
which is selected to be [50MCPS ± 10%]. The bandwidth
of each link is selected to be [250Kbps ± 10%].
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Parameters for Application Model: We have implemented a
random DAG generator for the task graph using the level
by level method mentioned in [30]. The task graph contains
M nodes where each node represents the task and weight of
the node represents the computation load of the task. The
nodes are connected using edges whose weight represents
the amount of data to be transferred between dependent
tasks. The number of levels in the task graph is selected to
be a normal distribution in the range [M/4, M/2]. Each level
contains at least one node and the number of nodes in each
level is selected randomly. The computation load of each
task is selected to be [300KCC ± 10%] and data transferred
between two dependent tasks is selected to be [750 bits ±
10%]. The amount of data to be transferred is calculated
based on the communication-to-computation ratio (CCR) of
0.5.

Parameters for Data Model: We generate a set of 20 input
data which are selected to be located on random devices. We
randomly select a subset of input data (2 for default case) for
each task. The amount of input data is selected to be [3200
bits ± 10%].

5.1.1 Benchmark Solutions

We have compared the performance of MSGA with two
benchmark solutions. The benchmark solutions also follow
the three-stage methodology of MSGA. The first and second
stage of the benchmark solutions are same as that of MSGA,
however, in the third stage, we use a different method for
resolving conflicts. The first benchmark uses the first-come-
first-serve (FCFS) policy to adjust the flows. The flow which
starts at the earliest time is given highest priority while
adjusting the flows in the first benchmark solution. Other
congested flows are delayed until the highest priority flow
is finished. The second benchmark uses another priority
method where the flow which finishes first is given highest
priority. Concerning Algorithm 1, sorting is done in increas-
ing order of finish time of flows instead of the start time in
Line 6. This implies that all other conflicted flows are de-
layed until the flow the highest priority (earliest finish time)
is finished. Compared to MSGA, both of these benchmark
solutions resolve the network conflict by adjusting the flows
only whereas MSGA also utilizes changing the destination
of flows, i.e. changing the placement of tasks.

We have also implemented a genetic algorithm (GA)
where the network congestion is resolved using the FCFS
policy. Compared to other benchmarks, the genetic algo-
rithm improves the solution iteratively by changing the
placement of tasks. The genetic algorithm implemented in
this paper is similar to the one in [9], however, we have
changed the encoding of genes, crossover operator, and mu-
tation operator. We encode each gene as a vector of integers
representing the allocated device for each task. A simple
crossover operator has been used where two genes exchange
the second partition of a gene selected randomly. We use
power mutation described in [31]. The parameters used for
GA are: number of chromosomes in the initial population
is 10, the number of generations is 100, 80% of the original
population is selected for crossover, and mutation ratio is
0.02.

TABLE 3: Default parameters used for simulation

Parameter Value
Number of tasks 30
Number of devices 100
Number of input data sources 2
Amount of input data 3200 bits ± 10%
Computation load of each task 300 KCC ± 10%
Processing power of each device 50 MCPS ± 10%
Data transmission between 750 bits ± 10%
dependent tasks
Bandwidth of each link 250 Kbps ± 10%

5.2 Simulation Results

The default parameters used for simulation are shown in
Table 3. Table 4 shows the comparison between bench-
mark solutions and MSGA in terms of both completion
time and running time of the algorithms. We have used
short form FCFS (first-come-first-serve) to represent the first
benchmark solution, EFT (earliest finish time) to represent
the second benchmark solution, and GA to represent the
genetic algorithm. Compared to other algorithms, MSGA is
able to achieve better performance in terms of completion
time. However, the better performance comes at the cost of
higher running time of MSGA compared to the benchmark
solutions, FCFS and EFT. It can be observed that genetic al-
gorithm is also able to achieve similar performance as FCFS
and EFT in terms of completion time but the running time
of GA is very high. It is almost 830 times higher than other
benchmark solutions. Due to such high running time, we
have not considered the genetic algorithm for performance
comparison while changing other parameters. The results
obtained for performance comparison have been averaged
out for 30 iterations. Each iteration is different in terms of
both the task graph and the wireless network generated
randomly. The completion time and running time shown in
Table 4 are calculated using 95 % confidence interval except
for GA since it is not considered for performance compari-
son later. The result can be interpreted as, for example, the
average completion time using MSGA is between 0.1523 and
0.1847 with 95% confidence. The error margin is around 10%
for 95% confidence interval if the results are averaged out
for 30 iterations.

5.2.1 Effect of changing number of tasks

We evaluate the effect on the performance of algorithms by
changing the number of tasks from 10 to 50 while keeping
other parameters constant. Fig 5 shows the performance
comparison in terms of completion time where the com-
pletion time increases on increasing the number of tasks.
The performance difference, in terms of completion time,
between MSGA and benchmark solutions ranges from 16%
to 22%. The performance difference decreases from 22%
to 15.8% as the number of tasks is increased from 30 to
50 tasks. However, when the number of tasks is 10 or
20, the performance difference is less around 16% because
the number of devices is 100 which is large enough for
benchmark solutions to give good results.

We have also compared the running time of MSGA with
benchmark solutions as shown in Fig 6. As the number
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TABLE 4: Performance Comparison for default parameters

Metric FCFS EFT GA MSGA
Completion time (sec) 0.2158 ± 0.0236 0.2454 ± 0.0287 0.2175 0.1685 ± 0.0162
Running time (sec) 33.3678 ± 1.3327 35.0966 ± 1.4268 27676 100.7590 ± 7.4757

of tasks is increased, the running time also increases as
both more tasks and flows need to be scheduled. However,
the increase in running time of MSGA is higher compared
to other benchmark solutions, FCFS and SJF, as MSGA
includes destination adjustment algorithm too where a new
modified schedule is calculated by considering all M tasks in
the task graph model. However, for benchmarks solutions,
the new schedule can be easily calculated by shifting the
start time of other flows. The running time of MSGA is
around 2-3 times more than that of benchmark solutions.
However, compared to the genetic algorithm the running
time of MSGA is still very low, and MSGA also gives better
result in terms of completion time. This shows a trade-off
between the two performance metrics, i.e. completion time
and running time.
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5.2.2 Effect of changing number of devices
Fig 7 shows the performance comparison, in terms of com-
pletion time, by changing the number of devices from 50
to 250. Performance comparison shows that the completion
time decreases as the number of devices is increased because
the number of connections is increased due to increase in
density of devices. The increase in connections leads to less
completion time as the transfer time is now decreased. The
performance difference between MSGA and benchmark so-
lution increases as the number of devices are increased. The
reason is that as the number of devices is increased, MSGA
has more chances of changing the destination of flows.
However, this trend continues only up to a certain point. If

the number of devices is high, then the difference between
MSGA and benchmark solutions will start to decrease as the
benchmark solutions can give good results if the number of
devices is high. This can be observed in Fig 7 where the
difference in performance first increases from 12.4% at 50
devices to 27.2% at 150 devices and then decreases to 21.3%
when the number of devices is 250.

The running time of MSGA will increase more than that
of benchmark solutions as shown in Fig 8. This increase
happens because MSGA utilizes changing the destination
of flow to other devices which is dependent on the number
of devices in the network.
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5.2.3 Effect of changing number of input data sources
We have evaluated the effect of changing the number of
input data sources from 1 to 4 on completion time as
shown in Fig 9. The results show that as the number of
input data sources is increased the value of completion
time increases. This increase in completion time is due to
increase in transfer time as network congestion increases on
increasing the number of input data sources. The perfor-
mance difference between MSGA and benchmark solutions
also decreases from 21% to around 10% on increasing the
number of input data sources. The decrease in performance
is the result of increased network congestion which makes it
difficult to change the destination of flow. Since the network
congestion cannot be resolved efficiency due to increase in
number parallel data transmissions, there is not a significant
difference between MSGA and benchmark solutions.
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The running time of both MSGA and benchmark solu-
tions increases as the number of input sources are increased
as shown in Fig 10. Due to increased network congestion for
large values of input data sources, the increase in running
time of MSGA is more than that of benchmark solutions. The
reason is the network congestion increases, and more time is
spent by destination adjustment part of MSGA which leads
to a higher increase in running time.
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5.2.4 Effect of changing amount of input data
Fig 11 shows the effect of increasing the amount of average
input data from 1600 bits to 6400 bits. Fig 11 shows that as
the amount of average input data is increased the value of
completion time increases. The increase in completion time
is due to increase in the amount of transfer time for input
data has increased. An interesting observation is that as the
amount of average input data is increased, the performance
difference between MSGA and benchmark solutions also
increases from 7.36% for 1600 bits to 25.75% for 6400 bits.
The reason for the observed increase in performance dif-
ference is that benchmark solutions delay the flows based
on priority which results in a significant rise in completion
time when the amount of input data is substantial, whereas
MSGA changes the destination to resolve network conflict
which does not require delaying other conflicted flows.

The running time remains almost same as the amount
of average input data is increased as shown in Fig 12. The
reason is that as that there is no significant difference in
network congestion by increasing the amount of input data.

6 RELATED WORK

In this section, we introduce related works in task allocation
belong to different categories, including, wireless sensor
networks and data centers.
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Existing works related to tasks allocation in WSN have
considered both single hop [10] and multi-hop [11], [12]
WSN. The work in [12] adjusts the schedule length to resolve
any network conflicts, however, compared to our work, it
does not consider the input data of tasks. Multi-objective
task allocation problem has also been studied in [28]. There
are few works that also consider task allocation problem
in IoT such as [13] and [14]. In [13], authors study a task
mapping problem which considers features specific to IoT
including embedded system constraints such as minimis-
ing energy consumption and resource constraints, shared
sensing, and continuous processing for large scale mobile
networks. Authors in [14] propose a distributed consensus-
based algorithm for task allocation in IoT. These works
do not consider transmission cost for input data to device
where task is allocated. The transmission cost has been con-
sidered for task allocation in IoT in our previous work [9].
However, unlike existing works, this work jointly schedules
tasks and network flows for collaborative edge computing.
However, the work in [9] only considers single hop com-
munication networks and the objective is to minimize only
the total energy consumption. In this work, we minimize
completion time of the application for collaborative edge
computing where the devices are connected jointly schedule
task and network flows which has not been done in other
existing works.

There are also some existing works that consider data
distribution on task allocation in grids and data centres
[15], [16], [19], [17], [18], [20], [21] etc. A related work has
been done for dependent tasks in [32]. Authors in [32]
formulate a integer linear programming problem to jointly
solve the heterogeneous data allocation and task scheduling
(HDATS) problem of assigning processors to real-time tasks
and allocate data. The work in [22] solves the problem of
placement of tasks depending on the network scheduling
policy. However, these works in grids and data centers do
not jointly schedule task and network flows as done in this
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work.
There are some related work which have considered net-

work condition while scheduling tasks [33] [34].The work in
[33] proposes a system named Iridium which optimizes the
placement of both data and tasks while considering WAN
bandwidth. This work avoids network congestion by avoid-
ing sending too much data over a narrow link. Another
related work in SquirrelJoin [34], which is a distributed join
processing technique that uses lazy partitioning to adapt to
network skew conditions. SquirrelJoin specifically considers
receiver-side skew where large amount of data is assigned
to faster receivers so that receivers affected by receiver-side
skew have to process less data. These works are different
from the data-aware task allocation problem studied in this
paper. These works consider MapReduce jobs or join queries
whereas, our work considers generic task DAG model.
The placement of the input data of different tasks in the
DAG needs to be considered while making task allocation
decision.

7 CONCLUSION

This paper studies the data-aware task allocation where task
and network flows are jointly scheduled with the objec-
tive of minimizing the completion time of application. The
problem can be easily extended further to multi-objective
problem such as minimizing the completion time and total
energy consumption of all tasks. This problem is useful for
systems based on collaborative edge computing in IoT such
as Edge Mesh, where the data and computation tasks is dis-
tributed among edge devices. The problem considers both
the placement of data and network bandwidth consumed
in transferring data to schedule tasks. We have proposed
a solution, MSGA, for the data-aware task allocation. The
three stages in MSGA are: creating an initial schedule with-
out considering network congestion, detecting network flow
conflicts, and resolving network flow conflicts. We adjust
both the destination of flow and bandwidth to resolve the
network flow conflicts. The advantage of proposing three-
stage algorithm is that we can easily modify the algorithm,
for example instead of using a greedy algorithm based on
list scheduling for creating initial schedule, we can use
another algorithm. We have done simulation experiments
to evaluate and compare the performance of MSGA with
the benchmark solutions which only consider adjusting
the bandwidth of flows to resolve network flow conflicts.
Performance comparison shows that the proposed solutions
can lead to up to 27% improvement in completion time
compared to benchmark solutions. Although the proposed
solution requires more running time than benchmark solu-
tions as it also considers adjusting destination of flows, the
running time is far less compared to genetic algorithm.
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