Blockchain-based Collaborative Edge Intelligence
for Trustworthy and Real-time Video Surveillance

Mingjin Zhang, Jiannong Cao, Fellow, IEEE, Yuvraj Sahni, Qianyi Chen, Shan Jiang, Lei Yang

Abstract—Trustworthy and real-time video surveillance aims to
analyze the live camera streams in a privacy-preserving manner
for the decision-making of various advanced services, such as
pedestrian re-identification and traffic monitoring. In recent
years, edge computing has been identified as a promising tech-
nology for trustworthy and real-time video surveillance because
it keeps confidential video data locally and reduces the latency
caused by massive data transmission. Generally, a single edge de-
vice can hardly afford the computation-intensive video analytics
tasks. Most existing solutions incorporate cloud servers to handle
the overloaded tasks. However, such an edge-cloud collaboration
approach still suffers from unpredictable latency and privacy
concerns because the remote cloud is centralized and distant
from the cameras. In this work, we designed a blockchain-based
collaborative edge intelligence (BCEI) approach for trustworthy
and real-time video surveillance. In BCEI, geo-distributed edge
devices form a peer-to-peer network to maintain a permissioned
blockchain and share data and computation resources to perform
computation-intensive video analytics tasks. The video analytics
results are written on the blockchain in an immutable manner
to guarantee trustworthiness. To reduce task execution time, we
formulate and solve a joint stream mapping and task scheduling
problem to schedule video streams and machine learning models
among edge devices. A pedestrian re-identification prototype is
implemented and deployed based on BCEI with extensive perfor-
mance evaluation, indicating the superiority of BCEI in latency
reduction and system throughput improvement by leveraging
collaboration among edge devices.

Keywords-Collaborative Edge Computing; Edge Blockchain;
Trustworthiness; Edge Intelligence; Video Surveillance.

I. INTRODUCTION

Nowadays, cameras have been widely adopted and deployed
in public and private areas, such as traffic intersections,
campuses, and grocery stores [1]. Driven by the recent break-
through in machine learning, especially deep learning, we can
perform advanced video analytics from the camera streams
with powerful deep learning models [2]. Collaborative video
surveillance aims to analyze the live video streams from the
distributed cameras to support a wide range of applications,
including traffic control [3], security monitoring [4], and
object re-identification [5]. Because many of these applications
impose high requirements for real-time responses, it is highly
demanded to achieve low-latency and high-throughput video
stream processing.

In academia and industry, there are many existing cloud-
based video surveillance solutions [6]. These solutions are

Mingjin Zhang, Jiannong Cao, Qianyi Chen, and Shan Jiang were with
the Department of Computing, The Hong Kong Polytechnic University.
Yuvraj Sahni was with the Department of Building Environment and Energy
Engineering, The Hong Kong Polytechnic University. Lei Yang was with the

School of Software Engineering, South China University of Technology.
Corresponding author: Shan Jiang

centralized and reactive [7]. More specifically, video streams
collected from different cameras are sent to a centralized
cloud server for storage and analytics [8]. Due to the strong
dependence on the central cloud server and massive data
transmission among cameras and servers, such a cloud-based
approach incurs bandwidth congestion, single point of failure,
low scalability, and high latency. Furthermore, the cloud
servers are not always reliable, raising privacy concerns [9],
especially when the videos are confidential, e.g., smart home
and warehousing [10].

In the past few years, there have been emerging studies
of edge computing-based video surveillance that can reduce
latency, improve scalability, and provide better services than
cloud-based solutions. The magic behind edge computing lies
in pushing computation tasks from the cloud to network edges
closer to the data sources [11]. Some existing edge computing-
based video analytics solutions have considered leveraging
the spatial and temporal correlations among different cameras
to fully discover the correlation among distributed cameras
[12]. There are also proactive video surveillance solutions
for vehicle tracking using edge devices [13]. Some studies
further considered the aspects related to workload balancing
to improve the performance of each edge device and the whole
video analytics applications [14], [15].

To summarize, existing studies mainly consider sending
the video streams to a nearby edge computing device, which
may lead to overloading and degrade application performance
dramatically [16]. It is because video analytic applications are
usually computation-intensive while multiple video streams
share the limited computation resources of a single edge device
[17]. A bunch of work handles the resource constraints of a
single edge device by offloading some computation tasks to the
remote cloud [6], [18]. However, it bears unpredictable latency,
limited bandwidth, and privacy concerns [8]. In addition,
existing studies seldom consider the trustworthiness of video
analytics results. In this work, we leverage the blockchain
and collaborative edge intelligence, where geo-distributed edge
devices share computation and data resources to accomplish
the video surveillance tasks and collaborate to authenticate the
video analytics results.

In this work, we propose a blockchain-based collaborative
edge intelligence (BCEI) approach to support trustworthy
and real-time video surveillance. BCEI enables proactive and
trustworthy video surveillance. A large number of edge devices
form a peer-to-peer network and maintain a permissioned
blockchain to authenticate the video analytics results. In
BCEI, the permissioned blockchain is employed because of
its relatively low resource demands compared to the public

blockchain [19]. The cameras stream the videos to nearby edge
devices sharing computation resources and data. One of the
key challenges in the system is how to design approaches that
can efficiently sense the status of underlying edge resources
and intelligently assign the computation tasks among the edge
devices. We design an online collaborative scheduler, taking
the status of the resources of the distributed edge devices and
the task characteristics as input and generating the distributed
task execution policies. We formulate a joint stream mapping
and task scheduling problem, which maps the video stream
and distributes the computation tasks to multiple edge devices.
By solving the problem, the scheduler decides which edge
device the video stream should be assigned, how the tasks
should be partitioned, and where to execute the distributed
tasks. Our system enables efficient computation offloading and
significantly improves resource utilization for edge computing-
based video surveillance.

We have deployed a real-world prototype of pedestrian re-
identification to examine the practicability and high efficiency
of BCEI More specifically, we deploy seven Internet Protocol
(IP) cameras at different locations in an indoor environment
to run the video surveillance task. These cameras send video
streams to a cluster of geo-distributed edge devices. The
results show that the proposed system can achieve nearly
real-time performance. We have compared BCEI with several
benchmark solutions concerning various performance metrics,
including system throughput and latency. The results show that
BCEI outperforms the state-of-the-art significantly.

The main contributions of this work are as follows:

e We propose blockchain-based collaborative edge
intelligence (BCEI) approach, which is the first to
study the blockchain-enabled collaboration among
geo-distributed edge devices and generic for applications
demanding trustworthiness and low latency.

e We apply BCEI for trustworthy and real-time video
surveillance, in which we have studied a joint stream
mapping and task scheduling problem for the first time
and solved it using a heuristic algorithm.

e« We deploy a real-world prototype of trustworthy and
real-time video surveillance and conduct extensive perfor-
mance evaluation. The results indicate the superiority of
BCEI over the benchmark approaches in terms of latency
reduction and system throughput improvement.

The remainder of this paper is organized as follows. Sec. II
summarizes the related work and articulates the motivations of
this work. Sec. III presents the system design of blockchain-
based collaborative edge intelligence for trustworthy and real-
time video surveillance. Sec. IV formulates the joint stream
mapping and task scheduling problem and elaborates on
the proposed heuristic algorithm. Sec. V shows the system
implementation and performance evaluation. Finally, Sec. VI
concludes this work and discusses the future directions.

II. RELATED WORK

Real-time video analytics has been considered a killer
application of edge computing [20]. Existing edge computing-
based video analytics solutions mainly rely on the cooper-
ation among cameras, edge devices, and cloud servers to

TABLE 1
COMPARISON OF THE RELATED WORK OF VIDEO ANALYTICS

Video Analytics
Solutions

Adaptive Model Stream

Architecture Workload ~ Offloading ~ Scheduling

VideoStorm [23] Edge-Cloud X X X
Chameleon [24] Edge-Cloud X X X
NoScope [6] Edge-Cloud X X X
STVT [13] Edge-Cloud X X X
LAVEA [22] Edge-Edge X v X
VideoEdge [15] Edge-Edge X X X
Distream [14] Edge-Edge v v X
BCEI (this work) Edge-Edge v v v

accomplish real-time data analytics for computation-intensive
and bandwidth-hungry video surveillance applications. Among
them, solutions based on edge to cloud collaboration [6], [18],
[7], [8] and edge to edge collaboration [15], [21], [22] have
attracted most attention.

Edge-Cloud collaboration. Edge-cloud collaboration-based
solutions can provide ample computation resources owing to
the cloud platform. Many initial efforts on video analytics
have considered edge-cloud collaboration. Zhang et al. [23]
proposed VideoStorm, which leverages an online scheduler
on a cloud server cluster to process queries of thousands of
video streams sent by edge devices. Other studies also consider
workload partition between edge and cloud. [18] divided the
ResNet Model into three parts, which are deployed at the end,
edge, and cloud, respectively. The three parts collaboratively
perform the inference tasks submitted by users. Zhang et al. [7]
adopted a serverless-based infrastructure to facilitate fine-
grained and adaptive partitioning of cloud-edge workloads.

Although edge-cloud collaboration benefits from the
paradigms of cloud computing and edge computing simul-
taneously, it still suffers from unpredictable latency because
of the limited bandwidth between edge and cloud. Moreover,
sending confidential video data to the cloud may cause privacy
issues. Such solutions fail to explore the potential of local
collaboration among edge devices to share resources.

Edge-Edge collaboration. Some work in the literature has
considered edge-to-edge collaboration, where each edge de-
vice collaborates with others to provide surveillance services
jointly. Neff et al. [21] proposed REVAMP?T, a pedestrian
re-identification algorithm that works on an encoded feature
representation for each identified individual. Because no raw
figure of pedestrians is shared among edge devices, privacy
concerns are reduced. Another work in [25] also showed the
advantage of leveraging spatial-temporal correlation to scale
the video analytics systems to large camera deployments. The
work in [26] presented the abstraction of camera clusters
to provide video analytics service. However, those existing
studies only support data-level cooperation, and the distributed
computation resources are not fully utilized.

Few attempts have been made for sharing computation
resources among multiple edge devices for video analytics.
Yi et al. have designed LAVEA, a low-latency video edge
analytic system that leverages nearby edge devices to reduce
the overall task completion time [22]. However, this work
fails to consider collaborative video surveillance, in which

multiple video streams are from different locations. Recent
work Distream [14] adaptively balances the workloads across
multiple intelligent cameras and partitions the workloads be-
tween the smart cameras and the centralized edge cluster.
However, the edge devices in the cluster are not geo-distributed
and deployed centralized, which neglects the data transmission
cost and network topology among edge devices.

Tab. I shows a comparison of the related work on video an-
alytics with this work. Compared to existing studies, our work
enables collaboration among geo-distributed edge devices by
sharing both computation and data resources. It seamlessly
integrates blockchain into the collaborative edge computing
system to make the computation results trustworthy. Further-
more, we consider the stream transmission cost in the edge
network and optimize the real-time performance of video
analytics applications by jointly scheduling the camera streams
and the machine learning models.

III. SYSTEM DESIGN

This section first introduces the system model of BCEI to
deploy trustworthy and real-time video surveillance applica-
tions. Then, we discuss the system’s key components to run the
permissioned blockchain system, manage the heterogeneous
edge resources, and distribute the computation tasks among
geo-distributed edge devices.

A. System Model

Fig. 1 depicts the overall architecture of our proposed
blockchain-based collaborative edge intelligence (BCEI) ap-
proach. Multiple cameras are deployed to perform trustworthy
and real-time video surveillance tasks in a large-scale area.
Unlike the specialized intelligent cameras that can perform
some computation-intensive video analytical tasks, we use
low-cost commodity-off-the-shelf cameras whose computation
capabilities are meager. Several geo-distributed edge devices
with heterogeneous computation capabilities are deployed near
the cameras to reduce the data transmission cost and provide
near real-time response. The edge devices collaborate to main-
tain a permissioned blockchain that stores the video analytics
results in an immutable manner. Edge devices and cameras
are interconnected within a network so that each camera can
stream the videos to any edge device. Also, the computation
tasks and data can be shared within the edge cluster.

Unlike cloud-based and traditional edge-based solutions, our
system creates a blockchain-based shared resource pool among
geo-distributed edge devices and cameras within a network.
The benefits of the resource pool are as follows:

o Efficient resource sharing and load balancing. With the
resource pool, the computation tasks can be migrated
among edge devices to achieve load balancing and reduce
the risk of single-node failure.

o Flexible access to input video streams and intermediate
data. Instead of connecting one edge device with one
camera, each device in the cluster can process multiple
video streams, which facilitates effective data sharing.

o Optimized scheduling to accelerate inference. The com-
putation tasks can be partitioned and scheduled among

edge devices to reduce the execution time by jointly
considering the computation and networking resources.

o Inherent trustworthiness of video analytics results. The
edge devices contribute a small portion of computation
resources to maintain a permissioned blockchain that
keeps the video analytics results immutable. The results
are confirmed by all the edge devices, making them
trustworthy.

B. System Components

Our system enables blockchain-based intelligence among
geo-distributed edge devices, which share computation re-
sources and data to accomplish video surveillance tasks. The
key is to sense the distributed edge resources and intelligently
distribute the computation tasks among the resource-constraint
edge devices, considering the underlying edge resources’ task
characteristics and status.

The system adopts a mixture of peer-to-peer and master-
client architectures. More specifically, the permissioned
blockchain runs in a peer-to-peer network, and the edge
resource management employs the master-client architecture.
The master is responsible for monitoring the edge resource
status and scheduling decisions on partitioning and distributing
the computation tasks among the edge devices. The critical
components of the system and their roles are described below.

e Scheduler. The scheduler runs at the master node. It
accesses the cluster status by communicating with the
controller, which continuously monitors the workload and
available resources of the cluster, such as network topol-
ogy, data transmission rate, idle computation resources,
and storage capacities of each edge device. The scheduler
generates task partition and resource allocation policies
with a scheduling algorithm running inside.

e Controller. It monitors the edge resources by communi-
cating with the monitors on edge devices. Also, it man-
ages the edge resource by messaging the task partition
and resource allocation policies to edge devices.

o Executor. The executor receives the task execution poli-
cies from the controller and executes the assigned tasks.

e Monitor. It monitors the networking and computation
status of the edge device and sends it to the controller.

e Database. Each edge device has its local database instead
of directly sending the inference results to the master
node. The local database should be synchronized peri-
odically with the global database on the master node to
facilitate distributed task execution and data sharing.

e Permissioned blockchain. It is maintained by edge de-
vices. Its purpose is to store the video analytics results
and keep them immutable.

The general workflow of the system is described as follows.
The computation tasks of video analytics will be submitted
to the scheduler, which generates the task execution policies
by jointly considering the task performance metrics, available
computation, storage, and networking resources of the edge
devices. The policies decide how the task should be partitioned
and where the task should be executed. More details will be
presented in Sec. IV. The run-time characteristics of tasks

Permissioned
Blockchain

Maintenance of the permissioned
blockchain by edge devices

Connection between the

Scheduler || Controller || Database |L

master node and edge device

Connection between

cameras and edge device £qoeHvion.

Database Database

=== Pedestrian trajectory

/Edge evi}

Master node

/Edge evi% /Edge evi&

Database Database

Monitor Monitor

Monitor Monitor

Executor

Executor

Fig. 1.

C)@cutor Executor
- « ——
&Y

I~

o f 5l Camera § A
\" > £ 20
™ - "

System model of blockchain-based collaborative edge intelligence system for trustworthy and real-time video surveillance. The cameras are end

devices generating video analytics tasks. The edge devices collaborate to perform video analytics tasks by sharing computation and data resources. Finally,
the video analytics results are stored and kept trustworthy on the permissioned blockchain.

and the resource status will be sent back to the controller
by the monitor and used for future decision-making. Finally,
the video analytics results are kept on the permissioned
blockchain.

IV. JOINT STREAM MAPPING AND TASK SCHEDULING
FOR PEDESTRIAN RE-IDENTIFICATION

We showcase the BCEI system with an edge video analytics
application, i.e., pedestrian re-identification, empowered by
deep learning models. We formulate a joint stream mapping
and task scheduling problem to optimize the application la-
tency, considering where to schedule the video stream and
deploy the deep learning models. In this section, we first
introduce the pedestrian re-identification pipeline. Then, we
illustrate the benefits of jointly considering stream mapping
and task scheduling. We mathematically formulate the problem
and introduce optimization algorithms based on this.

A. Pedestrian Re-identification Pipeline

We target those applications that employ state-of-the-art
neural network models to conduct various challenging video
analytic tasks. Examples include object attribute recogni-
tion and object re-identification, human activity recognition,
and many others [27]. Those applications typically adopt
a cascaded architecture that leverages a pipeline of neural
network models to accomplish the video analytic task [14].
The pipeline usually consists of an object detection model
followed by task-specific models to perform various tasks on
the detected objects within a video frame, e.g., object type,
color, and shape.

Without loss of generality, we take the pedestrian re-
identification application as an example. Pedestrian re-
identification aims to associate images of the same person
taken from different or the same cameras at different times.
It is an essential technique in video surveillance and has been
widely applied in security areas such as pedestrian tracking,

criminal event detection, and children remote monitoring
[21][5]. As shown in Fig. 2, a general process of pedestrian
re-identification can be abstracted into a pipeline consisting
of three phases, i.e., pedestrian detection, tracking, and re-
identification. A detection model will first process an input
image to detect the individual’s location, and the identified
individual is tracked by monitoring the trajectory. Afterward,
discriminative features are extracted from the picture of
tracked pedestrians for comparison and re-identification. The
pedestrian is then annotated with the re-identification result
during the later continuous tracking. The pipeline shows that
the re-identification model is not frequently called because the
individual will be assigned an ID and continuously tracked by
the tracker once an individual is re-identified.

Fig. 2 also shows an example of distributed task execution
policies. The pedestrian re-identification application is parti-
tioned into pedestrian detection, tracking, and re-identification
tasks. While the detection task and tracking are executed on
edge device 1, the re-identification task is executed on edge
device n. Edge device 1 sends the intermediate data to edge
device n to accomplish the overall task.

We use two deep learning models for pedestrian detection
and re-identification. The execution time of pedestrian tracking
is much less than detection and re-identification as we do not
adopt the computation-intensive deep learning (DL) models
for tracking. Hence, we only consider the detection and re-
identification models in the problem formulation part.

B. Motivations of Joint Stream Mapping and Task Scheduling

This section describes a concise example to show the
motivations for joint scheduling of the video streams and
deploying machine learning (ML) models on edge devices.
We consider a network consisting of three edge devices that
are fully connected. The application model consists of two
dependent tasks, i.e., pedestrian detection and re-identification.
We assume each task takes 1 unit of time to be executed
on each device. Four cameras stream the videos to any edge

Pedestrian re-identification pipeline

R — F S
2 F 4 mea
u /1 | Pedestrian I Frame T, |, Personin Re-
i | detection flis | Tracking = _ g | identification
- i - Y £ " B i
i & =V :

~ Person ID: Q
~ Person ID: Q
Frame T, Frame T;

Person ID: tinkriown
FrameT; ...

Person ID: unknown
Frame T;

Scheduler
re-identification 1 Person ID: Q

@ Edge devi

Edge device 2

Edge device n

! Deep learning fol

Edge device 1

Fig. 2. Model pipeline and task offloading of pedestrian re-identification.
The edge devices perform three tasks: pedestrian detection, tracking, and re-
identification. The video data and analytics results are partially shared to
facilitate the completion of the tasks with high performance.

device. The first scheduling problem is to decide on the edge
device where each camera stream the video. Once the video
is streamed to an edge device, the device will use the ML
model for the detection task to detect any individual within
the frame. The other ML model is to identify the detected
individual for the re-identification task. More specifically, the
second scheduling problem is to decide which edge device to
offload the re-identification ML model. The scheduling prob-
lems’ decisions are based on resource availability, bandwidth
constraints, and computation workload.

The scheduling result shown in Fig. 3(a) is based on
randomly deciding the mapping of video streams from cam-
eras to edge devices and locally executing the ML models
in the pedestrian re-identification application. Such random
scheduling of camera streams and no offloading leads to the
possibility of multiple cameras streaming the video to one
overloaded edge device. In contrast, other edge devices can be
lightly loaded or have no workload. In our example scenarios,
three cameras (a, b, c) stream video to edge device 1, while
camera d streams video to edge device 2. There is no video
streamed to edge device 3. The completion time for this
random scheduling is high (6 units in our example) and not
optimal as it leads to inefficient usage of device resources.
An improvement over the random scheduling is shown in
Fig. 3(b), where we schedule the video streams from cameras
while executing the ML models locally on edge devices. The
scheduling of camera streams shown in Fig. 3(b) leads to
a reduction in the completion time of the application from
6 to 4 units as it considers the transmission time between
cameras and edge devices. Another alternative approach for
improvement over the random scheduling is to make a schedul-
ing decision on offloading the ML model depending on the
resource availability instead of locally executing all the ML
models as shown in Fig. 3(c). The scheduling result, shown in
Fig. 3(c), also leads to a reduction in completion time from 6
to 4.5 units compared to random scheduling.

Although scheduling camera streams and offloading ML
models improve the task completion time, there are still
further spaces for efficiently utilizing the geo-distributed edge

“Dcvuccs 6 units “Dcwccs 4 units
2 a [a |
¢ b [b |
[wfa[
D3 D3| ¢
Time Time
> >
(a) (b)
j Devices 4.5 units ADevices 3.5 units
o
[/}
Time Time
[y »

© (d)

Fig. 3. A motivating example of joint stream mapping and task scheduling:
(a) random camera streams and local execution in 6 units of time, (b)
scheduling camera streams and local execution in 4 units of time, (c) random
camera streams and offloading ML models in 4.5 units of time, and (d) joint
scheduling of camera streams and offloading ML models (this work) in only
3.5 units of time.

resources. Fig. 3(d) shows a joint approach of scheduling
camera video streams and offloading the ML models, which
leads to the best performance in terms of application com-
pletion time compared to the random or other scheduling ap-
proaches. In this work, we have designed an online scheduler
in the proposed BCEI system to enable joint scheduling of
camera streams and offloading ML models in the pedestrian
re-identification application scenario. The following sections
show the problem formulation and proposed solution for
this joint scheduling problem in a dynamic distributed edge
computing environment.

C. Problem Formulation

Randomly mapping the camera video streams to edge
devices leads to an unbalanced workload and inferior per-
formance. We formulate a joint stream mapping and task
scheduling problem to improve resource utilization and boost
application performance.

We assume a quasi-static slotted time model, where it is
assumed that in each time slot ¢, the controllers are aware of
the different network and device metrics required to make the
decision. The metrics for different resources are assumed to
be constant in a time slot. The system consists of K cameras.
Each camera can stream the video to any edge device in the
cluster. The network and application model can be defined as:

Network model. The network is modelled as a graph G =
(V, E), where V = {i|l <1i < M} is the set of edge devices
and E = {e;;|i,j € V'} is the set of links connecting different
devices. The weight of each device is P.S;, representing the
computation capacity of the device i. Each device also has
a limited resource of R! ., and the available resource is
indicated by R, ... We only consider the memory in this work
for the various resources of edge devices, e.g., CPU, memory,
and storage. The weight of link e;; represents the bandwidth
between devices ¢ and j. The devices and network links can be

heterogeneous in computation and bandwidth capacities. The
data rate for transmission between any two edge devices is
R;;. The video transmission time between camera k and edge
device i is Tjp.

Application model. The application model for the pedestrian
re-identification application studied in this work is considered
a sequence of two dependent tasks, i.e., detection and re-
identification. The computation load for detection and re-
identification tasks corresponding to camera stream k is C'L1 i,
and C'Ls ;, respectively. The dependent data between the two
tasks is D’f72. Resource request of the detection model and
re-identification model is ngfl and R:gfld, respectively.

Decision variables. Two decision variables correspond to
mapping camera streams and scheduling DL models. The
first decision variable z;; is binary, equal to 1 if camera
video stream k is scheduled to device <. It also indicates that
the detection task is deployed on device 7. Another decision
variable ;. is binary, which equals 1 if the re-identification
task corresponding to camera video stream k is scheduled to
device 1.

Cost model. For each camera stream, either the detection
and re-identification tasks can be locally executed, or the re-
identification task can be offloaded to another device. The time
for executing the models on each device depends on the overall
workload and available computation capacity.

The total resource request on device ¢, notated as R;, can
be calculated as follows:

K

R; = Z(l‘zk -CLyj + yix, - CLa) (D
k=1

The overall processing time for camera stream k, i.e., Ly,
can be calculated as:

M M M

CLl‘k CL2,k

Lkizxik'Tm+ZIik‘ 75, +Zyjk-' PS,
i=1 i=1 j=1

M M k
D (2)
YO iy R12 ~o(i—j)
i,

i=1 j=1

VieV, ke{l,2,--- K}

where o(-) is an indicator function. Only when -
o(-) equals to 1, otherwise o(-) equals to 0.

Objective function. The objective function of the problem
is to minimize the sum of completion time for all applications
from camera streams.

is zero,

K

Jin > L ®

Constraints:
Ri <R}, YieV 4)

M
wx=1, VjeV, ke{l,2,--- K} (5)

=1

M
Syr=1, VieV, ke{l,2- K} (©

j=1

Tik = {Oa 1}a
Yik = {07 1}7

Eq. 4 indicates that the resource request on an edge device
cannot exceed its maximum resource. Eq. 5 and Eq. 6 show
that the detection model and the re-identification model of
a stream can only be deployed on one edge device. The
formulated optimization problem is nonlinear integer program-
ming (NLP) problem. The problem is NP-hard because the
offloading problem can be reduced to a generalized assignment
problem, proven to be NP-hard in literature.

Viajex/v k€{172a"'7K} (7)
Vivje‘/a k€{1a27"'aK} (8)

D. Optimization Solution

We have proposed a joint stream mapping and task schedul-
ing heuristic algorithm (JSTSH) that determines where to
schedule each video stream and which edge device to allocate
the detection and the re-identification task. The algorithm is
developed with two fundamental principles as follows.

e High workload first. Generally, the latency of handling
video streams with high workloads is much larger than
those with moderate workloads. Suppose we first allocate
edge resources to the video streams with a moderate
workload. In that case, those video streams with a high
workload may suffer from prolonged latency when the
rest of the edge resources are inadequate, further leading
to increased average latency of all video streams. Hence,
we leverage a priority list to rank all video streams
according to their workloads.

e Reusing re-identification model. Following the pedes-
trian detection task, a re-identification model is used to
perform the re-identification task. In our pedestrian re-
identification pipeline, the re-identification model is not
frequently called because an individual will be continu-
ously tracked once the individual’s ID is determined. For
each video stream, if we jointly consider the deployment
of the detection and re-identification models, it will lead
to high resource consumption. Hence, we consider the
deployment of the two models separately. When the
available resources are constrained, the re-identification
model can be reused, which means a re-identification
model can handle multiple video streams.

Based on the two principles, we solve the problem in two
stages. The first stage is to schedule the video stream and
the detection task. The second stage is to schedule the re-
identification task. We first determine the priority of stream
scheduling by sorting the video streams according to their
workloads. Then in the first stage, we filter the candidate
edge devices with abundant resources to allocate the detection
model. The video stream is allocated to the edge device with
minimum execution time, including the raw video transmission
time and the inference time of the detection model.

Df, CLyy
R; ; PS;

After determining x5, we then allocate the re-identification
models in stage 2. We use a similar greedy idea to allocate

Iniin(mik ')7 (RS Mdeployeda ke Vrrest (9)

Algorithm 1: Joint Stream Mapping and Tasks
Scheduling Heuristic (JSTSH)

Input: Video stream V = {k;}X |, computation
capacity {PS;}M, and available resource
R M
avail Ji=1
Output: Video and task allocation policy x;; and ;%
1 Create index I of streams in descending order of

workload;
2fort+ 1t Kdo // Stage 1
3 k< I(t);
4 for each device i + 1 to M do
5 if R7, . > R then
6 Calculate the execution time
ti,wec = 1Lk + CPL;*;C,
7 end
8 end
9 Calculate device ¢* with the shortest execution
time i* = min;{tl, .}
10 xs+) < 1, update R;, for device i*;
11 end
12 fort< 1t Kdo// Stage 2
13 k« I(t);
14 for each device i + 1 to M do
15 if R, . > Ri¢i then
16 Calculate the intermidiate data transmission
k
time &%, = Tk - glf,
17 Calcualte the inference time of detection
model Tfeid = CPL;'“;
18 Calculate the execution time
téxec = tiomm + t’;eid;
19 end
20 end
21 Calculate device ¢* with the shortest execution
time i* = min;{tl, .}
22 Add i to candidate list Myeployed,
23 if Vst # () then
24 Schedule remaining streams to the device that
satisfies Eq. 9;
25 end
26 Update R;, for device i*;
27 Yix ks — 15
28 end

29 return x;, Yix, 1 = 1,2,--- M, k=1,2,--- | K

the re-identification models as stage 1 does. The difference is
that we consider the scenario that idle computation resources
may be less abundant for deploying a re-identification model
for each stream. Hence, we reuse the re-identification model,
where a deployed model can serve multiple streams. To
determine where to deploy the re-identification model, we
allocate the re-identification models for those streams with
high workloads. When the available resources cannot support
the deployment of new re-identification models, we reuse the
re-identification model. The rest of the streams V.., will be
allocated to the edge device, which satisfies Eq. 9. By solving

Camera Distribution in the Indoor
Environment

Camera Feed

o L)

Fig. 4. Demo of pedestrian re-identification. The captured images of the
seven cameras are shown on the left. The upper right corner illustrates the
positions of the seven cameras in the environment. The bottom right corner
presents the video analytics results.

Eq. 9, the rest of the streams will be scheduled to the deployed
re-identification model that can provide the least intermediate
data transmission and inference time.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

This section presents the system implementation, perfor-
mance metrics, and experimental results of the BCEI platform.

A. System Implementation

Testbed. We deploy the system in an indoor environment
due to the privacy regulations of the campus. The floor is
shown in the upper right of Fig. 4, with the size 30 x 15m?.
We implement the system with 7 IP cameras, 5 edge devices,
and 1 master device. We use 3 Jetson Xavier NX and 2 Jetson
Tx2 as the edge devices. The Jetson Xavier NX has a 384-core
Volta GPU with 8GB RAM, and the Jetson Tx2 has a 256-core
GPU with 8GB RAM. The computation capacity of the former
device is much stronger than the latter. Also, to emulate the
heterogeneous resource, we constrain the memory of Jetson
Tx2 as 4GB. We use a powerful workstation with four Intel
Cores 19-7100U with 32 GB RAM to emulate the master.
Three routers connect the edge devices and cameras. To avoid
single node failure, we use a backup server to synchronize
the status of the master node and recover the system when
the master node goes offline. To emulate the distance between
the cameras and the edge devices, we use the Linux traffic
control to configure the bandwidth between the cameras,
edge devices, and edge devices. The edge devices maintain a
permissioned blockchain of Hyperledger Fabric [28] to store
the video analytics results. Note that the performance of the
permissioned blockchain is evaluated in many other studies
[29], [30] and not considered in this work.

Pedestrian re-identification pipeline. In the detection part,
we use SSD-MobileNet-V2 [31] to process the input image
and locate pedestrians. SSD-MobileNet-V2 is a lightweight
deep convolution network that uses both depth-wise and
point-wise convolutions to decrease model complexity, i.e.,
the number of parameters and operations. This work uses
Kalman filter-based tracker due to its low computation cost
compared with DL-based approaches. Our target is to extract
discriminative features for re-identification. Considering the

constrained resources of edge devices, we build the feature ex-
tractor network with OSNet-AIN [32], which is light-weighted
compared to ResNet-50 [33] and DenseNet [34]. It can learn
the global representation of the individual’s appearance and
capture the subtle details required for the re-identification
of individuals. We finetune the pretrained models of SSD-
MobileNet-V2 and OSNet-AIN. All the models are developed
following serverless principles and called Restful APIs [35].

We test the accuracy of the deep learning models. We
run the system for a whole workday, capturing around 346
pedestrians. Among these, 270 pedestrians are correctly re-
identified with an overall accuracy of 78.3%. There are many
false positives, i.e., different pedestrians are not differentiated
and thus identified with the same identity, which is caused
by differences in lighting and camera angles. More advanced
approaches can be applied to improve accuracy. However, it
is not the focus of this work.

Database. We use SQLite to record both the spatial and
temporal information, the discriminative pedestrian features,
and the video analytics results. The SQLite is a lightweight
database often used in resource-constrained devices, such as
mobile phones, cameras, and home electronic devices. Each
edge device has its local database instead of directly sending
the inference results to the master node, which is usually vul-
nerable to an unstable network connection. The local database
should be synchronized periodically with the global database
on the master node to facilitate collaborative inference and
pedestrian tracing. The synchronization period is set to 10
seconds in our system. For example, video analytics results
are still in edge devices when the data is not synchronized.
The master will forward the query request to edge devices
and get the latest status from edge devices.

Fig. 4 shows the system interface. The camera views are on
the left side of the interface, where we can monitor pedestrian
behavior in real time. Authorized users can also easily query
the pedestrian trajectory, as shown on the right.

B. Evaluation Metrics and Experimental Settings

We use the metrics of system throughput and latency to
evaluate the performance of the proposed approach.

o System throughput. The cameras continuously stream the
input videos to the edge cluster, in which high system
throughput is required to process these incoming video
streams in real-time. We consider the system throughput
the average frames per second (FPS).

e Latency. Live video analytics applications require pro-
ducing analytics results within a short period. The task
execution time for a stream includes video transmission
time, local execution time, task offloading time, and
remote execution time. Since there is multiple input
video stream, we consider the latency as the average task
execution time for all streams.

The system schedules the video analytics tasks with map-
ping, with offloading (WMWQO). We evaluate the system perfor-
mance under different metrics and compare it against several
benchmark solutions.

15
14
13-
H
<121
=)
3
°
£1
s
§
2101
>
)
9t —6— no mapping, no offloading
with mapping, no offloading
8 no mapping, with offloading
[—v— with mapping, with offloading |7
I S N
3 3.5 4 4.5 5 5.5 6 6.5

Number of devices

Fig. 5. System throughput vs. number of edge devices. Regardless of the
employed approaches, the system throughput increases and the increasing
speed gets lower with more edge devices. WMWO proposed in this work
outperforms the other approaches.

e No mapping, no offloading (NMNO). The input video
streams are randomly assigned to the edge devices, and
all the computation tasks are executed locally.

o With mapping, no offloading (WMNO). In this case, the
input video streams are assigned to the edge devices
with the shortest video transmission time, and all the
computation tasks are executed locally.

o No mapping, with offloading (NMWO). In this case, the
input video streams are randomly assigned to the edge
devices, and the re-identification task can be offloaded
among the edge cluster.

NMNO and WMNO are non-offloading methods, and
NMWO and WMWO are offloading methods. We test the
performance of the proposed method and the baselines under
various situations, i.e., the number of edge devices, the num-
ber of pedestrians in each input video stream, and different
bandwidths of network links.

C. Influence of Number of Edge Devices

The number of the input video stream is set to be 5.
We increase the number of edge devices from 3 to 7. As
shown in Fig. 5, we can see that the proposed method,
i.e., WMWO, achieves the highest system throughput with
the variation of the number of edge devices. When there
are more edge devices than the input video streams, the
NMNO method keeps the system throughput consistent as it
cannot utilize the computation resources of other edge devices.
The WMNO achieves a slightly high system throughput than
NMNO as it maps the input video streams to edge devices,
considering the heterogeneous computation capacities of the
edge devices. Compared with WMNO, NMWO does not
schedule the input video streams. However, it dynamically
offloads the re-identification tasks, which can alleviate the
computation workload on a single edge device and leverage
the heterogeneous computation capacity of edge devices to
improve the average system throughput.

Though WMNO and NMWO can achieve higher system
throughput by either optimizing the stream mapping decision
or the task offloading decision, their performance is not
better than WMWO as WMWO jointly considers stream map-
ping and task offloading. WMWO achieves 14%-36% system
throughput improvement compared with baseline methods. It

12:20 12:30

20, Camera 1

200,

100-

20, Camera 2

200-
g 100MAMAMWM_A/’WWW\,MMMNWW
K
X0 Camera 3
S
2200

100~

M VWi M|

200 Camera 4

20

10

Time

Fig. 6. Workload dynamics of four cameras in real-world deployment. We can
observe that the workload is not evenly distributed among different cameras.

14.5

MIMNNVW\WMM%

Throughput

no mapping, no offloading
with mapping, no offloading
no mapping, with offloading
with ing, with offloading

12:10 12:20

12:00 12:30

Time

Fig. 7. System throughput vs. dynamic workload. Regardless of the employed
methods, the system throughput slightly fluctuates (within 1 FPS).

shows that our proposed method can integrate the heteroge-
neous resources of geo-distributed edge devices and improve
application performance by jointly optimizing the mapping
and offloading decisions to improve the system throughput.

D. Influence of Dynamic Workload

We study the performance of the proposed method and
various benchmarks under dynamical workloads with a vary-
ing number of pedestrians in the input video streams. The
number of video streams and edge devices is set as 4 and 5,
respectively. Fig. 6 shows the workloads generated from the 4
cameras on a weekday between 12:00 to 12:30. The workload
of each video stream varies with the number of pedestrians in
a video stream and is dynamic as the content captured by each
camera changes over time. We can also see that the workloads
are different across cameras. In particular, cameras 1 and 4
have a higher average workload than the other two cameras
as they capture people entering or leaving out the doors.

As shown in Fig. 7, while the system throughput of NMNO
and WMNO fluctuates a lot over time, there is no noticeable
change in offloading methods, i.e., system throughput for
WMNO and NMWO. NMNO and WMNO show apparent
performance degradation when there is a high workload be-
cause edge devices with constrained resources may easily get
overloaded, further leading to the deterioration of the average
system throughput. Offloading methods show consistent per-
formance because they leverage resource sharing and schedule
the dynamic workloads among edge devices. Similar trends
are also observed in terms of the latency of the application.
From Fig. 8, we can also see that the latency of offloading
the task is similar to that of without offloading when there

2.5

no mapping, no offloading
with mapping, no offloading
no mapping, with offloading
with i with offloading

Latency (s)
(3]
=

o
2 0

0l
12:00 12:20 12:30

Fig. 8. Latency vs. dynamic workload. In the case of a moderated workload,
the latency achieved by different methods is similar. In the case of a heavy
workload, WMWO proposed in this work achieves much lower latency.

13.4 | |—©—no mapping, no offloading
with mapping, no offloading
no mapping, with offloading
13.2 || —9—with ing, with i

N -
N »
® o

System throughput
N
o

| . L .
10 15 20 25 3
Bandwidth (Mbps)

Fig. 9. System throughput vs. network bandwidth. With a higher network
bandwidth, the approaches of WMNO and WMWO can achieve higher system
throughput, while the approaches of NMNO and NMWO cannot.

is a low workload between 12:05 to 12:25, which is due to
the data transmission latency of offloading the re-ID task and
getting back the re-identification results. When there is a low
workload, the data transmission latency is the main factor that
constrains the end-to-end latency of offloading methods. As
the workload increases, the transmission delay of intermediate
data and model inference delay will increase. However, the
inference latency caused by overloaded edge devices becomes
the main factor in this case. In this case, offloading methods
show apparent superiority.

E. Influence of Network Bandwidth

We also investigate the performance of the system in
different bandwidth conditions. Specifically, we leverage the
Linux traffic control to manually set the bandwidth of each link
and study the system throughput under the average bandwidth
of 5Mbps, 10Mbps, 20Mbps, and 30Mbps, respectively. The
variance of bandwidth of network links is 30%. For example,
we increase the average bandwidth from 10 to 20 by doubling
the bandwidth of each link in the network.

It can be seen from Fig. 9 that while the system throughput
of non-offloading methods keeps consistent, the performance
of offloading methods degrades with a decreasing bandwidth
due to the increased transmission delay. When the average
bandwidth is 30Mbps, the system throughput of offloading
methods is much better than that of the non-offloading meth-
ods. When the average bandwidths are 5Mbps or 10Mbps,
the performance of offloading methods is similar to no-
offloading methods. We find that the performance of offloading

—&—no mapping, no offloading
with mapping, no offloading
no mapping, with offloading

—v— with mapping, with i

10 15 20 25 3
Bandwidth (Mbps)

Fig. 10. Latency vs. network bandwidth. With a higher network bandwidth,
the approaches of WMNO and WMWO can achieve much lower latency while
the approaches of NMNO and NMWO cannot.

methods is highly affected by the transmission delay, as shown
in Fig. 10. When there is a long transmission delay, the
performance of offloading methods is similar to non-offloading
methods, which means that the optimal policy in such cases is
to execute the re-identification tasks locally, i.e., no-offloading.

The experimental results indicate that our proposed BCEI
approach can dramatically improve the real-time performance
of video analytics applications, especially when the resources
of edge devices are constrained. BCEI also shows superior
performance in handling dynamic workloads as it integrates
the geo-distributed resources and intelligently schedules the
video streams and the inference tasks.

VI. CONCLUSION

This work proposes a trustworthy and real-time video
surveillance system with blockchain-based collaborative edge
intelligence. We deploy the edge devices closer to the cameras
and create a distributed edge devices cluster where compu-
tation and data resources can share within the cluster. We
design a scheduler that jointly schedules the camera streams
to edge devices and offload tasks in the application pipeline to
improve resource utilization and performance. We have tested
the efficacy of the proposed solution with a pedestrian re-
identification on a real-world prototype. Extensive experiments
show our proposed BCEI dramatically improve the real-time
performance of video analytics applications under constraint
edge resources and dynamic workloads.

VII. ACKNOWLEDGEMENT

The work was supported by the Research Institute for
Artificial Intelligence of Things, The Hong Kong Polytechnic
University, and HK RGC General Research Fund No. PolyU
15220020 and No. PolyU 15204921.

REFERENCES

[1] T. Zhang, S. Liu, C. Xu, and H. Lu, “Mining Semantic Context
Information for Intelligent Video Surveillance of Traffic Scenes,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 1, pp. 149-160, 2012.

[2] R. Nawaratne, D. Alahakoon, D. De Silva, and X. Yu, “Spatiotemporal
Anomaly Detection using Deep Learning for Real-time Video Surveil-
lance,” IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp.
393-402, 2019.

[31 S. Wan, S. Ding, and C. Chen, “Edge Computing enabled Video
Segmentation for Real-time Traffic Monitoring in Internet of Vehicles,”
Pattern Recognition, vol. 121, p. 108146, 2022.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Y. Nikouei, Y. Chen, A. J. Aved, and E. Blasch, “I-ViSE: Interactive
Video Surveillance as an Edge Service using Unsupervised Feature
Queries,” IEEE Internet of Things Journal, vol. 8, no. 21, pp. 16 181—
16 190, 2020.

A. Bedagkar-Gala and S. K. Shah, “A Survey of Approaches and Trends
in Person Re-identification,” Image and Vision Computing, vol. 32, no. 4,
pp. 270-286, 2014.

D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “NoScope:
Optimizing Neural Network Queries over Video at Scale,” Proceedings
of the VLDB Endowment, vol. 10, no. 11, p. 1586-1597, 2017.

M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards Cloud-
edge Collaborative Online Video Analytics with Fine-grained Serverless
Pipelines,” in ACM Multimedia Systems Conference, 2021, pp. 80-93.
P. M. Grulich and F. Nawab, “Collaborative Edge and Cloud Neural
Networks for Real-time Video Processing,” Proceedings of the VLDB
Endowment, vol. 11, no. 12, pp. 2046-2049, 2018.

S. Jiang, J. Cao, J. A. McCann, Y. Yang, Y. Liu, X. Wang, and Y. Deng,
“Privacy-preserving and Efficient Multi-keyword Search over Encrypted
Data on Blockchain,” in IEEE International Conference on Blockchain.
IEEE, 2019, pp. 405-410.

H. Du, L. Chen, J. Qian, J. Hou, T. Jung, and X.-Y. Li, “PatronuS: A
System for Privacy-Preserving Cloud Video Surveillance,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 6, pp. 1252-1261,
2020.

Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge Mesh: A New Paradigm
to Enable Distributed Intelligence in Internet of Things,” IEEE Access,
vol. 5, pp. 16441-16458, 2017.

S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient Cross-camera Video Ana-
lytics on Large Camera Networks,” in IEEE/ACM Symposium on Edge
Computing, 2020, pp. 110-124.

Z. Xu, S. Sinha, S. Harshil S., and U. Ramachandran, “Space-Time
Vehicle Tracking at the Edge of the Network,” in The 3rd Workshop on
Hot Topics in Video Analytics and Intelligent Edges, 2019, pp. 15-20.
X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: Scaling Live
Video Analytics With Workload-adaptive Distributed Edge Intelligence,”
in ACM Conference on Embedded Networked Sensor Systems, 2020, pp.
409-421.

C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “VideoEdge: Processing Camera Streams
using Hierarchical Clusters,” in IEEE/ACM Symposium on Edge Com-
puting, 2018, pp. 115-131.

J. Zhang, M. Z. A. Bhuiyan, X. Yang, A. K. Singh, D. F. Hsu,
and E. Luo, “Trustworthy Target Tracking with Collaborative Deep
Reinforcement Learning in EdgeAl-Aided 10T, IEEE Transactions on
Industrial Informatics, vol. 18, no. 2, pp. 1301-1309, 2021.

J. Zhang, M. Z. A. Bhuiyan, X. Yang, T. Wang, X. Xu, T. Hayajneh, and
F. Khan, “AntiConcealer: Reliable Detection of Adversary Concealed
Behaviors in EdgeAl Assisted 10T,” IEEE Internet of Things Journal,
2021.

Y. Chen, T. Yang, C. Li, and Y. Zhang, “A Binarized Segmented ResNet
Based on Edge Computing for Re-Identification,” Sensors, vol. 20,
no. 23, p. 6902, 2020.

S. Jiang, J. Cao, H. Wu, and Y. Yang, “Fairness-based Packing of
Industrial IoT Data in Permissioned Blockchains,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 11, pp. 7639-7649, 2020.

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time Video Analytics: The Killer
App for Edge Computing,” Computer, vol. 50, no. 10, pp. 58-67, 2017.
C. Neff, M. Mendieta, S. Mohan, M. Baharani, S. Rogers, and
H. Tabkhi, “REVAMP2T: Real-Time Edge Video Analytics for Mul-
ticamera Privacy-Aware Pedestrian Tracking,” IEEE Internet of Things
Journal, vol. 7, no. 4, pp. 2591-2602, 2019.

S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware Video Analytics on Edge Computing Platform,” in ACM/IEEE
Symposium on Edge Computing, 2017, pp. 1-13.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live Video Analytics at Scale with Approximation and
Delay-tolerance,” in USENIX Symposium on Networked Systems Design
and Implementation, 2017, pp. 377-392.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable Adaptation of Video Analytics,” in Annual Con-
ference of the ACM Special Interest Group on Data Communication,
2018, pp. 253-266.

S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez,
“Scaling Video Analytics Systems to Large Camera Deployments,” in

International Workshop on Mobile Computing Systems and Applications,
2019, pp. 9-14.

[26] J. Jiang, Y. Zhou, G. Ananthanarayanan, Y. Shu, and A. A. Chien,
“Networked Cameras are the New Big Data Clusters,” in The 3rd
Workshop on Hot Topics in Video Analytics and Intelligent Edges, 2019,
pp. 1-7.

[27] W. Zhang, Z. He, L. Liu, Z. Jia, Y. Liu, M. Gruteser, D. Raychaudhuri,
and Y. Zhang, “Elf: Accelerate High-resolution Mobile Deep Vision with
Content-aware Parallel Offloading,” in Annual International Conference
on Mobile Computing and Networking, 2021, pp. 201-214.

[28] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” in ACM European Conference on Computer Systems,
2018, pp. 1-15.

[29] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“Blockbench: A Framework for Analyzing Private Blockchains,” in ACM
International Conference on Management of Data, 2017, pp. 1085-1100.

[30] M. Dabbagh, K.-K. R. Choo, A. Beheshti, M. Tahir, and N. S.
Safa, “A Survey of Empirical Performance Evaluation of Permissioned
Blockchain Platforms: Challenges and Opportunities,” Computers &
Security, vol. 100, p. 102078, 2021.

[31] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and Training of Neural Networks
for Efficient Integer-arithmetic-only Inference,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2704-2713.

[32] J. Almazan, B. Gajic, N. Murray, and D. Larlus, “Re-ID Done Right:
Towards Good Practices for Person Re-identification,” CoRR, vol.
abs/1801.05339, 2018.

[33] A. Hermans, L. Beyer, and B. Leibe, “In Defense of the Triplet Loss
for Person Re-Identification,” CoRR, vol. abs/1703.07737, 2017.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4700—4708.

[35] Y. Chen, X. Xu, and W. Wang, “Efficient Web APIs Recommendation
with Privacy-preservation for Mobile App Development in Industry 4.0,”
IEEE Transactions on Industrial Informatics, 2021.

Mingjin Zhang is currently a Ph.D. candidate with
the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong SAR, China.
He received the B.Eng. degree in communication
engineering from Wuhan University of Technology,
China, in 2019. His research interests include edge
computing, edge Al, distributed machine learning,
and Internet of Things.

Jiannong Cao is currently the Otto Poon Charitable
Foundation Professor in Data Science and the Chair
Professor of Distributed and Mobile Computing in
the Department of Computing at The Hong Kong
Polytechnic University (PolyU), Hong Kong. He is
also the Dean of Graduate School, the director of
the Research Institute for Artificial Intelligence of
Things in PolyU, and the director of the Internet
and Mobile Computing Lab. He was the founding
director and is now the associate director of PolyU’s
University Research Facility in Big Data Analytics.
He served as the department head from 2011 to 2017. Prof. Cao is a member
of Academia Europaea, a fellow of IEEE, a fellow of the China Computer
Federation (CCF), and an ACM distinguished member. His research interests
include distributed systems and blockchain, wireless sensing and networking,
big data and machine learning, and mobile cloud and edge computing.

Yuvraj Sahni received the B.Eng. (Hons) degree
in Electrical and Electronics Engineering from Birla
Institute of Technology and Science, Pilani, India, in
2015 and the Ph.D. degree from the Department of
Computing, The Hong Kong Polytechnic University,
Hong Kong, in 2021. He is currently a Research
Assistant Professor at the Department of Building
Environment and Energy Engineering, The Hong
Kong Polytechnic University, Hong Kong. Before
that, he was a Postdoctoral Fellow at the Depart-
ment of Computing, The Hong Kong Polytechnic

University, from April 2021 to March 2022. His research interests include
Edge Computing, Edge Al, Internet of Things, and Smart Buildings.

Qianyi Chen is currently a Ph.D. candidate in the
Department of Computing, The Hong Kong Poly-
technic University, Hong Kong, China. Before that,
he received an M.Sc. (2019) degree in bridge and
tunnel engineering from Zhejiang University and a
B.Sc. (2016) degree in road and bridge engineering
from Huazhong University of Science and Technol-
ogy. His research interests include physics-enhanced
machine learning, edge computing, and structural
health monitoring.

Shan Jiang received a B.Sc. degree in computer
science and technology from Sun Yat-sen University,
Guangzhou, China, in 2015 and a Ph.D. degree in
computer science from The Hong Kong Polytechnic
University, Hong Kong, in 2021. He is currently a
Research Assistant Professor in the Department of
Computing, The Hong Kong Polytechnic University,
Hong Kong. Before that, he visited Imperial College
London from November 2018 to March 2019. He
won the best paper award of BlockSys 2021. His
research interests include distributed systems and

blockchain, blockchain-based big data sharing, and blockchain as a service.

Lei Yang is currently an associate professor at the
School of Software Engineering, South China Uni-
versity of Technology, China. He received the B.Sc.
degree from Wuhan University, in 2007, the M.Sc.
degree from the Institute of Computing Technology,
Chinese Academy of Sciences, in 2010, and the
Ph.D. degree from the Department of Computing,
The Hong Kong Polytechnic University, in 2014. He
has been a visiting scholar at Technique University
Darmstadt, Germany from Nov 2012 to Mar 2013.
His research interests include edge and cloud com-

puting, distributed machine learning, and scheduling and optimization theories
and techniques.

