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Abstract—Edge computing has become a popular paradigm
where services and applications are deployed at the network edge
closer to the data sources. It provides applications with outstand-
ing benefits, including reduced response latency and enhanced
privacy protection. For emerging advanced applications, such
as autonomous vehicles, industrial IoT, and metaverse, further
research is needed. This is because such applications demand
ultra-low latency, hyper-connectivity, and dynamic and reliable
service provision, while existing approaches are inadequate to
address the new challenges. Hence, we envision that the future
edge computing is moving towards distributed intelligence, where
heterogeneous edge nodes collaborate to provide services in large-
scale and geo-distributed edge infrastructure. We thereby propose
Edge-as-a-Service (EaaS) to enable distributed intelligence. EaaS
jointly manages large-scale cross-node edge resources and facil-
itates edge autonomy, edge-to-edge collaboration, and resource
elasticity. These features enable flexible deployment of services
and ubiquitous computation and intelligence. We first give an
overview of existing edge computing studies and discuss their
limitations to articulate the motivation for proposing EaaS.
Then, we describe the details of EaaS, including the physical
architecture, proposed software framework, and benefits of EaaS.
Various application scenarios, such as real-time video surveil-
lance, smart building, and metaverse, are presented to illustrate
the significance and potential of EaaS. Finally, we discuss several
challenging issues of EaaS to inspire more research towards this
new edge computing framework.

Index Terms—Edge computing, edge as a service, service-
oriented architecture, edge intelligence, edge-native applications.

I. INTRODUCTION

The cloud computing paradigm is a service provisioning
model that provides user access to scalable computation,
networking, and storage resources in the cloud data centers
[1]. Cloud service providers provide flexibility and efficiency
for end-users by providing services such as software as service
(SaaS), platform as a service (PaaS), and infrastructure as a
service (IaaS) [2]. Cloud computing has tremendously changed
how we live, work, and study and has become a mainstream
business model for many organizations.

However, cloud computing shows significant disadvantages
with the burgeoning of the Internet of Everything. According
to Cisco, 80% of data will be generated by massive IoT devices
at the network edge by 2025. Processing such large amounts
of data in the cloud will lead to high latency and bandwidth
costs, as well as privacy concerns. Recently, edge computing
is emerging as a promising paradigm that processes data and
provides service on edge devices closer to the data sources [3].

Edge computing brings intelligence to the network edge, even
embedding it into IoT devices accessible by the end-users.

In the past few years, many research issues have been
studied to deploy applications and services at the edge, such
as computation offloading [4], content caching [5], and edge
Al [6]. However, existing works are inadequate to meet
the requirements of emerging advanced application, such as
autonomous vehicles [7], industrial IoT [8], and metaverse [9].
This is because those applications demand ultra-low latency,
hyper-connectivity, dynamic and reliable service provision,
and the support of distributed and collaborative edge com-
puting. More specifically, most existing works focus on edge-
cloud collaboration to share data and computation resources
while neglecting the collaboration among edge devices. They
suffer from the unpredictable latency between the cloud and
edge devices and incur privacy concerns. Moreover, they
assume a hierarchical and centralized cloud-edge-end architec-
ture, where the cloud dominates and manages the applications
and resources of both edge and end devices. However, such
a centralized architecture is with poor scalability in achieving
large-scale deployment and resource elasticity.

To support those advanced applications and provide ubig-
uitous intelligence, we envision that with wider availability
of edge computing infrastructures, future edge computing is
moving towards collaborative distributed intelligence, where
heterogeneous edge nodes collaborate with each other in large-
scale and geo-distributed edge computing environments for
various computation workloads, including collaborative task
processing, distributed machine learning .etc.

To enable distributed intelligence, we propose a novel edge
computing framework, namely Edge as a Service (EaaS), to fa-
cilitate edge autonomy, edge-to-edge collaboration, and large-
scale application deployment and resource elasticity. Specif-
ically, EaaS jointly manages the large-scale, geo-distributed,
and heterogeneous edge infrastructures to boost the collab-
oration among edge devices, which enables the flexible and
large-scale deployment of services, making computation and
intelligence ubiquitous. EaaS also provides holistic and end-
to-end services for developing and deploying applications at
the edge, including IaaS, PaaS, and SaaS.

Some works also consider the idea of edge computing as a
service. Davy et al. [10] proposed the concept of edge-as-a-
service, which aims to leverage the network virtualization to
facilitate the flexible usage of access network infrastructure
and generate revenue for network operators. Varghese et



al. [11] presented an EaaS platform with a node discovery pro-
tocol to enable the selection and deployment of applications on
edge. Differently, our work considers edge-as-a-service from
a broader perspective. It is a cross-layer service-oriented com-
puting framework integrating large-scale and geo-distributed
resource management, edge-native task scheduling, various
service modules, and application development throughout the
infrastructure, platform, and application layers.
The main contributions of this work are as follows.

o We envision that the future edge computing is moving
towards distributed intelligence, where edge nodes col-
laborate with each other to support various applications
in large-scale, heterogeneous, and geo-distributed edge
infrastructure.

e We propose EaaS, a novel service-oriented edge com-
puting framework, to enable future edge computing by
facilitating edge autonomy, edge-to-collaboration, and
large-scale service deployment.

o Motivations, software framework, benefits, and potential
application scenarios of EaaS are discussed.

o We present several open issues and challenges to inspire
more research towards distributed intelligence empow-
ered by edge computing.

The rest of the paper is organized as follows. Sec. II dis-
cusses existing edge computing research and the motivation for
proposing EaaS. Sec. III introduces in detail about the software
framework and the benefits of EaaS. In Sec. IV, we show
the potential application scenarios of EaaS, including real-time
video surveillance, smart building, autonomous vehicles, and
metaverse. Sec. V discusses the open issues and challenges
associated with EaaS. In Sec. VI, we conclude this work.

II. MOTIVATION FOR FUTURE EDGE COMPUTING

In this section, we first introduce the existing research and
systems of edge computing and then describe the limitations
of existing solutions to meet the requirements of future edge
computing applications. Finally, we depict the vision and key
features of future edge computing.

A. Introduction to Current Edge Computing

Edge computing has attracted lots of attention from both
academics and industry in recent years. The different works
in literature have studied several problems with respect to
computation offloading, edge Al, designing applications for
different domains, and developing edge computing systems.

Computation offloading, also known as task offloading,
aims to offload the computation tasks from end devices to
edge devices or the cloud. [4], [12], [13] offload computing-
intensive tasks of end devise to an edge server for processing
with the objective of minimizing the task completion time.
However, the edge device may easily get overloaded and
lead to degraded performance considering the limited edge
resources. It is beneficial to incorporate the cloud into the
offloading decision. [14]-[16] jointly considers the computa-
tion resources and networking capacities of the cloud, edge
devices, and user devices to explore the possible offloading

options. Nevertheless, the collaboration between cloud and
edge devices suffers from unpredictable latency and causes
privacy issues.

Another problem is edge Al Due to the recent advances in
deep learning, various Al applications are emerging to provide
advanced analytical functions, such as object detection and
tracking and human action recognition. The edge Al aims to
facilitate the collaborative inference and training of Al models
among cloud, edge, and end. Li et al. [17] model the execution
delay and energy consumption of each layer of a neural
network model to determine the partition point and distribute
the neural network between end and edge, thus accelerating
the DNN inference. Ding et al. [18] first used historical data
to train the model in the cloud and then shared the shallow
network layer EdgeCNN to the edge. Later, the edge used the
newly collected real-time data to optimize the model to reduce
transmission delay and improve user experience.

Apart from the existing research work, there are also some
edge computing systems. Many start-ups and industry leaders
in cloud computing, such as Microsoft, Amazon, and Huawei,
have developed edge computing platforms to develop and
deploy applications on resource-constraint devices, includ-
ing AWS IoT Greengrass [19], Azure IoT Edge [20], and
KubeEdge [21]. However, most of these solutions aim to
extend the cloud computing functionalities. These solutions
often follow the principles of service-oriented architecture to
deploy cloud-based services on edge devices that are close
to data sources. Table. I shows a comparison between the
existing commercial and open-source edge computing systems.
We can see that exiting edge computing provides less support
to edge autonomy and edge-to-edge collaboration, as they rely
on centralized management from the cloud.

B. Increasing Demanding Application Requirements

Though achieving great success in the past few years,
current edge computing is inadequate to serve the emerging
advanced applications. Specifically, the dramatic development
of information and communication technologies has brought
striking revolutions to tremendous disciplines, and various new
applications have emerged, including autonomous vehicles,
industrial IoT, and metaverse. Those advanced applications are
expected to be deployed at the network edge and pose great
challenges to current edge computing. Those challenges are
summarized as follows.

1) Ultra-low latency: To achieve safe autonomous vehicles
and immersive interactive experience in metaverse, the edge
devices are required to perform computation-intensive tasks
in milliseconds, such as object detection and tracking, human
action recognition, and 3D point cloud reconstruction. Existing
works offloading the computation tasks to the cloud may suffer
from the unpredictable latency between the cloud and the edge
devices and leads to privacy concerns.

2) Large-scale deployment with hyper-connectivity: For
industrial IoT and metaverse, tremendous end devices such
as VR glasses, industrial controllers, and sensors are required
to be interconnected for online interaction and data collecting.



TABLE I
COMPARISON OF EXISTING EDGE COMPUTING SYSTEMS.

System Service-oriented ~ Programmable  Resource Elasticity = Edge Autonomy  Edge-to-edge Collaboration
IoT Greengrass yes yes supported supported limited
Azure IoT Edge yes yes supported limited limited
Cloud IoT Edge yes yes supported limited limited
KubeEdge yes yes supported supported limited
Baetyl yes yes supported supported limited
OpenYurt yes yes supported supported limited
Edge Foundry yes limited supported limited limited
Edgent yes yes supported limited limited

[ Edge Node O End Device o Edge autonomy: It implies enabling offline and/or lo-

/ Resource elasticity

~N —
Decentralized

Hierarchical

Fig. 1. Architecture of Future Edge Computing.

Existing edge computing approaches usually adopt centralized
management, which is with limited scalability and fails to
support the hyper-connectivity of end devices. Further, those
end devices are usually located in different geographical areas
and require collaboration among geo-distributed edge devices
to provide large-scale service deployment.

3) Dynamic and reliable service provision: Many end
devices are with high mobility, such as mobile phones and
autonomous vehicles. They frequently pass through distinct
geographical areas and demand consistent and reliable service
provision. Existing works rely on the centralized cloud to
synchronize the service status and make the service migration
decisions, which is vulnerable to the dynamic network and is
insufficient to provide reliable service provision. The dynamic
network connection and service provision require collaboration
among geo-distributed edge devices to share both data and
computation resources.

C. Vision of Future Edge Computing

To better support emerging advanced new applications and
provide ultra-low latency, reliable, and ubiquitous intelligent
services, further research to enhance current edge computing
is needed. Hence, we envision that the future edge computing
is moving towards distributed intelligence, where numerous
edge devices collaborate with each other in the large-scale,
heterogeneous, and geo-distributed edge infrastructure.

There are three new key properties of future edge computing
to enable distributed intelligence, i.e., edge-to-edge collab-
oration, edge autonomy, and resource elasticity. The three
properties can be described as:

calized operations for reliable service provision without
communication with the cloud.

o Edge-to-edge collaboration: It implies that each edge
device can collaborate with its surrounding edge nodes
to form a cluster that has the ability to provide real-
time processing and computation-intensive services like
Al algorithms. Furthermore, seamless and cross-platform
computing can also be accomplished among edge nodes,
and dynamic access can be subsequently supported.

« Resource elasticity: It refers to the ability of a system to
support autonomous scheduling, including provisioning
and de-provisioning, of different resources and services
for a large-scale, distributed, and heterogeneous edge
computing environment.

These three properties are essential to support the different
requirements of future edge applications, including large-
scale deployment, real-time processing, and dynamic access
and reliable service provisioning. The existing solutions are
insufficient to support these stringent requirements of future
edge applications. Furthermore, The existing platforms cur-
rently lack in providing an integrated solution for future edge
computing that includes providing infrastructure, platform, and
software level services for the end-to-end development of edge
computing applications. There is a need for a paradigm shift,
as shown in Fig. 1, from the hierarchical architecture used in
existing platforms to decentralized architecture for future edge
applications. In future edge computing, the cloud still exists
but will not play the dominant role in managing all the edge
and end nodes.

III. EAAS FRAMEWORK

In this section, we give details about the EaaS framework,
which aims to enable collaborative distributed intelligence
supporting various advanced applications. We first give an
overview of the EaaS software framework and then articulate
the benefits of EaaS.

A. EaaS Framework

EaaS is designed to manage the large-scale, geo-distributed,
and heterogeneous edge resources and support the collabora-
tion among edge nodes for various emerging advanced appli-
cations. It mainly consists of three layers, i.e., infrastructure
as a service (IaaS), platform as a service (PaaS), and software
as a service (SaaS), as shown in Fig. 2.
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Fig. 2. Framework of Edge as a Service.

1) Infrastructure as a Service: In edge computing sce-
narios, there are various distinct edge nodes, such as edge
servers, edge gateways, and intelligent vehicles, which are with
heterogeneous computation, storage, and networking capabil-
ities. Services and applications are deployed on those geo-
distributed nodes connected with low-bandwidth and intermit-
tent networks.

A fundamental problem of IaaS is to manage the large-
scale, heterogeneous, and geo-distributed edge resources and
schedule application workloads among edge nodes for efficient
task execution. Different from the resource management and
workload scheduling in the cloud environment, where cloud
servers with abundant computation resources are connected
with a high-bandwidth and stable network in a data center,
resource management and workload scheduling in edge com-
puting is more challenging.

First, edge-native applications are usually performance-
aware, demanding high throughput and low latency. The
workload scheduling in the cloud environment is mainly to
ensure resource provision of workloads, such as the capacity of
requested memory and CPU cores. It lacks support to meet the
performance requirements of edge-native applications. Second,
edge-native applications are with inner dependencies. Many
intelligent edge applications are resource-greedy and complex,
consisting of lots of inter-dependent components which are
usually deployed to multiple edge nodes considering the
constraint resource of a single node. However, the workload
scheduling in a cloud environment usually schedules the appli-
cation to a server with abundant resources and fails to consider
the application’s inner structure. Third, the data, computation,
and networking resources are heterogeneous and coupled with

each other. Application deployed on heterogeneous edge nodes
experiences distinct performance, and the coupled resources
require joint orchestration. However, cloud resource man-
agement concentrates on orchestrating computation resources
without jointly considering the data locality and networking
resources, which may lead to underutilized resources and poor
performance of workloads.

Hence, the new solutions of resource management and
workload scheduling need to jointly consider the heteroge-
neous and coupled data, networking, and computation re-
sources and make optimized scheduling decisions to meet the
performance requirements of edge-native applications. In the
infrastructure layer, we design a distributed edge computing
operating system, namely EdgeOS, to manage the cross-
node coupled edge resources and facilitate efficient workload
scheduling among the geo-distributed edge nodes.

To manage the cross-node and coupled edge resources
of computation, networking, and storage, EdgeOS adopts
lightweight virtualization technology, i.e., containers, to ab-
stract the heterogeneous resources and enable seamless ser-
vice migration among geo-distributed edge nodes. Above the
abstracted resources, we design three task schedulers, i.e., net-
working scheduler, compute schedule, and storage scheduler,
to manage the networking, compute, and storage resources,
respectively. The three schedulers collaborated with each other
to decide and maintain the resource allocation strategies for
the incoming computation tasks. Moreover, EdgeOS provides
APIs for the platform services to easily call the functions.

2) Platform as a Service: Above the edge infrastructures,
many platform-level services, such as edge learning service
and blockchain service, can be developed to support various
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applications.

One important service is edge learning service. Edge learn-
ing, also terms as edge Al, refers to the training and inference
of AI models near the users at the network edge. Edge Al
is essential to support applications requiring short communi-
cation delays and high response speed. There are many edge
Al applications deployed at the network edge. Edge learning
service is designed to support the whole life-cycle of Al ap-
plications, including data preparation, algorithm development,
model training, and model inference. Edge learning service
is in the platform layer. It provides APIs for easy and fast
application development in the upper layer and calls the APIs
provided by the infrastructure management layer to achieve
efficient application deployment and resource utilization over
heterogeneous and geo-distributed edge nodes.

The functional module design of the edge learning service is
shown in Fig. 3. There are mainly four modules of edge learn-
ing service, namely, Data Processor, Model Loader, Model
Trainer, and Model Adaptor. The data processor is responsible
for data preprocessing, including data sampling, extracting,
and transformation. It also supports data self-labeling and
human labeling. The model loader supports algorithm develop-
ment for users. It provides various programming libraries for
Al model development and light-weighted pre-trained models,
such as Resnet-50 and AlexNet. The model trainer is designed
for conducting distributed model training. It provides multi-
ple training paradigms, including federated learning, gossip
learning [22], and E-tree learning [23]. Further, an optimizer
is designed to support automatic parameters optimization of
distributed model training, such as batch size, learning rate,
and model aggregation frequency. With intelligent optimiza-
tion algorithms, the distributed model training can adapt to
the dynamic resources of the edge environments and achieve
improved accuracy and convergence speed. The model adaptor
is mainly responsible for optimizing the model inference
strategies. It adopts various optimization methods, including
model compression [24], model partition [25], and model early
exit [26], to enable resource-aware model inference to meet
the applications’ requirements, such as latency, energy, and
fault tolerance.

We take the model inference as an example to show the
workflow of the edge learning service. The model adaptor

takes the model inference request as input and generates
the execution strategies. Specifically, the inference request
defines the data sources, the Al models, and the performance
requirements, such as throughput and latency. The profiler first
profiles the execution time of Al models on heterogeneous
edge nodes and generates the profile information. The profile
information and the underlying resource status accessed from
EdgeOS APIs, as well as the inference optimization tech-
niques, including model compression, partition, and early exit,
will be jointly considered to decide the inference strategies.
The inference strategies define how to compress the model,
or how to partition the model, and where to allocate the
inference tasks so as to meet the performance requirements.
The strategies will be executed by the EdgeOS to achieve
efficient model inference.

Edge blockchain as a service (EBaaS) is another essential
service besides edge learning [27]. In EBaaS, the blockchain
components are deployed at edge devices near the users and
provided as easy-to-use services [28]. In this manner, the
blockchain services can be delivered to the users with great
convenience and low latency. The ultimate goals of EBaaS are
delivering blockchain services with high modularity, flexibility,
scalability, reliability, and security [29].

The current development of blockchain technology needs
to go through two stages towards EBaaS: service-oriented
and edge deployment. In the current stage, the companies
are developing blockchain applications and hosting blockchain
platforms by themselves [30], [31]. They analyze the specific
requirements of different applications, e.g., privacy and effi-
ciency [32], design variant blockchain solutions, develop het-
erogeneous blockchain components, and deploy the blockchain
applications on separated hardware. Although the applications
share similar requirements and blockchain components, the
companies rarely considered integrating the different applica-
tions in a unified blockchain infrastructure, e.g., cloud and
edge computing environments. Note that there are some pop-
ular blockchain platforms, e.g., Bitcoin [33], Ethereum [34],
and Hyperledger Fabric [35]. However, they are provided as
blockchain solutions rather than services. The users still must
adapt them for different applications and host the blockchain
components.

More recently, there is emerging research on blockchain as
a service, aiming at developing a service-oriented blockchain
infrastructure that can be used conveniently [29], [36]-[39].
For example, Jiang et al. developed PolyChain, a generic
blockchain as a service platform [29]. They decompose a
logical blockchain node into four components: application,
consensus, storage, and network. Then, the components of a
logical blockchain are deployed on different physical machines
considering the resource demand of components and supply
from machines. The techniques are named component modu-
larization, distributed deployment, and resource optimization.
With blockchain as a service, a generic blockchain infras-
tructure can be set, on which numerous applications can be
deployed [40].

Traditionally, the blockchain as a service infrastructure is
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deployed on the cloud, and the blockchain services become
cloud-based [41]. However, the cloud is far from the end-
users, limiting the application performance [42]. With the tech-
nological development of edge computing, EBaaS comes out
to supply blockchain services near the end-users. We believe
EBaaS will be favorable and trendy to support the applications
demanding high security, privacy preservation, great flexibility,
and low latency, which are not feasible currently.

3) Software as a Service: SaaS is defined as an application
hosted by cloud servers to offer specific services such as
email (Gmail) and storage (Dropbox) via a subscription-based
licensing model. EaaS enables SaaS providers to deliver faster,
privacy-preserving services for their customers by leveraging
the outstanding benefits of edge computing. However, EaaS
also poses new challenges to the way that SaaS providers
develop their applications and provide services.

First, the application should adopt a modular and stateless
design, which decomposes the functions of the applications
into a set of dependent modules. Considering the limited
resources of a single edge node, deploying the whole ap-
plication on an edge node may be infeasible. Hence, the
application is required to be partitioned and deployed on
multiple edge nodes. Dataflow programming model [43] could
be one option to enable efficient modular application design.
Further, the frequent application state migration may lead to
network congestion and degrade the applications. Stateless
programming is beneficial in developing SaaS applications.

Second, the application development is dependent on the
underlying PaaS and IaaS. Specifically, edge nodes are usually
heterogeneous with different architectures, such as x86, ARM.
Some edge nodes may be equipped with TPU, FPGA. Con-
sidering all the hardware characteristics may be challenging
for developers, while the platform services may abstract the
heterogeneity and provide unified programming interfaces.
Similarly, many applications incorporate 5G capability into
their functions, which requires the networking programming
abstractions from the IaaS.

B. Benefits of the EaaS

Compared with existing edge computing frameworks, EaaS
has outstanding benefits and significance as follows.

Large-scale connection and deployment. Current edge com-
puting usually adopts the hierarchical cloud-edge-end architec-
ture. It is a centralized architecture with the cloud to manage
the whole system, which suffers from the limited scalability
while many applications require large-scale deployment. To
achieve the goal of pervasive intelligence, EaaS adopts a
hybrid architecture based on our previous proposed Edge Mesh
framework [44], integrating both centralized and decentralized
resource management manner. As shown in Fig. 4, the edge
node manages the end devices in a centralized manner, while
edge nodes collaborate with each other in a decentralized
manner considering the unpredictable latency between cloud
and edge nodes. The hybrid architecture enables large-scale
connections between edge nodes and end devices and among
edge nodes.

Coupled resource management. In collaborative edge com-
puting environments, data locate on geo-distributed and het-
erogeneous edge nodes. Considering the limited resources of
a single edge node, the computation-intensive applications are
more likely to be partitioned and deployed in distributed edge
nodes, which may lead to frequent communication through
a low-bandwidth network. Hence, the data, computation, and
networking resources are coupled with each other and need
joint management and orchestration [45], [46]. This is benefi-
cial to improve resource utilization and meet the performance
requirements of edge-native applications. Most previous works
only consider orchestrating computation resources but neglect
the resource heterogeneity and network resources, such as
bandwidth allocation and customized routing of data flows.
We envision that future edge computing is required to jointly
orchestrate the heterogeneous computation and networking
resources with the consideration of the data locality.

Edge-native application development and deployment. Dif-
ferent from cloud-native applications, edge-native applications
are usually performance-sensitive and with inner structures,
where dependent application modules are deployed on multi-
ple edge nodes due to the limited resources of a single edge
node. Further, edge nodes are with heterogeneous computation
resources. Existing approaches concentrate on the development
of applications while neglecting the deployment issue of ap-
plications [47]. They focus less on resource heterogeneity, lo-
cality of source data, and inter-communications of edge nodes.
Those factors affect a lot of the performance of edge-native
applications. Instead, EaaS supports end-to-end support of the
application development and deployment. First, EaaS provides
universal programming abstractions that enables decomposing
the application and explicitly declaring the dependencies of
the inner modules. Second, EaaS provides coupled resource
management, enabling application profiling on heterogeneous
edge nodes and scheduling application workloads for improved
distributed execution by jointly considering the couped data,
computation, and networking resources.



Flexible service deployment. The traditional cloud-edge-end
three-tier architecture is extensively studied in the literature.
However, this hierarchical framework provides less support for
edge autonomy, flexible service access, and edge-edge collab-
oration. In the hierarchical framework, the decision-making
for task offloading and data transmission are made on the
cloud, which monitors and manages the edge and end nodes.
When there is an unstable network connection between cloud
and edge, the system shows apparent performance degradation
and even cannot work properly. Further, for mobile devices,
which usually move among geographical areas, the edge nodes
may not be able to provide seamless services. Moreover, the
existing framework adopts cloud-edge collaboration, which
suffers from the unpredictable latency between cloud and
edge and may cause privacy issues due to cloud-edge data
transmission. Instead, EaaS provides both cloud-edge and
edge-edge collaboration to share both data and computation
resources, which enables flexible service access and lower
latency. When the cloud is unavailable, the edge nodes can
make decisions autonomously by collaborating with other edge
nodes. EaaS achieves pervasive and ubiquitous intelligence
through flexible server deployment and assessment.

IV. APPLICATION SCENARIOS OF EAAS

This section discusses the promising applications of EaaS,
especially the emerging ones.

A. Real-time Video Surveillance

Real-time video surveillance plays a crucial role in var-
ious areas in a smart city, including automatic pilot, smart
transportation, and public security monitoring. Enormous Al-
based video surveillance algorithms have been developed for
object tracking, object re-identification, action identification,
risk behavior detection, and many more. Edge computing
is taken as the promising computing diagram since it can
support low-latency, proactive, and secure video surveillance
by providing computation near cameras. Most existing edge-
based solutions utilize edge-cloud collaboration [48], [49]
for the offloading of computation-intensive tasks, such as
pedestrian re-identification and risky behavior identification.
However, the use of a remote cloud server will degrade the
latency and data security. Some studies focus on edge-to-edge
cooperation for providing surveillance services jointly [50],
[51]. However, they didn’t schedule application workloads by
jointly considering the coupled resources, such as locality of
cameras (data sources), resource heterogeneity and communi-
cation overhead among geo-distributed edge nodes.

Our proposed EaaS represents a promising way of bring-
ing together the strength of the aforementioned edge-based
solutions, as it supports both edge-to-edge collaboration and
resource elasticity while considering the coupled resources.
It provides the flexibility to invoke nearby edge nodes and
remote cloud servers efficiently for adapting to the ever-
change computation requirements in various video surveil-
lance scenarios. For instance, edge-to-edge collaboration is

beneficial for proactive pedestrian re-identification in medium-
range areas such as university campuses, compared with edge-
cloud collaboration. This is because data (such as pedestrian
features) and computation resources sharing among nearby
edge devices provides lower latency for reconstructing the
pedestrian’s trajectory. Instead, suppose the application is to
perform pedestrian re-identification on a city scale. Offloading
the re-identification task to the cloud is preferable as searching
for suspects from numerous surveillance cameras in a city is
computation-intensive and requires significant storage space.

B. Smart Building

As a crucial AloT application, smart building plays a
fundamental role in the safe and efficient production of
society. It promises the safe and efficient operation of en-
gineering structures, including bridges, high-rise buildings,
tunnels, railways, power plants, etc. A smart building consists
of multiple subsystems such as structural health monitoring
system, drainage condition monitoring system, and power
monitoring system. The conditions of each subsystem are
identified from the measurement data collected by sensors, in-
cluding accelerometers, strain gauges, cameras, displacement
sensors, GPS, temperature sensors, anemometers, etc. A cloud-
based smart building system, as the mainstream solution, can
support elastic computation and data storage resources for
smart building applications. But they are inapplicable for data-
sensitive and latency-sensitive smart building applications.
Also, the collaboration between subsystems is dragged down
by the centralized cloud server. Therefore, edge computing
was introduced to smart building and has been extensively
studied recently. Nevertheless, most existing studies focus
on optimizing smart building algorithms for edge devices
[52], [53]. Works to optimize the edge computing system are
very limited. Our proposed EaaS can work as the underlying
system for the dedicated smart building applications designed
for distributed edge devices. Specifically, EaaS enables effi-
cient communication between subsystems in a smart building
through edge-to-edge collaboration. Also, it supports efficient
execution of distributed data processing algorithms such as
modal analysis [54], multivariate correlation analysis [55], and
anomaly detection [56] among multiple edge devices.

C. Autonomous Vehicles

An autonomous vehicle is a vehicle that can sense its
surroundings and operate without human intervention. The
autonomous vehicles tightly integrated many technologies,
including sensing, localization, perception, decision-making,
and mechanical control [7]. The primary task of autonomous
vehicles is to realize automated decision-making of the run-
ning paths, which includes AI computation tasks such as
identification and tracking of vehicles and pedestrians, tra-
jectory prediction, and path planning. The decision-making of
running path task has demanding requirements of the execution
latency, usually less than 5Sms. However, due to the limited on-
board computation power of a single vehicle, it is essential to
offload the running path planning task to other computation



devices. Recently, the vehicular edge computing network has
been proposed to enable communication and resource sharing
among autonomous vehicles and nearby edge nodes, such as
base stations and road-side units [57]. Most existing work
considers offloading the computation task to a nearby base
station or a road-side unit. However, the connection between
vehicles and base stations maybe not always available, and
the base station may get overloaded if all tasks are offloaded
to a base station [58], [59]. Instead, EaaS jointly manage the
resources of base stations, road-side units, and vehicles and
enable efficient task offloading among all available edge nodes.
It leads to better resource utilization and reduced service
latency and is more suitable in unstable network connection.

D. Metaverse

Metaverse is a digital 3D world where people can work,
shop, play, socialize, and do many more things they can do
in real life. It is regarded as a promising future direction
of the Internet and has attracted numerous investments from
tech giants. The main objective of metaverse is realizing
the physical experience for users in a digital world. To
provide users with highly immersive experiences, a high-
resolution, interactive, and low-latency digital world is des-
perately needed. Nevertheless, building such a digital world
requires enormous computational and storage resources for
the execution of physics calculation, rendering, and Al models
[60]. Edge computing has been regarded as a crucial technique
for promising the efficient execution of those applications
due to its nature of low latency. But the limited computation
resources in user’s edge devices (such as VR/AR devices,
mobile devices, and personal computers) hinder the devel-
opment of edge-empowered metaverse [61], [62]. Moreover,
the large-scale deployed edge devices are heterogeneous and
might not be able to provide the same user experience for
each people in the metaverse. EaaS provides an integrated
solution for running metaverse applications near users. On
the one hand, EaaS supports flexible service deployment. The
computation workload can be taken by a single edge device
in edge autonomy mode, shared with nearby MEC servers
through edge-to-edge collaboration, or offloaded to remote
cloud servers. The modes are changed automatically regarding
the variation of workload, the resources in local edge devices,
and available nearby edge resources. On the other hand, EaaS
has incorporated multiple native edge learning services for
efficient execution of Al models even with limited resources.

V. OPEN CHALLENGES

This section describes the open research challenges that
have not been fully explored while designing and developing
the services in EaaS.

A. Lightweight and Cross-platform Virtualization

Virtualization is essential for abstracting the heterogeneity
of underlying infrastructure resources in developing EaaS. In
the past few years, Container has become a popular approach
for achieving lightweight virtualization at the edge devices

compared to the alternative approach of virtual machines
(VM). However, there are still many issues that need to be
resolved to meet the demanding requirements of emerging
applications. First, there are few comprehensive solutions for
achieving virtualization for embedded edge devices with lim-
ited memory, storage, and compute capacity. Docker, a popular
container virtualization solution, has minimum requirements
on the underlying resources of the host device, for example, at
least 4GB RAM. Hence, it is not suitable for many resource-
constraint embedded edge devices. One trend for virtualization
in the future would be to develop lightweight virtualization
solutions that can support resource-constraint embedded edge
devices. The second issue is supporting cross-platform ap-
plication deployment, including different processing architec-
tures, i.e., x86, ARM, etc., different types of OS, i.e., GPOS
and RTOS, and different processing units, i.e., CPU, GPU,
TPU, etc. The current state-of-the-art Docker solution does
not perform well for cross-platform application deployment
consisting of heterogeneous devices with both Windows and
Linux processing architectures and different processing units.
Docker also does not officially support RTOS that is required
for the deployment of applications with real-time requirements
on embedded systems. The third issue is supporting multi-
tenancy, i.e., support management and deployment of multiple
application services simultaneously. There have been some
solutions by Kubernetes to support multi-tenancy, but these
solutions make some compromises on the security while
deploying multiple application services. One future direction
is balancing the trade-off between multi-tenancy and security.

B. Edge-native Resource Scheduling

Resource scheduling is a fundamental problem that has
been widely studied in the context of edge computing and
other related computing paradigms. Many works have studied
different scheduling problems such as computation offload-
ing, data caching, bandwidth allocation, energy scheduling,
service migration, etc., under different system models and
objective functions. However, these works have not fully
explored the different characteristic features of EaaS, which
makes the edge-native resource scheduling problem more
challenging. One main characteristic feature of EaaS is the
coupled resources that require considering dependency among
resources to make joint scheduling decisions [63]. However,
most existing solutions often provide a solution for scheduling
a single resource. Novel cooperative scheduling solutions are
required for the efficient management of coupled resources.
Besides resource dependency, another characteristic feature
of EaaS is data and resource uncertainty due to network
dynamics and devices/link failures that makes the scheduling
problem more complex. The scheduling solution has to be
designed by modeling the reliability of devices and network
links. There are few works that have considered reliability-
aware resource scheduling for edge computing environments
[64], [65]. However, these works do not focus on the joint
task, network, and storage scheduling of coupled resources
considering the reliability constraints. The third characteristic



feature of EaaS is a large-scale network with distributed
resources that makes it difficult to schedule resources using
a centralized controller efficiently. Most existing resource
scheduling solutions for edge computing often assume global
knowledge of resources that may not be practically feasible.
Future works on resource scheduling should focus more on
distributed scheduling approaches to enable scalable and high-
performance applications.

C. Distributed Data Sharing

The different edge devices need to share and synchronize
stateful data to collaborate efficiently with applications in
connected healthcare [66] and smart logistics [67]. While the
topic of distributed data sharing has been studied in the context
of traditional parallel and distributed systems and cloud, It is
much more challenging to enable it in the context of edge
computing. First, the number of edge devices used for edge
computing applications is at a much larger scale compared
to the cloud. Furthermore, these devices are heterogeneous,
resource-constraint, and highly distributed, which makes it
difficult to design suitable scalable yet lightweight solutions.
Second, the edge devices are often connected using an unstable
wireless network that is dynamic and uncertain. The bandwidth
across different links is also heterogeneous. Third, It is difficult
to ensure consistency of stateful data as existing consensus
algorithms are not suitable for highly distributed, large-scale,
and dynamic edge computing environments. Novel lightweight
consensus mechanisms are required that can ensure consis-
tency for resource-constraint edge computing environments
[68]. Furthermore, the new solutions should also consider
addressing different consistency requirements as there could
be multiple simultaneously deployed application services with
different consistency requirements.

D. Resource-aware Edge Al

Edge AI has been identified as a key technology for 5G/6G
and future networks by supporting training and deployment
of AI models at edge devices close to data sources to enable
several benefits, including low-latency processing, higher scal-
ability, and better privacy. Several emerging IoT applications,
such as autonomous vehicles, and metaverse, will be enabled
by integrating EdgeAl with underlying 5G/6G networks. A
characteristic feature of EdgeAl is that data required for train-
ing Al models are distributed at multiple edge devices. There
are many challenging issues emerging from data properties
that need to be resolved to support edge Al The first issue
is model inaccuracy due to the NonlID data generated on the
edge devices. Existing edge Al approaches target learning a
generalized model fit for all the edge nodes. In practice, data
used for training a generalized model differs a lot from the
NonlID data generated on an edge node, causing the model
inaccuracy for inference on the node. The second issue is data
labeling. The data generated on the edge nodes are mostly
unlabeled due to high labeling costs. Existing approaches
assuming well-labeled data samples cannot work effectively,
and new model training methods need to be developed to

exploit massive unlabeled data. The third issue is the nature
of IoT data which are usually streaming data, continuously
arriving at the edge nodes. Existing approaches assuming
that data samples are available at the start-up time are not
suitable for Edge Al. New approaches are required to train an
adaptive and lightweight model at resources constraint edge
devices. Besides training Al models, there are also many issues
in Al model inference as resource-constraint edge devices
have limited compute, storage, and memory capacity to run
complex Al models. Therefore, services need to be developed
as part of EaaS to adapt the model in real-time by leveraging
approaches, such as compression, partition, and early exit,
while considering the underlying dependent resources.

E. Security and Privacy

The different features in edge computing that enable several
benefits also lead to some security and privacy concerns. First,
the different edge devices are often connected using a wireless
network which leads to security and privacy concerns as
malicious attackers can access the private data by eavesdrop-
ping. Second, as the edge devices are resource-constraint, it is
difficult to deploy traditional security and privacy mechanisms
that are compute-intensive. Third, the different edge devices
can be under the control of multiple stakeholders unwilling to
share data leading to privacy concerns. Fourth, the different
geographically distributed edge devices are connected and
collaborating with each other, which makes it challenging
to ensure security and privacy as an attack at one part of
the network can spread across other devices. Fifth, the edge
devices are often heterogeneous, making it difficult to design
generic security and privacy solution suitable for different
application and deployment scenarios. Existing works in lit-
erature have also identified several new security and privacy
issues emerging due to the unique characteristics in edge
computing [69]-[71].

F. Programming Abstraction

One major issue to support end-to-end service development
and deployment in EaaS is to provide programming interfaces
that can abstract the underlying complexities for application
developers. Application development and deployment at the
edge is much more challenging compared to the cloud envi-
ronment due to issues such as device/network heterogeneity,
geo-distributed resources, network dynamics, resource uncer-
tainty, and stateful data. Programming abstractions should
be provided in the form of middleware to allow developers
to focus on application logic rather than underlying edge
platform issues such as resource discovery, monitoring, and
management. Since the edge devices are characterized by
limited resources, the middleware should be lightweight with
low communication, computation, and storage overhead. The
middleware should also be generic, modular, and flexible. The
generic requirement implies that middleware should not be
application-specific with limited primitives. Instead, it should
support the development and deployment of different types
of platform services and applications, including edge learning



services, blockchain services, and 5G/6G support, for different
network and system models. The modular requirement implies
that middleware is designed based on the principles of the
service-oriented architecture to allow easy replacement of
some functionalities and interfaces. Finally, the flexible re-
quirement implies that middleware should be easily extensible
to allow the addition of new functions and interfaces.

VI. CONCLUSION

Edge computing is a popular computing paradigm where the
data processing and intelligence are performed at the network
edge closer to the data sources. Many studies have been done
in the past few years to deploy applications at the edge to
reduce the service response time and bandwidth costs. How-
ever, existing approaches are inadequate to support emerging
advanced applications demanding ultra-low latency, large-scale
deployment with hyper-connectivity, and dynamic and reliable
service provision. To address those challenges, we envision
that the future of edge computing is moving towards col-
laborative distributed intelligence, where heterogeneous edge
nodes collaborate with each other in a large-scale and geo-
distributed edge computing environment. We hence propose
EaaS to enable collaborative distributed intelligence by facili-
tating edge autonomy, edge-to-edge collaboration, large-scale
cross-node and coupled resource management, and end-to-end
edge-native application development and deployment. At last,
we discussed several challenges and open issues to inspire
more research toward collaborative distributed intelligence and
finally make intelligence ubiquitous in the IoT world.
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