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Abstract—Repetitive activities like breathing and walking ac-
count for a large fraction of human activities. Monitoring these
activities with sensing technology plays a vital role in numerous
applications ranging from health monitoring to manufacturing
management. Over the last decade, traditional machine learning
approaches and recent end-to-end deep learning paradigms
have achieved massive successes in human activity recognition.
However, these approaches are mostly scenario dependent and
computationally expensive. Moreover, real-world repetitive ac-
tivities may have varying time intervals between each repetition,
which invalidate existing sliding window methods. In this paper,
we propose STEM, a Scalable Template Extraction Method
for scenario independent monitoring of repetitive activities with
varying intervals. Instead of using sliding windows, we detect
and locate the appearance of repeating patterns based on the
Matrix Profile. Distributional features are then extracted from
the identified patterns such that domain knowledge can be
avoided. The approach is efficient and robust as shown by the
evaluation on three public datasets, in which around 95% of the
undesired computation were eliminated with up to 4% accuracy
improvement. It is also generic as demonstrated by a use case of
respiration rate estimation using wireless signals.

Index Terms—Repetitive Activity Monitoring; Human Activity
Recognition; Multivariate Time Series; Internet of Things;

I. INTRODUCTION

Repetitive activities are building blocks of our daily lives
including fundamental bodily functions and common human
activities, like respiration, heartbeat, and exercises. Repetitive
activity monitoring (RAM) refers to the ability to measure
and distinguish among different successively repeated physical
motions, enables numerous applications ranging from health
monitoring [1], [2] to manufacturing management [3]. The
recent advancement in Internet of Things (IoT) technologies
allows efficient collection of sensor data, providing a great
opportunity to capture repetitive activities continuously. For
example, premature ventricular contractions as a risk factor
to many heart diseases could be detected via RAM with
commodity wearable devices [4].

Due to the significance of RAM, various approaches have
been proposed utilizing signal processing and machine learn-
ing techniques to identify the repeating patterns or recognize
the activity by analyzing the extracted features. Although those
approaches have their merit, they suffer from the following
key limitations. First, existing approaches are mostly sliding-
window-based methods. It typically requires considerable do-

Corresponding author: J. Shen

main knowledge to determine the size and step of the window
as well as to design the features, which remains a major
challenge in general activity recognition [5]. Second, the
sliding window methods that perform the feature extraction
and recognition pipeline on every window induce a prohibitive
computational cost, which is impractical for IoT devices with
limited resources. Third, most existing approaches assumed
repetitive activities contain fixed periodicity which is unreal-
istic in many real-world scenarios. For instance, people who
suffer from sleep apnea stop and start breathing repeatedly
at an irregular rate. At the gym, the time intervals between
consecutive movements may change with the levels of energy.
The presence of irregular intervals of the repetitive activity
invalidates most existing approaches.

In this paper, we focus on monitoring repetitive activities
using multivariate time series data derived from IoT devices.
The main idea is based on the Successive Similar Pattern
(SSP) [4] - the recurring pattern with irregular intervals -
generated by the repeating physical motions within the time
series. However, the vision of applying SSP for RAM entails
the following challenges.

• The SSPs could have variable lengths, shapes, and inter-
vals making it difficult to identify the segments where
SSPs occur.

• The start and end positions are ambiguous for recurrent
patterns. As a result, identifying each SSP from the
time series incur a high computational cost that becomes
intractable even for small data.

• The SSPs may have various lengths and could be mis-
aligned, making it difficult to compare the distances
between different SSPs.

To address those challenges, we firstly proposed an al-
gorithm called R-mSIMPAD to detect time series segments
containing SSP and estimate the length of the pattern which
is more robust and has fewer assumptions than the existing
method [4]. Next, we introduced the concept of the templates
that is the underlying “true” patterns being repeated with
variations, in order to formally define a set of SSPs in the
same segment without any assumption regarding the pattern.
On this basis, we proposed a Scalable Template Extraction
Method (STEM) to identify and extract the set of SSPs from
the detected segment. Finally, we examined two approaches to
classify the detected segments. On one hand, we investigated



an elastic-measurement-based method to compute the pairwise
distance between the extracted template and apply the Nearest
Neighbor algorithm for the classification. On the other, we
combined STEM with the Empirical Cumulative Distribution
Function (ECDF) to extract distributional features from the
segments to mitigate the computational cost incurred by the
elastic measure.

We conducted extensive experimental evaluations on both
public datasets and a synthetic dataset. The results suggest
that our approach can efficiently reduce 95% unnecessary
computation by ignoring time series that do not contain any
repeating patterns. The combination of STEM and ECDF
can effectively distinguish among different SSPs achieving an
average improvement of 14.26% on synthetic data, and up to
4.4% on the public datasets. We found that STEM can better
identify the patterns being repeated and exclude those patterns
with abnormalities and variations that lead to a better result.
Finally, we study a use case of respiration monitoring based
on wireless signals. Without any modification, STEM easily
achieved at least 3 times better performance compared to the
baseline method. The use case illustrated that the proposed
method has great potential as a general method for many other
applications.

The main contributions of this paper are as follows:
• We investigated the problem of repetitive activity mon-

itoring and proposed STEM, an efficient and effective
method to identify and recognize SSPs from multivariate
time series.

• We performed extensive evaluations on both public
datasets and synthetic data to validate the performance
of the proposed method and achieving on par or even
superior performance.

• We demonstrated that the proposed approach is a general
method that can be applied to many applications as we
illustrated in the two use cases of repetitive activity
recognition and respiration rate monitoring.

The rest of this article is organized as follows. Section II
summarize the related literature. Section III presents the de-
tailed design and rationale of the method. Section IV illustrate
the result of the experiments. Section V discussed some issues
that might be uncleared. Finally, we conclude this article in
Section VI.

II. RELATED WORK

Repetitive activity monitoring is closely related to activity
recognition, which aims to classify different activities using
the collected data. Although the previous work does not
explicitly target repetitive activities, most of them are studied
and evaluated mainly on repetitive activities [2], [6]–[9]. Some
studies included recognition of non-repetitive activities but the
performance there usually suffers due to the complex nature
of the activity [10], making it out of the scope of our work
here.

A large body of literature adopted time series classification
techniques for activity recognition [11], in which unrealistic
assumptions were made. They assumed that the start and

end positions of a pattern can be accurately identified and
that the lengths are equal for patterns of the same class
[12]. Therefore, considerable work adopted the sliding window
approach combined with machine learning models to perform
activity recognition given its simplicity and robustness. One of
the key contributions of the prior work focuses on extracting
distinctive features from the data. Popular statistical features
such as [13] and distributional features [14] achieved promis-
ing results on many activity recognition tasks even compared
to state-of-the-art deep-learning-based approaches [10].

There is also existing work that focuses on a particular
set of highly repetitive activities. Xia et al. [15] proposed an
unsupervised method to recognize assembly work in a factory
by finding the motif in the sensor data. [2], [9], [16] investi-
gated the recognition of different gym exercises that are highly
repetitive, and count the repetitions of each exercise for perfor-
mance evaluation. The auto-correlation function that computes
the self-similarity at different lags, is the most commonly used
approach for repetition counting. The major drawback is that
auto-correlation cannot handle repeating patterns with irregular
intervals as shown recently in [4]. Although repetitive activity
recognition has been widely studied, the existing approaches
are either scenario dependant and require extensive domain
knowledge to determine many parameter settings or make
unrealistic assumptions that are not practical for real-world
applications. We aim to propose a general method for repetitive
activity monitoring that has barely any pattern assumptions
regarding shape and periodicity and is efficient and robust to
novel situations.

III. METHODOLOGY

In this section, we first introduce the notations and defini-
tions essential to understanding the problem. Then we provide
the general problem statement of repetitive activity monitoring.
We then present the general idea and rationale of the proposed
method and give examples.

A. Definitions

A multivariate time series T is a sequence of d-dimensional
real-valued numbers. A subsequence Ti,l of T is a continuous
subset of the values from T of length l starting from position i.
Formally, Ti,l = [Ti, ...,Ti+l−1], where Ti is a d-dimensional
vector. A Successive Similar Pattern (SSP) is a more general
definition of a repeating pattern, which is a subsequence that
occurs consecutively at non-regular intervals in time series
[4]. It is defined as a subsequence Ti,l of T where a similar
subsequence Tj,l appears within a nearby range. The range
is a user-defined constraint of the displacement of the SSP
and the similarity is defined by the z-normalized Euclidean
distance as:
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pair of Ti,l and Tj,l is considered in the same class if the
above condition is satisfied. A segment is a subsequence T̂
of T contains either none or exactly one class of SSPs. Each
segment belongs to either one class in the set of all possible
classes Y = [y1, . . . , ym].

B. Problem Statement

Repetitive activity monitoring aims to classify and measure
different repetitions of the same physical motion using data
collected from IoT devices. In this paper, we focus on the
identification and classification of SSPs in multivariate time
series. Since the SSPs within a segment is ill-defined, we
introduce the concept of templates to help formulate the
problem. We assume there is a template, a d-dimensional
sequence Tl of length l that is being repeated with variations
at non-regular interval within a segment T̂ . Given a multi-
variate time series T , our objective is to find a set of non-
overlapping subsequences S = {Ti,l} as SSPs that minimize∑
Ti,l∈SD(Tl, Ti,l), and predict S as y′ ∈ Y that minimize the

error between y′ and y.

C. Method Overview

The proposed method has four major components. Firstly,
data is collected with IoT devices and preprocessing is per-
formed on the acquired data. The preprocessing is simply an
interpolation of missing data and low-pass filtering with 20Hz
as the cutoff frequency, that can be computed in most of the
light-weight IoT devices. Then the SSP detection method will
find subsequences that contain SSPs and estimates the pattern
length. SSP template extraction will then finds the patterns that
are being repeated only on the detected segments and therefore
significantly reduced unnecessary computation. Finally, SSP
identification can be achieved by either matching the extracted
template or combining it with existing distributional features.

D. Successive Similar Pattern Extraction

1) SSP Detection: Mining SSPs is computationally expen-
sive as it covers a more general set of repeating patterns with-
out assuming a fixed periodicity of the recurring interval. In
this regard, mSIMPAD has been proposed recently for mining
SSPs of multiple lengths in time series [4]. It scales linearly to
the size of the input series and is robust to novel situations as
well as to poor quality data. This method is developed based
on the Matrix Profile [17], a method for all-pair-similarity-
search across a time series. It modified the original matrix
profile by introducing a temporal constraint, namely a Range-
constrained Matrix Profile (RCMP). The intuition is that the
distances between SSPs are comparatively lower than those of
non-SSPs. A set of SSP candidates can then be identified from
the RCMP as valleys, which is a continuous segment that has
a lower distance to some threshold. With the SSP candidates
obtained from different target lengths, mSIMPAD chooses a
non-overlapping subset of candidates that maximize the sum
of depths of the selected valleys as the SSP. This detects SSPs
and provides a rough estimation of the pattern length.

The key limitation of mSIMPAD is that it assumes the
input series must contain both repeating and non-repeating
subsequences, such that it can apply the Otsu method [18]
to determine the threshold θ. However, this might not be
the case in some scenarios where data contains only repeat-
ing segments. Also, the detected segments might simply be
rejected or separated by unexpected spikes due to random
noise. To overcome these problems, we further improved
mSIMPAD by learning the threshold θ and introducing the
method for merging time series segments to avoid spikes or
false rejections.

(a) (b)

Fig. 1. The effect of sequence dimension and length to the distance of random
signals. (a) shows the probability distribution of the distance of random noise
with different d x l combinations. (b) shows the dotted lines are the estimation
of power-law function and the dots are true values of mean, 10-percentile, 5-
percentile, and 1-percentile respectively.

To learn the threshold θ, we study how the random signal
contributes to Z-normalized Euclidean distances and determine
a threshold that can eliminate most of the random signal.
From equation 1, we notice that apart from the signal itself,
the distance is attributed to the subsequence length l and
dimension d of the series. Adding l by 1 will increase the
elements by a factor of d, and adding d by 1 will increase the
elements by a factor of l. Therefore, we model the relationship
by varying the value of d× l from a set of candidates from [4,
..., 1000] and choosing d and l arbitrarily. For each candidate,
we generate 100 time-series using the approach proposed in
[19] and compute the RCMP of the series to estimate the
distance of a random signal at different d × l. The result is
shown in Figure 1 which reveals that the distance follows
the power-law distribution in terms of the rise of the average
values, as well as the scale of the variation. The reason is
that when there are more elements to compare, it is less likely
to find two similar subsequences just by chance. Therefore,
the distances will converge if the number of points is large
enough. We could estimate the distance of a random signal
given different d × l with the following equation, setting
α = −2.46, k = −0.62; ε = 1.33:

θ(d× l) = α(d× l)k + ε (2)

In this work, we aim at a 95% confidence interval in
eliminating random signals by computing the threshold as the
estimated mean subtracted by 1.645 times the estimated stan-
dard deviation. Then, we could identify regions that contain
SSPs by choosing the subsequences where the distance values



TABLE I
PERFORMANCE COMPARISON ON REPEATING PATTERN DETECTION.

Method Acc. Prec. Rec. F1

HAPT

SIMPAD 0.970 0.994 0.945 0.968
mSIMPAD 0.971 0.991 0.951 0.970
R-SIMPAD 0.971 0.945 1.000 0.972
R-mSIMPAD 0.966 0.935 1.000 0.966

mHealth

SIMPAD 0.692 1.000 0.579 0.731
mSIMPAD 0.777 1.000 0.696 0.819
R-SIMPAD 0.891 1.000 0.852 0.920
R-mSIMPAD 0.915 1.000 0.884 0.938

PAMAP2

SIMPAD 0.808 0.994 0.712 0.829
mSIMPAD 0.816 0.990 0.729 0.839
R-SIMPAD 0.933 0.970 0.923 0.946
R-mSIMPAD 0.928 0.952 0.935 0.943

are less than θ. Data from periods of idle activity may however
contain drifts that have lower mutual distances causing false-
positive just by chance. To overcome this issue, we modified
the mSIMPAD to standardize the input series with 0 mean and
standard deviation as 1. Then we insert a Gaussian noise with
a scale of 0.1 to mitigate the effect of idle data. On the other
hand, to avoid splitting the desired subsequence into smaller
parts due to an abnormal spike or valley, we introduced a
greedy, iterative merging approach to combine a split with its
surrounding subsequences if the length of the split is less than
l. It starts from the split with the smallest length and iteratively
merging those splits until all of the splits have at least length
l. Then the subsequence is verified for containing SSPs by
majority voting.

The improved method relaxes the assumption that the input
time series must contain both repeating and non-repeating
patterns. It also provides more accurate detection results as
the inserted Gaussian noise can better differentiate the idle and
non-idle components in sensor data. We employed the same
evaluation metric in [4] and we further discard irrelevant data
such as subsequences labeled as a transition since they may
contain any activities including repetitive activity (e.g. walking
to another location) during the transition phase. The improved
methods are denoted as R-SIMPAD and R-mSIMPAD re-
spectively, that are more robust and have fewer assumptions
on the input signal compared to their original forms. The
results are reported in Table I. We notice that our algorithm
performs similarly to existing work on the HAPT dataset but
significant improvements can be observed on both the mHealth
and PAMAP2 datasets. The number of false negatives has been
drastically reduced as we can see from the much higher recall
rate, resulting in an over 11% improvement in the F1 score.

2) Scalable Template Extraction Method (STEM): With the
above-given method, we identified subsequences that contain
SSPs and provided a rough estimation of pattern lengths.
Then for each subsequence, we compute the distance profile
DPi, and select the nearest neighbor T(j, l) iteratively if the
distance is less than θ. The distances from j − pr to j + pr
are discarded for the selected nearest neighbor T(j, l) with
a pruning range pr = γ × l, in which γ is the pruning

Template

Variability = 0

Variability = 1

Estimated 
Template

Estimated 
Template

Fig. 2. Example of a repeating pattern with different variability and the
feature extraction and refinement procedure. It finds a set of SSP candidates,
then estimates the point-wise variation among them. It then refines the start
and end position by either the least variance or the least distance, based on the
maximum point-wise variation that is smaller or larger than some threshold
σ accordingly.

factor of the pattern length. This process will repeat until all
of the distances are discarded or are greater than θ. Then
we estimate the quality of the match by averaging all of
the distances of the chosen subsequences that are denoted as
template candidates and select the set of candidates with the
minimum average distances as the best match of the SSP.
However, the estimated length of the pattern is relatively
rough, which may over or underestimate the true length of
the pattern. We proposed a two-step approach to better refines
the length of the extracted template. The SSP should either be
continuous or vary at different intervals. We could evaluate the
variation of the positions around the start and end points of
the candidates. If the SSP is continuous, we could refine the
template by minimizing the distance between the start and end
positions. The intuition is that the pattern should appear one
after another such that the variation should remain relatively
low as we can see from Figure 2; otherwise, the variation
should be relatively high such that we can refine the length by
minimizing the averaged variations. From the experiment, we
notice a huge improvement in terms of recognition accuracy
with this template refinement approach as we will show in
section IV.

The recognition is then performed by comparing the tem-
plates. One can imagine that for continuous patterns, it is
difficult to determine the start and end positions. The extracted
template may be misaligned where the start and end positions
lie around the middle. When comparing two templates, we
align them by padding one by itself to cover all possible
extracted cycles and compute the cross-correlation between
the padded template with the other. Then, we roll the template
by maximizing the cross-correlation.

On the other hand, the template generated from one se-
quence might be slightly different from another in terms of



Algorithm 1 Scalable Template Extraction Method
Require: T , int l, double θ, double γ=1
Ensure: TP

1: Cbest ← [];
2: for i← 1 : n− l + 1 do
3: DP ← computeDP(Ti,l, T );
4: C ← findCandidates(DP);
5: if D(C) < D(Cbest then
6: Cbest ← C;
7: end if
8: end for
9: σC ← pointwiseSTD(Cbest);

10: if σC < std(T ) then
11: Cbest ← refineByNearestPoint(Cbest);
12: else
13: Cbest ← refineByVariability(Cbest);
14: end if
15: TP ← median(Cbest);
16: return TP ;

length and shape. We apply an elastic distance metric to handle
these kinds of small differences. Dynamic Time Wrapping
(DTW) has been the most widely used measure for time series.
However, [20] suggested that the Time Warp Edit Distance
(TWED) consistently achieves the best performance in their
study. Compared to other distances like DTW, the TWED is
a metric that can potentially speed up computation such as
clustering and retrieval. To reduce the computational cost of
TWED, we adopted the window constraint as discussed in [21]
to the TWED to limit the maximum warping of the TWED.

The above-mentioned method, denoted as STEM-TWED,
aims to identify the subsequences which minimize the internal
distance as a representation and recognize the subsequence by
comparing the TWED with the labeled templates. It can dis-
tinguish tiny differences among time series which is especially
suitable for differentiating fairly similar, low dimensional
series. However, it relies on accurate length estimation as the
differences in lengths between time series incur higher costs.
mSIMPAD only offers a rough estimation of the pattern length,
and it depends on the input of the length candidates. Moreover,
time series distance measures such as DTW and TWED are
computationally expensive. Therefore, we introduce a variation
of STEM we call STEM-ECDF that incorporates the existing
feature extraction method, namely the Empirical Cumulative
Distribution Function (ECDF) which is simple, yet very ro-
bust even compared with state-of-the-art deep-learning-based
features [10].

We employ the same detection and candidates extraction ap-
proach as mentioned above. Instead of using a single template
as a representation, we compute the ECDF of all the template
candidates as a representation. Each detected subsequence will
then be represented by the ECDF vector that preserves the
distributional information of the template. Since the ECDF
features have the same number of dimensions, we can leverage
traditional machine learning models for recognizing the tem-
plate. This allows recognition with much lower computational
cost, while still being capable of handling repeating patterns
with irregular intervals. We delayed the discussion on the merit

of this approach until section V.

IV. EXPERIMENTAL EVALUATION

In this section, we report the experimental evaluation of the
proposed approach to SSP recognition and compare it to other
activity recognition methods. One synthetic dataset and three
sensor-based activity datasets were used for the evaluation.
With the ground truth being available in the synthetic data,
we specifically measured the performance of template extrac-
tion from three aspects: pattern length estimation, template
candidate selection, and the similarity between the extracted
template with the ground truth pattern. We then measure the
performance of activity recognition on the three public datasets
to illustrate the robustness of real-world applications. Finally,
a use case of wireless-sensing-based respiration monitoring is
provided to demonstrate that the proposed method as a general
approach has a broad range of applications with great impact.

A. Experiment Setup

The methods for the comparison including: 1) one of the
most widely used statistical features [13]; 2) the Empirical
Cumulative Distribution Function (ECDF) [14] that preserve
the underlying distributions with a fixed set of real-valued
coefficients; 3) the DeepConvLSTM [22] which is an end-to-
end deep learning method combining the convolutional and
recurrent layers together with the attention mechanism in
long-short term memory (LSTM) network [23]. It is able to
learn a representation while optimizing the classifier, showing
remarkable performance in multiple open datasets, and there-
fore is widely used as a baseline method for human activity
recognition [10]. mSIMPAD and STEM perform directly on
the input series, while the other methods are sliding window
based. To provide a fair comparison, we divide the recogni-
tion result into equal-length segments, which is done in the
other methods. Then we perform majority voting within each
segment to decide whether it contains an SSP and choose
the extracted template accordingly. To mitigate the effect of
recognition model parameters, we apply the Nearest Neighbor
(NN) classifier for both the STEM and other methods except
DeepConvLSTM.

1) Evaluation Metric: We adopted the weighted F1 score
as the evaluation metrics defined as 1

|X| (
∑

i∈C 2|Xi| ×
precisioni×recalli
precisioni+recalli

) where C is the set of given classes, |X|
is the number of all testing instances, |Xi|, precisioni and
recalli refer to the number of testing instances, precision, and
recall of a particular class i respectively. The precisioni is
defined as TPi

TPi+FPi
and the recalli is defined as TPi

TPi+FNi
,

where TPi, FPi, and FNi refer to the true positive, false
positive, and false negative of a particular class i respectively.
The accuracy is also used for evaluation defined as

∑
i∈C

TPi

|X| .
2) Synthetic Data: To get a better grasp of the performance

of the proposed approach, we need a dataset that we have
full control over, including knowledge of the shape of the
pattern, the number of repetitions, and the interval variability.
Therefore, synthetic data is required for evaluation purposes,
as well as to help determine the proper set of parameters for



TABLE II
LIST OF ACTIVITIES FOR EACH DATASET, IN WHICH THE ACTIVITY IDS
ARE A0: NON-REPETITIVE ACTIVITIES, A1: WALKING, A2: WALKING
UPSTAIRS, A3: WALKING DOWNSTAIRS, A4: JOGGING, A5: RUNNING,

A6: CYCLING, A7: NORDIC WALKING.

Repetitive Activities Non-repetitive Activities

HAPT A1, A2, A3 sitting, standing, lying

MHEALTH A1, A2, A4, A5, A6 sitting, standing, lying

PAMAP2 A1, A2, A3, A5, A6,
A7

sitting, standing, lying, watch-
ing TV, computer work
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Fig. 3. Evaluation result on the synthetic dataset. It shows better performance
for the refined template over the original template both in terms of length es-
timation, candidate selection, and template extraction. The bottom right figure
shows that STEM-based methods consistently achieve better performance than
other methods in activity recognition.

the algorithm itself. We first randomly generated 19 random
walk time series with lengths between [40,. . . ,80]. The 19
time series are treated as templates, and for each template, we
generate 100 time-series repeating the template from 5 to 20
times randomly. We also generated 100 random time series
with no repeating patterns as one negative class. Gaussian
noise was then added to each of the generated series, resulting
in 2000 synthetic time series.

We produced six datasets following the above-mentioned
procedures with the same 19 templates, in which we introduce
different variable intervals between [0,0.1,...,0.5]. The variable
interval v is a factor of the pattern length l, which determines
the standard deviation of the interval equal to v × l and the
interval between patterns following the normal distribution.
Figure 2 shows an example where variability equals 0 means
the templates appear one after another, and variability equals
1 means the templates appear at varying intervals in which the
variation follows a normal distribution with standard deviation
as 1 × the pattern length.

3) Public Datasets: We choose three publicly available
activity datasets for the evaluation since these datasets contain
relatively more repetitive activities. The HAPT [24] collects

data from 30 volunteers wearing a waist-mounted smartphone
while performing various activates in laboratory conditions:
walking, walking upstairs, walking downstairs, sitting, stand-
ing, and Lying down. MHEALTH [25] is composed of 12
activities in an out-of-lab environment, performed by 10
volunteers with 3 sensors placed on the subject’s chest, right
wrist, and left ankle. PAMAP2 [26] includes 18 activities
performed by 9 subjects wearing 3 sensors on the subject’s
chest, and the dominant side’s hand and ankle. The PAMAP2
is a commonly used public dataset in activity recognition, and
the result of recently proposed methods can be found in [10].

We manually classify activities as repetitive activities and
non-repetitive activities for each dataset, where non-repetitive
activities are treated as one class. The details of the clas-
sification are mentioned in Table II. We choose only two
IMUs (one from the hand and one from the ankle) from the
MHEALTH and PAMAP2 datasets, as the chest data does not
contribute much information on the listed activities. For each
of the detected segments, we extract the template (denoted as
STEM-TWED) and the ECDF features (denoted as STEM-
ECDF) from the template candidates as mentioned in section
III. Then the sliding window is applied to extract statistical and
ECDF features directly from the window data. The STEM-
TWED and STEM-ECDF features are also selected on the
same window by majority voting. The size of the window is
defined as 5 seconds with a step size of 2.5 seconds.

B. Evaluation of Repetitive Activity Recognition

1) Synthetic Data: We assess the quality of the extracted
template by evaluating its performance on length estimation,
candidate selection, and template extraction measured by the
similarity between the template and the ground truth. The
results can be found in Figure 3, and detailed evaluations are
outlined in the following section.

Length estimation is evaluated by measuring the Root Mean
Squared Error (RMSE) between the length of the template with
the ground truth, where the quality of selected candidates is
measured by the location differences. The location is defined
as the center point of the pattern to mitigate the effects of
the length variations. Noticing that the number of selected
candidates might be different from the ground truth number,
we match the largest common indices with a greedy approach.
The most important measure of the extracted template is how
accurately the approach recovers the underlying pattern from
the candidates. It is measured by the distance with TWED
between the template and the ground truth after the two
sequences are aligned.

The result shows that in all measures, RMSE decreases
with the increasing variability in general. Also, the refined
template recorded consistently lower RMSE than the original
template. It suggests that the proposed template extraction
method is extremely robust when the patterns contain variable
intervals, while still performing well for patterns with regular
intervals. Nonetheless, the template refinement is necessary
as it provides more accurate length estimation and candidate
selection which leads to a more precise template extraction, as
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Fig. 4. Confusion matrix showing the average performance of different methods over all the synthetic datasets. The alphabets from A to S represent different
patterns as a class, where T denotes the class without any repeating pattern. The values are normalized by each class rangeing from 0 to 1.

TABLE III
COMPARISON OF RECOGNITION PERFORMANCE FOR DIFFERENT METHODS

ON THE PUBLIC DATASETS.

Dataset Features Acc. Prec. Rec. F1

HAPT

DeepConvLSTM 0.983 0.983 0.983 0.983
STAT 0.951 0.952 0.951 0.952
ECDF 0.995 0.995 0.995 0.995
STEM-TWED 0.986 0.987 0.986 0.986
STEM-ECDF 0.990 0.990 0.990 0.990

mHealth

DeepConvLSTM 0.830 0.882 0.830 0.855
STAT 0.894 0.906 0.894 0.900
ECDF 0.914 0.929 0.914 0.921
STEM-TWED 0.764 0.786 0.764 0.773
STEM-ECDF 0.950 0.958 0.950 0.954

PAMAP2

DeepConvLSTM 0.704 0.745 0.704 0.724
STAT 0.853 0.855 0.853 0.854
ECDF 0.848 0.865 0.848 0.856
STEM-TWED 0.700 0.755 0.700 0.726
STEM-ECDF 0.885 0.916 0.885 0.900

shown by the much lower distance compared with the original
template.

The analysis above demonstrated how the proposed method
performs on template extraction under different variability
conditions of the repeating pattern. We then examine the
performance of recognizing the pattern with the extracted
templates. For each dataset of different variability, we perform
5-fold cross-validation to divide the dataset into 5 equal size
partitions randomly. We then perform evaluations using each
partition as the testing set and the remaining partitions as the
training set. The performance is then calculated as the average
over the 5 partitions as shown in Figure 4.

As expected, the ECDF and DeepConvLSTM methods
achieved similar performance. While the proposed STEM-
based methods achieved superior performance compared to
all the other methods. When the variability is up to 0.5, both
methods recorded at least 20% improvement comparing with
the baseline method. The average improvement from ECDF
to STEM-ECDF is 14.26% over all the synthetic datasets.

2) Public Datasets: We evaluate the performance of repet-
itive activity recognition from two aspects: efficiency and
classification accuracy. Efficiency is evaluated by measuring
the degree to which unnecessary computations are avoided.

The unnecessary computations are considered non-repetitive
activities. On the contrary, repetitive activities are the target
that should be included in the computation. Therefore, success-
fully classifying all the subsequences of both the repetitive and
non-repetitive activities indicates the efficiency of the method.
We recorded an average true positive rate of repetitive activity
classification of 92.4% and 93.9% respectively for SIMPAD
and mSIMPAD over the three datasets; and 96.6% and 95%
for non-repetitive activity classification. This suggests that the
mSIMPAD is better at identifying repetitive activities at 93.9%
while eliminating 95% of the non-repetitive segments.

For the classification accuracy, we perform 3-fold cross-
validation for each of the public datasets, since some of the
classes only have a few samples. The results are reported
in Table III. Surprisingly, the DeepConvLSTM recorded a
relatively lower performance than the other methods. The
major reason would be the number of channels available in the
data is limited. There were at most 24 channels of the input
data while the previous study employed 113 channels as input
[22]. While the other two methods namely ECDF and STAT
produce similar results where the ECDF features perform
slightly better in general. Note that the STEM-TWED recorded
the worst performance, showing that the individual differences
can largely degrade the recognition performance with an
elastic distance measure approach. This implies comparing the
raw pattern might not provide as good performance as the
other feature-based approaches.

With the abstraction of the pattern using statistical features,
STEM-ECDF achieved the best performance in two out of
three datasets. It obtained similar but slightly lower results to
the ECDF with just 0.5% margin only for the simplest dataset,
whereas the better performance on the other two datasets
is at least 3% higher than others. STEM-ECDF obtaining
better results since it identifies internally similar patterns and
ignores abnormalities to form better quality features out of
the repetitive activity. As we have illustrated on the synthetic
dataset, STEM-TWED is more suitable for repetitive activity
monitoring where the patterns are very similar in most cases.
We delay the discussion in choosing the STEM-ECDF and
STEM-TWED, and the reason that STEM-ECDF outperforms
the original ECDF in section V. In general, the proposed
approach achieved superior performance compared to the other



methods, recording up to 4.4% improvement for the STEM-
ECDF.

The above evaluation suggests that for repeating patterns
with irregular intervals, the proposed approach performs sig-
nificantly better than the other methods. However, measur-
ing the distance between two sequences with time-warping
techniques is known to be computationally expensive. The
superior performance comes with a trade-off of computational
efficiency. By combining the template extraction with the
distributional features, the efficiency can be largely improved
while achieving on par or even better results on repetitive
activity recognition in reality.

C. Use case: Respiration Monitoring

Wireless sensing is an emerging area in the IoT community.
Numerous publications have shown the potential of wireless-
sensing based vital sign detection, which enables various
applications in healthcare as well as activity recognition.
To illustrate the potential of the proposed method on other
repeating pattern extraction problems, we adopted respiration
monitoring using wireless signals as a use case. Specifically,
we identify the repeating patterns within a wireless signal
captured from an RFID transceiver to estimate the respiration
rate of a subject with an RFID tag on their chest. We randomly
selected 10 signals collected in [27] in which half of them
contain normal breathing, and the other half contain periods
where the participants were instructed to hold their breath to
simulate the condition of Sleep Apnea.

Respiration can be identified by measuring the phase of
the wireless signal [28]. Intuitively, the physical motion of
the chest affects the signal strength of the tag as it expands
and contracts while inhaling and exhaling. These miniature
changes constitute periodic patterns in the phase values of the
signal. These patterns can be detected by STEM and provide
the estimated pattern length if it exists. The located template
candidates are considered as a signal of breathing in which
we can estimate the breathing rate by counting the number
of candidates. We compare the performance with the baseline
method introduced in [27]. It assumed that the breathing pat-
tern is a simple waveform signal that can be identified by peak
detection. It computes a threshold, determined by the mean of
the phase value to eliminate false positives caused by small
variations. A normal breathing rate is roughly 30 times per
minute and is considered as a physical limitation. This avoids
peaks that are closer than 2 seconds apart. Then, we compute
the number of breaths within each signal and calculate the
RMSE for each of the methods. The RMSE of STEM is 0.89,
where the RMSE of the baseline method is 3.66, which shows
that STEM achieved much better performance compared to the
baseline method.

Figure 5 shows an example of normal breathing and sim-
ulated sleep apnea by holding one’s breath. As we can see,
STEM can accurately identify the waveform generated by
breathing even with irregular intervals, periods of pause, and
shape variations. In contrast, although the baseline method
achieved similar results on normal breathing datasets, it fails
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Fig. 5. Example of respiration estimation. The red line denotes the detected
pattern using STEM and the blue cross marks denote the detected respiration
using the baseline method.

if the signal contains periods of pause. The minimum dis-
tance between peaks simply does not work when the pattern
contains irregular intervals as the breathing rate might vary
from the average value. The drift of the signal can invalidate
the threshold approach. In contrast, STEM first detects if
the repeating pattern occurs by comparing the z-normalized
distance between the subsequences, which can better handle
data drift and shape variation. The inserted noise can better
differentiate the truly repeating patterns from the non-repeating
subsequences. Therefore, STEM achieved much better per-
formance in estimating the breathing rate from the wireless
signal. Note that this is just an example application of our
approach. It can also facilitate many other applications such
as heart rate detection, blink rate detection, and many repetitive
motions such as hand-flapping, rocking, spinning, just to name
a few.

V. DISCUSSION

In this work, we focus on the classification of multivariate
time series that may contain repeating patterns. These kinds of
time series are prevalent in day to day life, and are especially
interesting when considering repetitive activities [1]–[3], [15],
[16], physiological signals [28], or the audio signals of music
[29], just to name a few. We focus on the application of
repetitive activities given their importance for physical health
monitoring. The presented method is however general enough
for other time series classification tasks with repeating pat-
terns, as the proposed method is scenario independent where
the only required parameter is the length of the target pattern.

Based on STEM, we proposed a recognition method using
the nearest neighbor algorithm with time warp edit distance
namely the STEM-TWED. It shows an ability for accurate
recognition that however has a few drawbacks. First, the
TWED relies on accurate length estimation as the differences
between lengths incur a higher distance due to the warping
penalty. Second, it is non-trivial to design a proper penalty for
general template matching. Third, the computational cost in-
creases with the number of training samples due to the distance
measure for each sample, and calculating the TWED is much
slower than calculating the Euclidean distance for the tradi-
tional features. To balance the recognition accuracy with the
computational cost, we combine the STEM with the Empirical-
Cumulative-Distribution-Function based features namely the
STEM-ECDF. The advantage of the STEM-ECDF is that it



can avoid unnecessary computation on non-repetitive series,
while efficiently extracting template candidates and ignoring
noisy data within the subsequences.

3-axis Acceleration X Y Z

Normalized 3-axis Acceleration
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Template Candidates

Fig. 6. Example of candidate selection in a snippet of mHealth dataset.

Figure 6 shows a snippet of data from the mHealth dataset,
obtained from the accelerometer on a person’s ankle while
climbing stairs. From the raw accelerometer signal, the X-
axis is almost flat compared to the Z- and Y-axis data. If
we normalize the data on each axis, similar patterns can be
observed among the three axes. Although there are slight
differences between each repetition, we effectively extract
internally similar subsequences using STEM as the subse-
quences highlighted. We only show the candidates extracted
from the X-axis since the patterns over three axes are identical.

VI. CONCLUSION

In this work, we proposed STEM, a template extraction
method to identify repeating patterns in multivariate time
series and apply it to repetitive activity identification. STEM
aims to substitute the commonly used sliding window tech-
nique, which is computationally expensive and usually requires
extensive domain knowledge to work. STEM leverages the
recently proposed successive similar pattern detection method
to determine whether repeating patterns occur within a time
series. For these detected subsequences, it identifies a template,
which is a pattern that minimizes the internal distances within
the subsequence as a representation. We evaluated our ap-
proach on synthetic data, as well as on three publicly available
datasets. The experiment shows that the proposed method can
efficiently avoid unnecessary computation on non-repeating
series. It also provides more accurate recognition results espe-
cially when the periodicity of the repeating pattern is variable.
By combining the STEM with the distributional feature, it
achieved a more balanced trade-off between computational
cost and recognition accuracy. The proposed method shows
superior performance compared to the baseline methods on
repetitive activity recognition, and can additionally be applied
to other time series classification tasks with repeating patterns.
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