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ABSTRACT

Balanced rule-constrained resource allocation aims to evenly
distribute tasks to different processors under allocation rule
constraints. Conventional heuristic approach fails to achieve
optimal solution while simple brute force method has the
defect of high computational complexity. To address these
limitations, we propose “recursive balanced k-subset sum par-
tition (RBkSP)”, in which iterative “cut-one-out” policy is
employed that in each round, only one subset whose weight
of tasks sums up to 1/𝑘 of the total weight of all tasks is
taken out from the set. In a single partition, we first create
a dynamic programming table with its elements recursive-
ly computed, then use “zig-zag search” method to explore
the table, find out elements with optimal subset partition
and assign different partitions to proper places. Next, to
resolve conflicts during allocation, we use simple but effective
heuristic method to adjust the allocation of tasks that is
contradicted to allocation rules. Testing results show RBkSP
can achieve more balanced results with lower computational
complexity over classical benchmarks.
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 Carousel 1  Carousel 2  Carousel k

Figure 1: Illustration of carousel baggage allocation.

1 INTRODUCTION

In balanced rule-constrained resource allocation, it attempts
to divide a set of tasks equally. Meanwhile, all allocations
should strictly follow a series of predefined rules. Conven-
tionally, heuristic approach (e.g., greedy algorithm) [2, 3]
is used to sequentially distribute a set of jobs to whichever
has the smallest sum of weights of tasks. It is intuitive but
fails to obtain optimal allocation, because the performance
of heuristic approach largely depends on the order of selected
items. Besides, brute force [3, 5] is a straightforward way to
solve this problem that lists all possible allocation of tasks,
and find out the most balanced allocation plan fulling the
allocation rules. Brute force can achieve optimal allocation
but at the cost of very high computational complexity.

To address the aforementioned limitations, we propose
“recursive balanced k-subset sum partition (RBkSP)” algorith-
m, in which “cut-one-out” policy is adopted that for the
first partition, we only take one subset out, then repeat the
process and take another subset out in the next partition. In
each round, the key is to find out a partition with its weight
sum equal to 1/𝑘 of the total weight of all elements in the
set. Specifically, in RBkSP, we construct a table that stores
𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒 variables indicating the availability of the sum of
all possible subsets. The value of elements in the table can
be derived recursively using dynamic programming. After
the table is filled up, “zig-zag search” is used to go back and
forth across the table to search the optimal partition.

To verify RBkSP in real scenario, we instantiate it in air-
port carousel resource allocation since many airports world-
wide still make baggage allocation plan manually. This lowers
the operational efficiency as it unevenly distributes baggage
to different carousels. We adopt a series of measures to make
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Figure 2: An example of finding a subset with a given sum by constructing dynamic programming table.

the allocation of baggages meet the allocation rules imposed
by airport authority. Concretely, for each obtained partition
of flights using RBkSP, we first select a flight with the highest
priority and the largest weight as the leader, then assign all
flights of this partition to the carousel that best suits the
elected leader. Then, heuristic method is used to adjust flight-
s among carousels according to their priorities and carried
number of baggages so as to ensure that the allocation of all
flights strictly follows allocation rules. Meanwhile, the load
difference among carousels should be minimized as well.

2 PROBLEM FORMULATION

In this paper, we formulate balanced resource allocation as
a k -subset sum partition problem. Given a set 𝒮 of 𝑁 tasks
(𝒮 = {𝑥1, ..., 𝑥𝑁}) with 𝑤1, ..., 𝑤𝑁 the corresponding weights.
Let 𝑊 =𝑤1+. . .+𝑤𝑁 the sum of weights of all elements, the
goal is to find a partition scheme dividing 𝒮 into k subsets,
𝒮1, ...,𝒮𝑘, whose subset sums, 𝑊1, ...,𝑊𝑘, are as close as 𝑊 ,
the arithmetic average of 𝑊 (𝑊 = 𝑊

𝑘
), i.e.,

min
⃒⃒⃒
𝑊𝑖 −𝑊

⃒⃒⃒
= min

⃒⃒⃒ ∑︁
𝑎𝑖,𝑗𝑤𝑗 −

𝑊

𝑘

⃒⃒⃒
, (1)

where 𝑖 ∈ {1, ..., 𝑘} represents the 𝑖-th divided subset and
𝑗∈{1, ..., 𝑁} denotes the index of elements. 𝑎𝑖,𝑗 ∈ {0, 1} is a
binary variable with 1 indicating item 𝑗 is assigned to 𝒮𝑖.

3 BALANCED K -SUBSET SUM
PARTITION

Similar to but distinguished from 0/1 knapsack problem, the
key to balanced 𝑘-subset sum partition, denoted by 𝑃 (𝑖, 𝒲),
is to find a subset with a given sum, that is, pick a list of
items whose sum of weights equals to 𝒲:∑︁𝑁

𝑖=1
𝑎𝑖𝑤𝑖 = 𝒲, 𝑎𝑖 ∈ {0, 1}. (2)

where 𝑎𝑖=1 means item 𝑥𝑖 is picked and 𝑎𝑖=0 otherwise.

There are 𝑘𝑁 possible subsets for brute force search, and
the increase of complexity would be of exponential order
as the number of items 𝑁 gets larger. Inspired by dynamic
programming [1, 4], a better solution is to decompose this
problem into a series of nested subproblems. In other words,
considering the 𝑖-th item in 𝒮, there are two possibilities
associated with it, picking it or leaving it. On the one hand,
if the 𝑖-th item is included in the optimal subset, the original
problem is reduced to a subproblem that we need to find
out a selection of items in the remaining 𝑁−1 items whose
total weight is 𝒲− 𝑤𝑖, i.e., 𝑃 (𝑖−1, 𝒲−𝑤𝑖). On the other
hand, if it is not included in the optimal subset, we continue
searching other items and make sure their total weight is
equal to 𝒲, i.e., 𝑃 (𝑖−1, 𝒲). Mathematically, the recurrence
relation can be described by state transition function:

𝑃 (𝑖, 𝒲)=

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑖 = 0 ;
0, if 𝒲 = 0 ;
𝑃 (𝑖−1,𝒲), if 𝑤𝑖 > 𝒲;
max{𝑃 (𝑖−1,𝒲), 𝑃 (𝑖−1,𝒲−𝑤𝑖)+𝑤𝑖}, else.

(3)
To solve Eq. (3), we first need to build up a dynamic

programming table 𝑇 of size (𝑁+1)×(𝑊+1), where 𝑁 is
the number of elements and 𝑊 =𝑤1 + · · ·+𝑤𝑁 is the sum of
weights of all elements in 𝒮 [1]. Figure 2 is a depiction of the
table, in which the 𝑖-th row entry represents a subset 𝒮 ′

𝑖 of 𝒮
containing the first 𝑖 elements of 𝒮, i.e., 𝒮 ′

𝑖 = {𝑥1, 𝑥2, ..., 𝑥𝑖}
(0≤ 𝑖≤𝑁), and the 𝑗-th column entry is an integer ranging
from 0 to 𝑊 (0≤𝑗≤𝑊 ). We set 𝑇 [𝑖][𝑗]= 𝑡𝑟𝑢𝑒 if the weights
of a selection of items in 𝒮 ′

𝑖 sum up to 𝑗, and set 𝑇 [𝑖][𝑗]=𝑓𝑎𝑙𝑠𝑒
otherwise. Meanwhile, we have to maintain another table
𝑇 ′ of the same size as 𝑇 . In 𝑇 ′[𝑖][𝑗], it records the selected
elements if 𝑇 [𝑖][𝑗]= 𝑡𝑟𝑢𝑒 or leaves it blank if 𝑇 [𝑖][𝑗]=𝑓𝑎𝑙𝑠𝑒,
thus we can easily identify these picked items if a subset with
a given sum is found. Noted that when filling in the table 𝑇 ,
its element value can be derived according to Eq. (3) other
than enumerating all possible combinations. Concretely, we
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Figure 3: Illustration of the iterative “cut-one-out”
policy in balanced 𝑘-subset sum partition.

initialize the first column to 𝑡𝑟𝑢𝑒 and the first row except its
first element to 𝑓𝑎𝑙𝑠𝑒, respectively. Then, the 𝑗-th element
of the 𝑖-th row entry 𝑇 [𝑖][𝑗] can be computed recursively,
i.e., 𝑇 [𝑖][𝑗] = (𝑇 [𝑖−1][𝑗] ||𝑇 [𝑖−1][𝑗−𝑤𝑖]). The chain of blue
circles and arrows in Figure 2 gives an intuitive example to
demonstrate the recursive calculation process.

Subsequently, we set 𝑗=𝑊 =
⌊︀
𝑊
𝑘

⌋︀
, then check the values

on the bottom row of 𝑇 . If 𝑇
[︀
𝑁+1

]︀[︀
𝑊

]︀
= 𝑡𝑟𝑢𝑒, it indicates

we can find out a subset of 𝒮 whose sum of weights is exactly
equal to 𝑊 , i.e., the 1/𝑘 of total weight of all elements in 𝒮.
Then, the list of corresponding elements can be fetched in
𝑇 ′[︀𝑁+1

]︀[︀
𝑊

]︀
. Moreover, we can find sometimes 𝑇

[︀
𝑁+1

]︀[︀
𝑊

]︀
=

𝑓𝑎𝑙𝑠𝑒, which means the partition with exactly subset sum 𝑊
cannot be obtained in some cases. Alternatively, we propose
“zig-zag search” method to find the next best solution. More
specifically, we start from checking 𝑇

[︀
𝑁+1

]︀[︀
𝑊+1

]︀
and we

can get a successful subset partition if it is 𝑡𝑟𝑢𝑒, otherwise
go back and check 𝑇

[︀
𝑁+1

]︀[︀
𝑊−1

]︀
, then continue checking

𝑇
[︀
𝑁+1

]︀[︀
𝑊+2

]︀
, 𝑇

[︀
𝑁+1

]︀[︀
𝑊−2

]︀
, and so forth. Searching

is conducted back and forth until it triggers the threshold,
i.e., 𝑊 −𝐿 ≤ 𝑊 ± 𝑙 ≤ 𝑊 +𝐿. Figure 2 gives an intuitive
example that 𝒮 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} with corresponding weights
𝑤1, 𝑤2, 𝑤3, 𝑤4 = 1, 2, 3, 10, respectively, and let 𝑘 = 2, we
have 𝑁 +1=5, 𝑊 =16 and 𝑊 =

⌊︀
𝑊
𝑘

⌋︀
=8. As we can see

𝑇
[︀
5
]︀[︀
8
]︀
= 𝑓𝑎𝑙𝑠𝑒, then move to check 𝑇

[︀
5
]︀[︀
9
]︀
, 𝑇

[︀
5
]︀[︀
7
]︀
until

𝑇
[︀
5
]︀[︀
10

]︀
= 𝑡𝑟𝑢𝑒 is found. Accordingly, an optimal subset

{𝑥4} ∈ 𝒮 is obtained through looking up the table 𝑇 ′.
So far, we have successfully made the 1𝑠𝑡 partition on 𝒮

and obtain subset 𝒮1, then without loss of generality, let’s
extend it to 𝑘≥3, we would love to take the 2𝑛𝑑 subset 𝒮2

out from the remaining part 𝒮−𝒮1. In this manner, in each
round, we pick up some items from the remaining part of
previous partition whose weight sum is equal to 1/𝑘 of the
total weight of all elements in 𝒮, then repeat this in the
next round. It is what we call “cut-one-out” policy that 𝑘−1
iterations will be conducted if we want to divide a set into 𝑘
piles, and the process of it is illustrated by Figure 3.

4 APPLICATION IN RULE-BASED
RESOURCE ALLOCATION

We evaluate RBkSP on airport carousel resource allocation,
which, in real operation, is constrained by a group of allo-
cation rules set by airport authority. Table 1 lists a part of
high priority rules in daily airport baggage allocation.

Having all arriving flights during a short period of time
(usually 1 hour) divided into 𝑘 groups, the next step is to

Priority Specification

Rule 1 A380 should be allocated to Carousel 10 & 12.

Rule 2 KA & CX flights should not be assigned to

Carousel 2, 3, 5 & 6.

Rule 3 Heavy loading flights shall not be assigned on
the same arrival carousel.

Rule 4 All KA flights should not be allocated with EK

... ... flights on the same arrival carousel.

Table 1: Rule specifications on flight allocation (KA,
CX and EK, etc., refer to airline code).

. . .. . .

...

. . .

Carousel 2 Carousel KCarousel 1

  Step 2:

Conflict 

Resolving

  Step 1:

Allocation 

of Flight     

Partitions

Switc
h

Switch

. . . . . .

. . .

. . ....

. . .

. . .

. . .. . .

Figure 4: Illustration of resolving allocation conflicts
among flights using heuristic approach.

assign them to different carousels. Briefly, we first give a
tag to each flight containing the information of priority 𝑝
and weight 𝑤 (number of baggages). They are organized in
the form of (flight no., priority, weight), say, (SQ856, 𝑝 : 1,
𝑤 :450). For each group, the flight with the highest priority
and largest weight is elected as the group leader, then all
flights in this group will be assigned to a carousel that the
group leader best suits for. But this has not finished yet,
because the allocation of some flights may violate allocation
rules, for example, two heavy loading flights are assigned to
the same carousel. However, these allocation rules are trivial,
it is challenging to mathematically formulate it and find the
optimal solution. Alternatively, we use heuristic method to
adjust the allocation of flights which do not satisfy the rules.
Empirically, if two flights assigned to the same carousel are
conflict with each other, we remove the one with lower priority,
and switch it with a flight allocated to other carousels. In
order to keep load balanced across different carousels, the
number of baggages carried by two switching flights should
be closed to each other. Figure 4 gives an illustrative example
to help readers better understand the process how we resolve
allocation conflicts using heuristic approach.

5 EXPERIMENT

5.1 Evaluation Metric

We use the mean absolute error (MAE) to evaluate the
performance of the proposed algorithm:

ℒMAE =
1

𝑘

∑︁𝑘

𝑖=1

⃒⃒⃒
𝑊𝑖 −

𝑊

𝑘

⃒⃒⃒
. (4)
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Figure 5: Demonstration of the developed carousel resource allocation system based on RBkSP.

Models
MAE Running Time

Busy Idle Busy Idle

Greedy 175.32 65.45 0.052 𝑠 0.039 𝑠

Brute Force 64.51 38.84 5.854 𝑠 1.873 𝑠

RBkSP 64.51 38.84 0.093 𝑠 0.056 𝑠

Table 2: Comparison between models.

5.2 Dataset

The dataset we use is provided by a third party cooperator
for scientific research purpose only. It includes 3-year’s flight
information of a busy international airport in Asia, including
flight no., carried number of baggages, weather data, etc.

5.3 Experimental Results

5.3.1 Demonstration. Figure 5 demonstrates the carousel
resource allocation system equipped with RBkSP developed
by us. It presents the allocation plan of flights at arrival hall,
which has 6 carousels indexed from 5 to 10. Red and orange
represent heavy loading flights, and yellow and green indicate
light loading flights. We can observe that arriving flights are
evenly distributed to different carousels in time order.

5.3.2 Comparison between Models. Table 2 compares MAE
across different models. RBkSP achieves lower MAE than
greedy algorithm [2, 3]. This is because RBkSP can obtain
optimal partition, but greedy is a heuristic algorithm that
assigns items in a set sequentially to whichever subset has
the smaller sum. In idle hours, the MAE difference between
them is much smaller because carousel resource is relatively
adequate during idle hours. Brute force [3, 5] can also make
optimal partition since it enumerates all subsets and pick 𝑘
subsets that have the smallest subset sum differences, but it
is at the cost of much higher computational time.

5.3.3 Comparison with Rule-based RBkSP. As we can see
in Figure 6(a), when applying RBkSP to carousel baggage
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Figure 6: Compare RBkSP with Rule-based RBkSP.

allocation under some rule constraints, the MAE of rule-based
RBkSP worsens, particularly during busy hours, because it
has to spend more time on adjusting the allocation of flights
across different carousels such that all allocation rules can be
satisfied. However, in idle hours, the performance deteriorates
a little bit as the number of flight adjustments is much less.

6 CONCLUSION

In this paper, we propose “recursive balanced k-subset sum
partition (RBkSP)” with the aim to divide a set of tasks into
𝑘 subsets with equal subset sum. It is successfully applied
to rule-constrained airport resource allocation, and achieves
more balanced allocation and comparably less running time.
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