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Fairness-based Packing of Industrial IoT Data
in Permissioned Blockchains

Shan Jiang, Jiannong Cao, Hanqing Wu, Yanni Yang

Abstract—In recent years, blockchain has been broadly applied
to industrial Internet of things (IIoT) due to its features of
decentralization, transparency, and immutability. In existing
permissioned blockchain based IIoT solutions, transactions sub-
mitted by IIoT devices are arbitrarily packed into blocks without
considering their waiting times. Hence, there will be a high
deviation of the transaction response times, which is known as
the lack of fairness. Unfair permissioned blockchain decreases the
quality of experience from the perspective of the IIoT devices.
Moreover, some transactions can get timeouts if not responded
for a long time. In this paper, we propose FAIR-PACK, the first
fairness-based transaction packing algorithm for permissioned
blockchain empowered IIoT systems. First, we gain the insight
that fairness is positively related to the sum of waiting times of
the selected transactions through theoretical analysis. Based on
this insight, we transform the fairness problem into the subset
sum problem, which is to find a valid subset from a given
set with subset sum as large as possible. However, it is time-
consuming to solve the problem using a brute-force approach
because there is an exponential number of subsets for a given
set. To this end, we propose a heuristic and a min-heap-based
optimal algorithm for different parameter settings. Finally, we
analyze the time complexity of FAIR-PACK and conduct extensive
experiments. The results reveal that FAIR-PACK is time-efficient
and outperforms the existing algorithms significantly in terms of
both fairness and average transaction response time.

Index Terms—Blockchain, industrial Internet of things, trans-
action packing, fairness.

I. INTRODUCTION

Recently, blockchain technology has been attracting ex-
tensive attention from both industry and academia, since it
enables trustless data storage with auditability [1]. In industrial
Internet of things (IIoT), blockchain has shown its great
potential in vehicular networks [2], smart grid [3], crowd
sourcing [4], mobile edge computing [5], etc. Generally, a
blockchain is an append-only list of blocks, each of which
includes a set of transactions, managed by a peer-to-peer
network adhering to a protocol for inter-node communication
and validating new blocks [6]. The magic of blockchain lies in
the protocol of validating new blocks, i.e., consensus mecha-
nism. In permissioned blockchains, the consensus mechanism
is performed round by round, and each round consists of
three phases, i.e., leader election, transaction packing, block
propagation. To begin a round, all the blockchain nodes run the
same leader election algorithm to elect a transaction packer.
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Then, the packer selects several transactions from its memory
pool and pack them into a block. Finally, the generated block
is broadcast to the network, and the transactions in the block
get confirmed.

For IIoT systems, blockchain can be regarded as a service
for data storage. In particular, the IIoT devices send the data,
or transactions, to the blockchain, and receive the operational
results, i.e., acceptance or rejection. To improve the quality
of service, the research communities have been attempting
to propose more efficient [7] and reliable [8] algorithms for
leader election. Since the throughput of blockchain is limited,
the blockchain service is supposed to be fairly shared among
multiple IIoT devices. In permissionless blockchain, the IIoT
devices pay fees, in forms of native cryptocurrencies, for their
transactions. The nodes strategically pack those transactions
with high transaction fees into a block to earn more monetary
rewards. The fairness among the IIoT devices is naturally
achieved because the transactions with higher transaction fees
tend to be served first.

The fairness in permissioned blockchain empowered IIoT
systems differs due to the lack of native cryptocurrencies
and transaction fees. In this paper, we consider fairness in
permissioned blockchain from the perspective of transaction
response time. For each transaction, its response time is the
duration from its submission to the time when a block contain-
ing this transaction is confirmed. A permissioned blockchain is
considered to be fair if the response times of the transactions
are close to each other. That is, the transactions which are
submitted first are expected to be packed into blocks first.
Unfairness leads to a high deviation of the transaction response
times. As a result, the transactions incurring long delays will
suffer from undesirable quality of experience, which is partic-
ularly important in cognitive IIoT [9]. More seriously, some
transactions get timeouts and discarded if their response times
exceed a certain period. In time-sensitive IIoT applications,
e.g., energy trading [10] and manufacturing operation [11],
the discarded transactions can lead to income loss and even
safety issues.

Little attention has been paid to the fairness issue in
permissioned blockchain empowered IIoT systems although it
is vital. Transaction packing is the key to enhance the fairness
because it directly decides which transactions are packed into
blocks. The first idea is possibly first-come-first-serve (FCFS)
[12]. In permissioned blockchain, the FCFS strategy is to
select the transactions with long waiting times and pack them
into a block. However, the selected subset of transactions
can be invalid to be packed into a block. For example, one
transaction cannot be packed if its dependent transactions



2

are not confirmed yet. On this circumstance, the next choice
is supposed be generated by the transaction packing algo-
rithm while FCFS strategy fails. In existing permissioned
blockchains, transactions are arbitrarily packed into blocks.
An intuitive approach is to choose subsets one after another
randomly. This approach cannot achieve preferable fairness
since transactions with long waiting times are not considered
first. In conclusion, traditional FCFS strategy fails to continu-
ously generate subsets of transactions, and the random strategy
cannot achieve satisfactory fairness.

In this paper, we propose FAIR-PACK, a fair transaction
packing algorithm for permissioned blockchain empowered
IIoT systems. First, we quantify the fairness according to Jain’s
fairness index [13] of response times, and define the fairness
problem in permissioned blockchains formally. Then, we gain
the insight that fairness is positively related to the sum of
waiting times of the selected transactions. In this way, we
transform the fairness problem into the subset sum problem,
which is to find a valid subset with subset sum as large as
possible. However, the number of subsets of a given set is
exponential, which makes it non-trivial to solve the subset
sum problem. We divide the subset sum problem into two
individual problems depending on the relationship between
the maximum size of the subset and the size of the given
set. Furthermore, we figure out the partial/global orders of the
subsets according to the subset sum, and propose a heuristic
algorithm and a min-heap-based algorithm to solve the two
problems separately. Finally, we analyze the time complexity
of FAIR-PACK and extensively evaluate its performance in
terms of fairness and average response time. Based on the
experiments, we conclude that FAIR-PACK not only achieves
better fairness, but reduces the average response time as well.
The main contributions of this paper are as follows:
• We define the fairness problem in permissioned

blockchain empowered IIoT systems. We propose an
overall transaction packing algorithm FAIR-PACK and
transform it into two subset sum problems via theoretical
analysis. To the best of our knowledge, this is the first
work on the transaction fairness problem in permissioned
blockchain.

• Inside FAIR-PACK, we propose a heuristic and a min-
heap-based optimal algorithm to solve the two subset
sum problems separately. The performance and time
complexity of the two algorithms are formally analyzed.

• We carry out extensive experiments on how the perfor-
mance of FAIR-PACK is influenced by the transaction
incoming rate, block generation time, block size, and
block validity ratio. The results indicate that FAIR-PACK
achieves better fairness and less average response time
compared to the existing works.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first introduce the system model of
permissioned blockchain empowered IIoT systems. Then, we
define the fairness problem in permissioned blockchains with
concrete explanations of the input, assumptions, and objective.

The block generation in a permissioned blockchain proceeds
round by round as shown in Fig. 1. At the beginning of

each round, the blockchain network runs the leader election
algorithm to elect a leader, node i. Then, node i invokes
transaction packing algorithm to select a subset of transactions
from its local memory pool and pack them into block i. Finally,
block i is propagated in the blockchain network through
broadcasting. From the perspective of the IIoT devices, they
submit their transactions to a random node in the blockchain
network. Upon receiving the transactions, the node stores them
in the local memory pool and broadcast the transactions to
other nodes. Because broadcasting incurs network delay, the
memory pools for different nodes may be different.
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Fig. 1. Block generation of permissioned blockchains

The waiting time and response time of a transaction are
defined as follows.

Definition 1. Suppose a transaction xi is submitted to
blockchain network at time si and xi is in memory pool at
the current time tc, then the waiting time of xi is ai = tc−si.

Definition 2. Suppose a transaction xi is submitted to the
blockchain network and packed into blocks at time si and ei,
respectively, then the response time of xi is ti = ei − si.

As the permissioned blockchain runs round by round, there
are more and more transactions packed into blocks. This paper
studies the fairness according to Jain’s fairness index [13].
Note that the fairness index is between 0 (exclusive) and 1
(inclusive). A larger fairness index means better fairness and
the fairness index equals to 1 if the response times of all the
transactions are the same.

Definition 3. Suppose there are n transactions X =
{x1, · · · , xn} packed into blocks with response times
t1, · · · , tn, then the fairness among the n transactions is
defined as: J (X ) =

(Σn
i=1ti)

2

n·Σn
i=1t

2
i

.

To maximize the overall fairness, we should consider not
only the response times of the transactions in blocks but also
the waiting times of the transactions in memory pool. How-
ever, the number of transactions in blocks increases infinitely
as the permissioned block runs, which hinders the development
of a time-efficient transaction packing algorithm. In this paper,
we only consider the waiting times of the transactions in
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memory pool in a single round and the expected fairness of a
given packing strategy.

Definition 4. Suppose there are n transactions X , the max-
imum number of transactions in a block is k, and the time
to make a packed block to be committed is r. Consider a
packing strategy which packs a subset X ′ of transactions into
a block in a round. Suppose the waiting times of X ′ in the
round are s1, · · · , sl and the waiting times of the remaining
transactions X \ X ′ are t1, · · · , tm, where l+m = n, l < k,
and t1 ≥ · · · ≥ tm. Then, the expected fairness of the packing
strategy in the round is defined to be:

J (X ) =
(Σli=1(si + r) + Σmi=1(ti + r + d ik e · r))

2

n · (Σli=1(si + r)2 + Σmi=1(ti + r + d ik e · r)2)
(1)

In short, the expected fairness assumes that the remaining
transactions in the memory pool are packed into blocks in
FCFS order. To this end, we aim at finding a packing strategy
with the maximum expected fairness in each round, which is
formally defined as follows:

Definition 5. Problem Ori-Fair: Given 1) a set of n trans-
actions X in memory pool at time tc with submission times
s1, · · · , sn, respectively and 2) the maximum number k of
transactions that can be packed into a block, assuming 1) a
leader is already elected for transaction packing, 2) a subset of
X can be valid or invalid to be packed into a block, and 3) the
validity of all subsets of X are unknown before generation, we
aim to develop a transaction packing strategy to continuously
generate subsets of X until a valid subset is generated with
the expected fairness J (X ) as large as possible.

In the problem, the maximum number of transactions that
can be packed into a block is given as k. The reason why k
is bounded is that a large value of k leads to high network
congestion when the block is propagated in the network. For
example, the value of k in Bitcoin is around 3, 000 due to the
limit of block size and average transaction size. In this paper,
we consider k as an adjustable parameter.

In the following, we explain the reasonability of the as-
sumptions. First, leader election and transaction packing are
conducted in sequence. As a result, we can use existing
leader election methods, such as [14] and [15], to select a
transaction packer to fit our assumption 1). Second, a subset
of transactions can be valid or invalid to be packed into a
block for various reasons. For example, one transaction cannot
be packed if its dependent transactions are not confirmed yet.
Finally, we assume the validities of all subsets of transactions
are unknown before the generation to separate transaction
packing with block verification. After separation, the trans-
action packing algorithm will be an independent component
in the blockchain, which makes blockchain more modularized.

Our target is to develop a fair transaction packing algorithm.
The algorithm is supposed to continuously generate subsets of
transactions because a subset of transactions can be invalid and
its validity is unknown in advance.

III. FAIR-PACK: A FAIRNESS-BASED TRANSACTION
PACKING ALGORITHM

In this section, we prove that the fairness index is positively
related to the sum of waiting times of the packed transactions
in ORI-FAIR. Then, the proved property is used to transform
ORI-FAIR into the subset sum problem. Finally, we propose
an overall solution FAIR-PACK towards solving ORI-FAIR.

Theorem 1. Given a set of n transactions x1, · · · , xn in pool
with waiting times a1, · · · , an, respectively and k transactions
are supposed to be packed, in each round, the larger the sum
of the waiting times of the packed transactions, the larger the
fairness of the packing strategy.

Proof. Consider two permutations σ and τ of (1, · · · , n),
where σ = (σ1, · · · , σn) and τ = (τ1, · · · , τn). The two
packing strategies σ-PACK and τ -PACK pack transactions in
the order of (xσ1 , · · · , xσn) and (xτ1 , · · · , xτn), respectively.

Assume by contradictory σ-PACK packs transactions with
larger sum of waiting times each round while τ -PACK achieves
larger fairness. By definition, we have the following properties:

Σki=1aσi > Σki=1aτi (2)

∀2 ≤ j < dn
k
e,Σjki=1aσi ≥ Σjki=1aτi (3)

Σni=1aσi
= Σni=1aτi (4)

Notate the time to commit a packed block as tp. Then the
transaction response times using σ-PACK are aσ1

+ tp, aσ2
+

tp, · · · , aσk+1
+ 2tp, · · · , aσn

+ dnk e · tp. The transaction re-
sponse times using τ -PACK are aτ1 +tp, aτ2 +tp, · · · , aτk+1

+
2tp, · · · , aτn + dnk e · tp. To this end, the fairness of σ-PACK
and τ -PACK and their relationship are as follows:

Jσ−Pack =
(Σni=1(aσi + d ik e · tp))

2

n · Σni=1(aσi + d ik e · tp)2
(5)

Jτ−Pack =
(Σni=1(aτi + d ik e · tp))

2

n · Σni=1(aτi + d ik e · tp)2
(6)

Jτ−Pack > Jσ−Pack (7)

Since the algorithms are running on the same set of transac-
tions, we have

Σni=1a
2
σi

= Σni=1a
2
τi (8)

Σni=1(aσi
+ d i

k
e · tp) = Σni=1(aτi + d i

k
e · tp) (9)

According to Eq. 5,6,7,9, we have:

Σni=1(aσi
+ d i

k
e · tp)2 > n · Σni=1(aτi + d i

k
e · tp)2 (10)

Expand Eq. 10, we get:

Σni=1a
2
σi

+ Σni=1(d i
k
e · tp)2 + 2Σni=1(aσi

· d i
k
e · tp) >

Σni=1a
2
τi + Σni=1(d i

k
e · tp)2 + 2Σni=1(aτi · d

i

k
e · tp)

(11)

According to Eq. 8,11, we have:

Σni=1(aσi
· d i
k
e) > Σni=1(aτi · d

i

k
e) (12)
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Adding Eq. 2 and all the inequations in Eq. 3, we have

Σ
dnk e−1
i=1 Σikj=1aσj > Σ

dnk e−1
i=1 Σikj=1aτj (13)

Adding the inequations in Eq. 12 and Eq. 13, we have:

dn
k
eΣni=1aσi

= Σ
dnk e−1
i=1 Σikj=1aσj

+ Σni=1(aσi
· d i
k
e)

> Σ
dnk e−1
i=1 Σikj=1aτj + Σni=1(aτi · d

i

k
e)

= dn
k
eΣni=1aτi

(14)

It is clear that Eq. 14 is contradictory to Eq. 4. As a result,
the assumption does not hold and σ-PACK achieves larger
fairness than τ -PACK.

According to Thm. 1, it achieves better fairness to pack
transactions with the larger sum of waiting times. Therefore,
the best strategy is to pack transactions with top-k waiting
times, which is FCFS. However, such a transaction subset can
be invalid and we need to continuously generate transaction
subsets. According to Thm. 1, the sum of waiting times can
be treated as the heuristic to generate transaction subsets. That
is, we are supposed to find the transaction subset with the 1-st,
2-nd, · · · , m-th largest sum of waiting times.

Because the transaction waiting times are known real num-
bers, the problem is to find a subset of no more than k elements
from a set of n real numbers with the m-th largest subset sum
among all the feasible subsets. Here, the feasibility means the
subsets contain no more than k elements. If k is smaller than
n, there are Σki=0

(
n
i

)
feasible subsets. Similarly, there are 2n

ones if k is no smaller than n. In this paper, we consider the
two conditions separately with problem statements as follows.

Definition 6. Problem SM-Sum: Given a set of n positive real
numbers W , a positive integer k where k < n, and a positive
integer m where m ≤ Σki=0

(
n
i

)
, there are Σki=0

(
n
i

)
distinct

subsets of W of size no larger than k. Among the subsets,
find the one with the m-th largest sum.

Definition 7. Problem LM-Sum: Given a set of n positive real
numbers W , a positive integer k where k ≥ n, and a positive
integer m where m ≤ 2n, there are 2n distinct subsets of W
of size no larger than k. Among the subsets, find the one with
the m-th largest sum.

If the problems SM-SUM and LM-SUM are solved, then
the problem ORI-FAIR can be solved by Algo. 1.

In Algo. 1, we assume that the problem SM-SUM and
LM-SUM are solved by SUM-INDEX and MIN-HEAP-OP,
respectively. First, we compute the transaction waiting times
based on the submission times and the current timestamp.
Then, the transactions are sorted according to the waiting times
in a non-increasing order. That is, wi will be no smaller than
wj if i < j after sorting. In the for-loop, we transform the
problem of finding the transaction subset with the 1-st, 2-
nd, · · · , m-th largest sum of waiting times to SM-SUM or
LM-SUM depending on the relationship between k and n.
Both the procedures of SUM-INDEX and MIN-HEAP-OP will
return the indexes of the selected elements. Finally, we derive
the transaction subset based on the index set as the output of
FAIR-PACK.

Algorithm 1 FAIR-PACK: a fairness-based transaction packing
algorithm for problem ORI-FAIR

Input: n: the memory pool size; X = {x1, · · · , xn}: the trans-
actions in memory pool; S = {s1, · · · , sn}: the transaction
submission times; k: the maximum number of transactions
in a block; tc: the current timestamp; IS-VALID(U ): a pro-
cedure to check the validity of transaction subset U ; SUM-
INDEX(W, n, k,m): a procedure to solve SM-SUM; MIN-
HEAP-OP(W, n, k,m): a procedure to solve LM-SUM
Output: a valid transaction subset of X or NIL in case that
all subsets are invalid

1: W ← tc − S
2: Sort X with respect to W in non-increasing order
3: for m← 1 to ∞ do
4: if k < n then id←SUM-INDEX(W, n, k,m).MAIN()
5: else id← MIN-HEAP-OP(W, n, k,m).MAIN()
6: end if
7: if id = NIL return NIL end if
8: U ← xid
9: if IS-VALID(U) return U end if

10: end for

IV. SUM-INDEX: A HEURISTIC SOLUTION TO SM-SUM

In this section, we focus on solving SM-SUM. In particular,
we propose to use directed acyclic graph (DAG) G to represent
all the Σki=0

(
n
i

)
subsets. In G, we prove a partial order among

the subsets with respect to the subset sum, which leads to the
heuristic to enumerate the subsets according to the index sum.
That is, the subset sum is related to the number of elements
and index sum. Such a heuristic is leveraged in algorithm
SUM-INDEX to solve SM-SUM. To begin with, we define the
terminologies of set sum and index sum as follows.

Definition 8. Given a set of n real numbers W , the set sum
of W is defined to be the sum of all the elements in W , i.e.,
E(W) = Σni=1wi.

Definition 9. Given a set of n positive real numbers W =
{w1, · · · , wn} and a subset I = {wσ1

, · · · , wσp
} of W , the

index sum of I is defined to be the sum of the indexes of its
corresponding elements in W , i.e., D(I) = Σpi=1σp.

There are Σki=0

(
n
i

)
nodes in G, in which each node rep-

resents a subset. Moreover, G consists of k + 1 connected
components, in which the p-th component is the collection of
subsets of size p − 1. The number of subsets of size i, i.e.,(
n
p

)
, is exactly the size of the p-th component. Furthermore,

the subset in the i-th component tends to have a smaller subset
sum than the subset in the j-th component if i < j because of
the essential difference in subset sizes. This also indicates a
partial order between the components in terms of subset sum.
Next, we introduce the directed edges in each component.

In the p-th component of G, all the subsets of size p are
listed level by level according to the index sum as shown
in Fig. 2. In the figure, the “greater” operator between two
subsets represents the relationship of subset sum between
them. We find that the subset with a smaller index sum is likely
to have a larger set sum. In particular, given a subset I whose
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index sum is not the smallest, there must be another subset
I ′ with smaller index sum and larger subset sum, which is
proved in Thm. 2. Moreover, we add a directed edge from the
node representing I ′ to the node representing I. In this way,
all the nodes are (weakly) connected in the p-th components.
Because the edges are always from the upper level, i.e., smaller
index sum, to the lower level, i.e., larger index sum, the p-th
components is a directed and acyclic.
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Fig. 2. Subsets of size p listed level by level according to index sum

Theorem 2. Given a set of n positive real numbers W =
{w1, · · · , wn} where w1 ≥ · · · ≥ wn and a subset I of W
where |I| = p, D(I) = d, and d 6= p(p+ 1)/2, there exists at
least one subset I ′ of W such that |I ′| = p, D(I ′) = d− 1,
and E(I ′) ≥ E(I).

Proof. Let I = {wσ1
, · · · , wσp

} where Σpi=1σp = d and
σ1 < · · · < σp. Assume, for the sake of contradiction, that
for all i, wσi−1 ∈ I if σi > 1 (C1). Assume, for the sake
of contradiction, that σ1 > 1 (C2). We have wσ1−1 ∈ I
according to assumption C1. However, wσ1

is the largest
element in I. Therefore, C2 does not hold and σ1 = 1.
Similarly, we can get σi = i for every 1 ≤ i ≤ p. Therefore,
d = Σpi=1σi = p(p + 1)/2, which contradicts the condition
that d 6= p(p+1)/2. Hence, C1 does not hold and there exists
at least one i such that σi > 1 and wσi−1 /∈ I.

Let σt > 1 and wσt−1 /∈ I. We construct I ′ = I \ {wσt}∪
{wσt−1} satisfying the conditions in the theorem as follow.
• I ′ ⊂ W since I ⊂ W and {wσt−1} ∈ W .
• |I ′| = |I| − 1 + 1 = p.
• D(I ′) = D(I)− σt + (σt − 1) = d− 1.
• E(I ′) ≥ E(I) since E(I ′)− E(I) = wσt−1 − wσt ≥ 0.

We apply the above construction to all the k+1 components
in G, resulting in G to be a DAG. The partial orders among the
subsets is reveal in G, which gives birth to a heuristic algorithm
SUM-INDEX to solving SM-SUM as shown in Algo. 2.

In SUM-INDEX, we do not order all the subsets to find
the subset with exactly the m-th largest subset sum since the
time complexity, i.e., O(Σki=0

(
n
i

)
· log(Σki=0

(
n
i

)
)), is too high.

Instead, we enumerate the subset size in decreasing order, the
index sum of the subsets in increasing order, and the subset in
lexicographical order sequentially. The algorithm SUM-INDEX
begins with the first subset of size k and index sum k(k+1)/2.
Such a subset contains exactly the k largest elements in W .
To find the next subset, procedure NEXT-SUBSET first tries to
invoke the procedure NEXT-PD to find a subset with the same
subset size and index sum. In detail, NEXT-PD takes a subset

Algorithm 2 SUM-INDEX: a heuristic algorithm for SM-SUM

Input: W: a set of n positive real numbers; k: a positive
integer that k < n; m: a positive integer that m ≤ Σki=0

(
n
i

)
Output: the indexes of the subset of W with approximately
the m-th largest subset sum among all the Σki=0

(
n
i

)
subsets

1: procedure MAIN( )
2: if m = 1 return FIRST-SUBSET( ) end if
3: return NEXT-SUBSET( )
4: end procedure
5: procedure FIRST-SUBSET( )
6: global gp ← k . “global” variable for all procedures
7: global gd ← gp(gp+1)

2
8: return FIRST-PD(gp, gd)
9: end procedure

10: procedure NEXT-SUBSET( )
11: return NEXT-PD(gp, gd) if not NIL
12: gd ← gd+ 1
13: return FIRST-PD(gp, gd) if not NIL
14: (gp, gd) ← (gp− 1, gp(gp+1)

2 )
15: if gp = 0 return NIL end if
16: return FIRST-PD(gp, gd)
17: end procedure
18: procedure FIRST-PD(p, d)
19: if d < (p+1)p

2 or d > (n−p+1+n)p
2 then return NIL

20: end if
21: r ← an array of size p in which all elements are 0
22: for i← 1 to p do
23: ri ← max(ri−1 + 1, d− (n−p+i+1+n)(p−i)

2 )
24: d ← d− ri
25: end for
26: return r
27: end procedure
28: procedure NEXT-PD(p, d, r)
29: s ← an array of size p in which all elements are 0
30: for i← 1 to p do si ← si−1 + ri end for
31: for i← p− 1 to 1 do
32: if ri+1 < ri+1 and d−si−1 ≥ (ri+ri+p−i+3)(p−i)

2

and d− si − 1 ≤ (n+i+1−p+n)(p−i)
2 then

33: (ri, d) ← (ri + 1, d− si − 1)
34: for j ← i+ 1 to p do
35: rj ←max(rj−1+1, d− (n+j+1−p+n)(p−j)

2 )
36: d ← d− rj
37: end for
38: return r
39: end if
40: end for
41: return NIL
42: end procedure

r as input and outputs the next subset of r in lexicographical
order. If such a subset is not found, NEXT-SUBSET increases
the desired index sum and invokes procedure FIRST-PD to find
the first subset in lexicographical order. Finally, if the index
sum exceeds the limit, NEXT-SUBSET will increase the subset
size and set the index sum to the smallest one.



6

V. MIN-HEAP-OP: AN OPTIMAL SOLUTION TO LM-SUM

In this section, we propose algorithm MIN-HEAP-OP to
solve LM-SUM. We build a min-heap to maintain the rela-
tionship in terms of subset sums among the 2n subsets, and
the subsets are generated by manipulating the min-heap.

To begin with, we construct a binary tree H(n) as follows:
• H(n).root = {n}
• For each element e ∈ H(n) in which min(e) 6= 1, e.lc =
e \ {min(e)} ∪ {min(e)− 1}

• For each element e ∈ H(n) in which min(e) 6= 1, e.rc =
e ∪ {min(e)− 1}

An example ofH(4) is shown in Fig. 3(a). We see thatH(4)
is a complete binary tree which contains and only contains
all the subsets of {1, 2, 3, 4}. Next, we prove it in case of n
through Thm. 3 and Thm. 4.

Theorem 3. The tree H(n) contains all the non-empty subsets
of U = {1, 2, · · · , n}.

Proof. Consider an arbitrary subset I of U . We prove the
lemma by induction on the minimum value of I .

Base case. When min{I} = n, we can infer that I = {n}
because I ⊆ U and max{U} = n. Therefore, I is an element,
in particular, the root of H(n).

Induction step. Let 1 < k ≤ n and assume I is an element
of H(n) as long as min(I) ≥ k. We aim to prove that I is
an element of H(n) as long as min(I) = k − 1. We consider
three circumstances as follows.
• Case 1: |I| = 1. We can infer that I = {k − 1} as

min(I) = k − 1. Consider another subset I ′ = {k}.
Because I ′ ⊆ U and min(I ′) = k, we know I ′ is an
element of H(n). I ′.lc = I ′ \ {k} ∪ {k − 1} = I . As a
result, I is an element of H(n) as well.

• Case 2: |I| 6= 1 and min(I \ {k − 1}) = k. Consider
another subset I ′ = I \ {k − 1}. As I ′ ⊆ I ⊆ U and
min(I ′) = k, I ′ is an element of H(n). I ′.rc = I ′ ∪
{k − 1} = I . Therefore, I is also an element of H(n).

• Case 3: |I| 6= 1 and min(I \ {k − 1}) 6= k. Consider
another subset I ′ = I \ {k − 1} ∪ {k}. Because I ⊆ U
and k ∈ U , we can infer that I ′ ⊆ U . Furthermore, I ′ is
an element of H(n) as min(I ′) = k. I ′.lc = I ′ \ {k} ∪
{k − 1} = I . Hence, I is an element of H(n) as well.

The above three cases cover all the subsets whose minimum
value equals k − 1. Meanwhile, we show the subsets are
elements of H(n) for all the three cases. Therefore, I is an
element of H(n) as long as min(I) = k − 1.

Based on the base case and induction step, we conclude that
I ⊆ U is an element of H(n) as long as min(I) ≥ 1, which
completes the proof.

Theorem 4. The tree H(n) is a complete binary tree, which
contains and only contains all the non-empty subsets of U =
{1, 2, · · · , n}.

Proof. Notate the set of elements at level k and its size as
H(n, k) and |H(n, k)|, respectively. In the following, we prove
that |H(n, k)| ≤ 2k−1 and min(e) = n + 1 − k for any 1 ≤
k ≤ n− 1 and e ∈ H(n, k) by induction on the value of k.

Base Case. When k = 1, there is only one element {n} in
the first level of the tree H(n), i.e., H(n, k) = {{n}}. We can
get that H(n, k) = 1 ≤ 2k−1 and min({n}) = n = n+ 1−k.

Induction Step. Let k be an integer that 1 ≤ k < n − 1
and assume that |H(n, k)| ≤ 2k−1 and min(e) = n + 1 − k
for any e ∈ H(n, k). We aim to prove that |H(n, k+ 1)| ≤ 2k

and min(e) = n − k for any e ∈ H(n, k + 1). We prove the
two statements separately as follows.
• There are exactly two children for each element in
H(n, k) according to the definition of the tree H(n). If
there is no overlapping element among all the children
of all the elements in H(n, k), |H(n, k + 1)| will be
exactly twice the value of |H(n, k)|, i.e., |H(n, k+1)| =
2 · |H(n, k)| ≤ 2 · 2k−1 = 2k. If any overlapping
element, the value of |H(n, k + 1)| will be smaller, i.e.,
|H(n, k + 1)| ≤ 2k. As a result, |H(n, k + 1)| ≤ 2k.

• Considering an arbitrary element e ∈ H(n, k + 1), e
must be a child of some element e′ ∈ H(n, k). We can
get min(e′) = n + 1 − k according to the assumption.
If e′.lc = e, then min(e) = min(e′ \ {min(e′)} ∪
{min(e′)−1}) = n−k. Otherwise, e′.rc = e. Under this
circumstance, min(e) = min(e′∪{min(e′)−1}) = n−k.
As a result, min(e) = n− k for any e ∈ H(n, k + 1).

Based on the base case and the induction step, we draw the
conclusion that |H(n, k)| ≤ 2k−1 and min(e) = n+ 1−k for
any 1 ≤ k ≤ n− 1 and any e ∈ H(n, k). Consider k = n, we
can infer that min(e) = 1 for any e ∈ H(n, n). Therefore, all
the elements in H(n, n) have no child, i.e., H(n) consists
of exactly n levels. Therefore, |H(n)| = Σni=1|H(n, i)| ≤
Σni=12i−1 = 2n − 1. In another word, the size of the tree
H(n) is no more than 2n − 1.

The number of non-empty subsets of U is 2n−1. According
to Lem. 3, the size of H(n) is no less than 2n − 1, which is
the number of non-empty subsets of U . Therefore, the size
of H(n) is exactly 2n − 1. Meanwhile, H(n) contains and
only contains all the non-empty subsets of U . Moreover, H(n)
consists of exactly n levels. As a result, H(n) is a complete
binary tree, which completes the proof.

Based on the binary tree H(n), we construct a minimum
heap WH(n) as follows:
• WH(n).root.value = H(n).root
• For each element e ∈ WH(n) in which e.value.lc 6= NIL,
e.lc.value = e.value.lc

• For each element e ∈ WH(n) in which e.value.rc 6= NIL,
e.rc.value = e.value.rc

• For each element e ∈ WH(n), e.key = E(We.value)

Each element in H(n) represents the indexes of a selected
subset of W . For example, Fig. 3(b) shows the subsets
generated according to H(n) when n = 4. In Fig. 3(b), we
can see the subset sum of a parent node is always no less than
the one of a child node, which implies H(4) to be a min-heap.
In the following, we formally prove that H(n) is a min-heap
based on the subset sum as shown in Thm. 5.

Theorem 5. WH(n) is a binary min-heap.

Proof. On one hand, WH(n) is a complete binary tree since
the value field in WH(n) is exactly the same with H(n) while
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Fig. 3. (a) H(4) and (b) WH(4)

H(n) is a complete binary tree as proven in Thm. 4. On the
other hand, WH(n) satisfies the min-heap property, which is
demonstrated as follows.

• For each e in WH(n) with left child, i.e., e.lc 6= NIL, the
key of e.lc must be no smaller than the key of e.

e.lc.key

= E(We.lc.value) = E(We.value.lc)

= E(We.value\{min(e.value)}∪{min(e.value)−1})

= E(We.value)− wmin(e.value) + wmin(e.value)−1

= e.key − (wmin(e.value) − wmin(e.value)−1)

≥ e.key

• For each e in WH(n) with right child, i.e., e.rc 6= NIL,
the key of e.rc must be no smaller than the key of e.

e.rc.key = E(We.value.rc)

= E(We.value∪{min(e.value)−1})

= E(We.value) + wmin(e.value)−1

= e.key + wmin(e.value)−1

≥ e.key

To summarize, WH(n) is a binary min-heap as it is a
complete binary tree and satisfies the min-heap property, which
completes the proof.

Note that min-heap is an efficient data structure to find the
k-th minimum element. We leverage the min-heap property to
solve the problem LM-SUM as shown in Algo. 3.

In Algo. 3, we build a min-heap WH(n) to represent all the
subsets ofW . In case that m equals 1, Algo. 3 directly returns
the whole set W because W owns the largest subset sum
essentially. Otherwise, we applies the DELETE-MIN operation
to WH(n) to get its root r. The key of r is the smallest
subset sum according to the min-heap property. Therefore, we
exclude the elements in r.value from the whole set and get
the transaction indexes to be selected. DELETE-MIN will also
deletes the minimum element, i.e., the root, from the min-heap
and maintains the min-heap property. In this way, different
subsets can be generated continuously.

Algorithm 3 MIN-HEAP-OP: a min-heap-based algorithm to
solve LM-SUM
Input: W: a set of n positive real numbers; k: a positive
integer that k > n; m: a positive integer that m ≤ 2n

Output: the indexes of the subset of W with the m-th largest
subset sum among all the 2n possible subsets

1: procedure MAIN( )
2: if m = 1 return FIRST-SUBSET( ) end if
3: return NEXT-SUBSET( )
4: end procedure
5: procedure FIRST-SUBSET( )
6: global WH(n) ← a min-heap built as stated
7: return {1, 2, · · · , n}
8: end procedure
9: procedure NEXT-SUBSET( )

10: r ← DELETE-MIN(WH(n))
11: if r 6= ∅ then return {1, 2, · · · , n} \ r.value end if
12: return NIL
13: end procedure

VI. TIME COMPLEXITY ANALYSIS

In this section, we analyze the time complexity of the
algorithms SUM-INDEX, MIN-HEAP-OP, and FAIR-PACK.

Theorem 6. The time complexity of SUM-INDEX is O(n).

Proof. As shown in Algo. 2, the main procedure of SUM-
INDEX finally calls the procedure FIRST-PD on line 13 or
16, or the procedure NEXT-PD on line 11. Note that the time
complexity of SUM-INDEX is irrelevant to the value of m
since m is only an indicator for whether the first subset is to
be generated.

In terms of FIRST-PD, it contains a for-loop from 1 to p.
Because p, as the number of elements in the subset, is of O(n)
size, FIRST-PD takes O(n) time.

There are three for-loops in procedure NEXT-PD on line
30, 31, and 34. The first for-loop on line 30 takes O(n) time.
The third for-loop on line 34 is inside the second for-loop on
line 31 but will be invoked no more than once because there
is a RETURN statement right after it. As a result, the second
and third for-loops takes O(n) time in total. Overall speaking,
NEXT-PD takes O(n) time.

Finally, we conclude that the time complexity of the algo-
rithm SUM-INDEX is O(n).

Theorem 7. The time complexity of MIN-HEAP-OP is O(n).

Proof. The major time overhead of MIN-HEAP-OP lies in
the construction of the min-heap WH(n) on line 6 and the
operation DELETE-MIN on line 10. In the construction of
WH(n), we only generate its root and store how the other
elements are generated instead of generating all the elements
in memory. As a result, it only takes O(1) for the min-heap
construction. In terms of DELETE-MIN, the time complexity
should be logarithmic to the size of the heap. As a result, each
DELETE-MIN takes O(n) because the size ofWH(n) is 2n−1.
Note that there are also O(n) key comparisons between any
two elements of WH(n), in which the subset sums are to be
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calculated. However, the calculation of subset sum of a child
node can be derived from the subset sum of its parent because
the difference between them is only one or two elements.
To this end, The subset sums of the O(n) subsets can be
calculated in O(n) time. In conclusion, the time complexity
of the algorithm MIN-HEAP-OP is O(n).

Finally, it comes to the time complexity of the algorithm
FAIR-PACK. As shown in Algo. 1, FAIR-PACK iterates the
variable m from 1 to infinity until a valid subset (block) is
found. Hence, the running time of FAIR-PACK heavily depends
on the block validity ratio defined as follows.

Definition 10. Block Validity Ratio: the possibility for a block
to be valid (%).

Theorem 8. Supposing the block validity ratio to be α, the
algorithm FAIR-PACK terminates in log(1−β)

log(1−α) · O(n) with a
possibility no less than β.

Proof. The possibility that FAIR-PACK terminates in k rounds
is 1− (1−α)k, in which each round is a call of SUM-INDEX
or MIN-HEAP-OP. Hence, we have (1−(1−α)k) ≥ β, which
leads to k ≥ log(1−β)

log(1−α) . Each round of FAIR-PACK takes O(n)
time according to Thm. 6 and Thm. 7. Finally, FAIR-PACK

terminates in log(1−β)
log(1−α) · O(n) with a possibility no less than

β, which completes the proof.

For example, if the block validity ratio is 0.5%, FAIR-PACK
will terminate in around 460 ·O(n), 597 ·O(n), and 919 ·O(n)
with possibilities of 90%, 95%, and 99%, respectively.

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of FAIR-PACK.

syntax= "proto2";
service Discovery {
    rpc ExchangeNode(Node) returns (Node);
    rpc Hello(Message) returns (Message);
}
service Synchronization{
    rpc BlockFrom(Message) returns (Block);
    rpc BlockTo(Block) returns (Message);
    rpc ExchangeBlock(Block) returns (Block);
    rpc TransactionTo(Transaction) returns (Message);
    rpc TransactionFrom(Message) returns (Transaction);
}

message Block{
    required uint64 height = 1;
    required bytes unixtime = 2;
    required bytes previoushash = 3;
    required bytes blockhash = 4;
    required bytes difficulty = 5;
    required bytes answer = 6;
    repeated bytes txshash = 7;
    required bytes miner = 8;
    required int32 number = 9;
}
message Message{
    required bytes value = 1;
}

message Transaction{
    required bytes unixtime = 1;
    required bytes body = 2;
    required bytes txhash = 3;
    required int32 type = 4;
    required bytes txfrom = 5;
    optional bytes txto = 6;
}
message Node{
    required int32 number = 1;
    repeated bytes ipport = 2;
}

Fig. 4. Protocol buffers of the blockchain prototype

First, we developed a proof-of-concept blockchain prototype
using around 1070-line python code based on gRPC. Fig. 4
shows the communication interfaces among blockchain nodes.
In the prototype, two services are implemented to support
the blockchain runtime, i.e., peer discovery (“Discovery”) and
data synchronization (“Synchronization”). The “Discovery”
service is used for discovering the nodes inside the blockchain
network. When a node is started, it will greet several static
nodes (the same as bootnodes in Ethereum) and exchange the
connectivity information. The block and transaction synchro-
nization is achieved by the “Synchronization” service, which

consists of five remote procedure calls. One thing in particular
is that Proof of Work (PoW) serves as the consensus protocol
of the blockchain prototype.

Furthermore, three transaction packing algorithms, i.e.,
FAIR-PACK, FAIR-FIRST [16], and RANDOM-PACK are im-
plemented with around 510-line C++ code. The three packing
algorithms are integrated into the blockchain prototype with
the help of ctypes, using which the packing algorithms are
compiled as dynamic link libraries and can be called in python
programs.

Finally, we deploy the blockchain prototype together with
the three packing algorithms on Amazon Web Services with
up to 60 Elastic Compute Cloud (EC2) instances. The 60
C4.LARGE EC2 instances constitute 120 nodes, in which each
instance with 2 vCPUs and 3.75GB RAM is shared by two
nodes.

The Bitcoin data in year 2012, whose size is around 804
megabytes containing around 1.9 million transactions, is used
as the input for the permissioned blockchain.

The performance metrics are the fairness and average re-
sponse time as discussed in problem definition. The perfor-
mances of the packing algorithms can be affected by the
transaction incoming rate, block generation time, block size,
and block validity ratio. We study how the three factors
influence the performance of the three packing algorithms.
In particular, transaction incoming rate, block size, and block
validity ratio are tuned by direct parameter setting, while
block generation time is tuned by varying the PoW difficulty.
The experiment runs for 5 minutes and 100 times for each
parameter setting, e.g., transaction incoming rate as 600tx/s,
blockchain generation time as 5.0s, block size as 3000tx/bk,
and block validity ratio to be 0.5%. Fig. 5 presents the results.

A. Influence of Transaction Incoming Rate

As the transaction incoming rate increases, there will be
more transactions in memory pool when generating a block.
Moreover, the backlog of memory pool will increase if transac-
tion incoming rate is larger than transaction processing speed.
We study the influence of the transaction incoming rate with
results shown in Fig. 5 (a) and (b). Particularly, we vary the
transaction incoming rate from 100tx/s to 1000tx/s with a
step of 50tx/s and fix the block generation time, block size,
and block validity ratio to be 5.0s, 3000tx/bk, and 0.5%,
respectively.

The transaction incoming rate, if less than 600tx/s, will
be less than or equal to the transaction processing speed,
which is calculated to be 3000tx/bk

5.0s/bk = 600tx/s. On this
circumstance, the average response time only slightly increases
as the transaction incoming rate increases for all the three
transaction packing algorithms. This is because there is nearly
no backlog of the memory pool. In terms of fairness, all
the three algorithms perform better with the increase of the
transaction incoming rate. The reason behind it is that the
increasing number of transactions decreases response time
differences among the transactions.

When the transaction incoming rate is over 600tx/s, the
backlog of the memory pool will increase as time passes



9

60
A

v
g

. 
R

es
p

o
n

se
 T

im
e 

(s
)

50

40

30

20

10

Transaction Incoming Rate (tx/s)
200 400 600 800 1000

Transaction Incoming Rate (tx/s)
200 400 600 800 1000

F
a

ir
n

es
s

0.75

0.74

0.73

0.72

0.71

0.70

70

A
v

g
. 

R
es

p
o

n
se

 T
im

e 
(s

)

60

50

40

30

20

10

0

Block Generation Time (s)
2 4 6 8 10

Block Generation Time (s)
2 4 6 8 10

F
a

ir
n

es
s

0.75

0.70

0.65

0.60

0.55

0.50

Fair-Pack
Fair-First
Random

Fair-Pack
Fair-First
Random

(a)

(b)

(c)

(d)

120

A
v

g
. 

R
es

p
o

n
se

 T
im

e 
(s

)

100

80

60

40

20

Block Size (tx/bk)
1000 2000 3000 4000 5000

Fair-Pack
Fair-First
Random

(e)

Block Size (tx/bk)
1000 2000 3000 4000 5000

F
a

ir
n

es
s

0.75

0.70

0.65

0.60

0.55

Fair-Pack
Fair-First
Random

(f)

Fair-Pack
Fair-First
Random

20.5

A
v

g
. 

R
es

p
o

n
se

 T
im

e 
(s

)

20.0

19.5

19.0

18.5

18.0

Block Acceptance Rate (%)
0.2 0.4 0.6 0.8 1.0(g)

0.76

F
a

ir
n

es
s

0.75

0.74

0.73

0.72

0.71

0.70

Block Acceptance Rate (%)
0.2 0.4 0.6 0.8 1.0

Fair-Pack
Fair-First
Random

(h)

Fair-Pack
Fair-First
Random

Fair-Pack
Fair-First
Random

Fig. 5. Experimental result

because the transaction processing speed is less than the trans-
action incoming rate. In this case, more and more transactions
remain unpacked in the memory pool, which increases the
average response time regardless of the packing algorithms.
However, the fairness only fluctuates and even increases. This
is because all the transactions in the blockchain incur long
response times and the deviation among the response times of
the transactions will be smaller.

Overall speaking, all three transaction packing algorithms
are influenced by the transaction incoming rate. With dif-
ferent transaction incoming rates, the response time using
FAIR-PACK is slightly better than one using the other two
algorithms. Moreover, FAIR-PACK can achieve fairness of
0.70 when the transaction incoming rate is no more than
1000tx/s while the fairness using FAIR-FIRST and RANDOM
are unsatisfactory, i.e., up to 0.54 and 0.52, respectively.

B. Influence of Block Generation Time

In this subsection, we study how the performances of the
three algorithms are affected by the block generation time.
The results in terms of the average transaction response time
and the fairness are shown in Fig. 5 (c) and (d), respectively.
We vary the block generation time from 1.0s to 10.0s with a
step of 0.5s. Nonetheless, the transaction incoming rate, the
block size, and the block validity ratio are fixed to be 600tx/s,
3000tx/bk, and 0.5%, respectively.

The average response time increases with the increase of
the block generation time whatever the transaction packing
algorithm is. A short block generation time decreases the
waiting times of the transactions and increases the possibility
for the transactions to be packed. Moreover, Fig. 1 (c) indicates
that the average response time increases remarkably when the
block generation time is over 5.0s, which is the time when
the transaction incoming rate is higher than the transaction
processing speed. On such circumstances, transactions will be
stacked in the memory pool and remain unpacked for a long
time. In general, the three algorithms achieve similar average
response time regardless of the block generation time.

In terms of fairness, our algorithm outperforms the other two
algorithms remarkably when the block generation time is no
more than 5.0s. The number of transactions in the memory
pool will be smaller than the block size when the block
generation time is less than 5.0s. In this case, our algorithm
FAIR-PACK will employ MIN-HEAP-OP as the underlying
transaction selection algorithm, which achieves larger fairness.
When the block generation time is over 5.0s, FAIR-PACK
still outperforms two other algorithms although with degraded
advantages. The reason is that the heuristic algorithm SUM-
INDEX is employed for most of the time on this circumstance.

C. Influence of Block Size

Block size is another significant factor influencing the
performance of the transaction packing algorithms. In the
setting, we vary the block size from 500tx/bk to 5000tx/bk
with a step of 250tx/bk and set the transaction incoming rate,
block generation time, and block validity ratio to be 600tx/s,
5.0s, and 0.5%, respectively. The results of average response
time and fairness are shown in Fig. 5 (e) and (f), respectively.

At first glance, Fig. 5 (e) and (f) are nearly symmetric
with Fig. 5 (c) and (d), respectively. Indeed, the influence
of large block size is similar to the effect of a short block
generation time. The distinct difference lies in the scale of the
y-axis. For example, the average response time can be as least
as 1.5s when the block generation time is 1s. However, the
best average response time is up to 9s when the block size
is 5000tx/bk. The reason is that the average response time
depends much on the block generation time, which is fixed to
be 6s in this subsection.

In Fig. 5 (f), the fairness among transactions using FAIR-
FIRST and RANDOM can be as least as 0.58 and 0.55 when
the block size is 5000tx/bk. This is because the deviation of
waiting times of the transactions can be vast with large block
size. However, our algorithm FAIR-PACK remains effective on
this circumstance, which results from the theoretically optimal
algorithm MIN-HEAP-OP.
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D. Influence of Block Validity Ratio
Finally, we study the influence of the block validity ratio. In

terms of block validity ratio, it naturally comes to our minds
that a low block validity ratio can lead to the invalidity of all
the blocks containing transactions with large waiting times.
Then, a small number of transactions with long waiting times
result in long response times of a small set of transactions,
substantial deviation of the response times in terms of the full
transaction set, and finally poor fairness.

To verify the idea, we conduct experiments in which the
transaction incoming rate, the block generation time, and the
block size are fixed to be 600tx/s, 5.0s, and 3000tx/bk,
respectively and the block validity ratio varies from 0.1% to
1.0% with a step of 0.05%. However, neither the fairness nor
the average response time is distinctly affected by the block
validity ratio as shown in Fig. 5. The reason is that the validity
of a block is random and can not be set deliberately. As a
result, we can pack a transaction with long waiting time as
long as a block containing it is valid.

In terms of fairness, FAIR-PACK, FAIR-FIRST, and RAN-
DOM achieves fairness of 0.765, 0.720, and 0.701, respectively.
Note that, an improvement to 0.765 from 0.701 or 0.720
is significant since the value of fairness only varies from 0
(exclusive) to 1 (inclusive), and a fairness of 0.700 is trivial to
achieve by random packing. The average response times using
FAIR-PACK, FAIR-FIRST, and RANDOM are around 18.00s,
19.75s, and 20.65s, respectively. That is, FAIR-PACK reduces
the average response time of FAIR-FIRST and RANDOM by
8.9% and 12.8%, respectively.

VIII. RELATED WORK

The existing works related to blockchain fairness can be
classified into three categories, i.e., fairness among service
providers, between service providers and requesters, and
among service requesters.

In terms of fairness among service providers, a service
provider contributing a certain proportion of resources is sup-
posed to gain the same portion of rewards in fair blockchains.
The research communities have studied such fairness in per-
missionless blockchains, in which the resource is computa-
tional resource and the rewards refer to monetary rewards.
It is shown that the Bitcoin mining protocol is not incentive
compatible and an attack can make the miners’ revenue larger
than their fair share [17]. In [15], the authors only consider the
rewards of the miner contributing the largest computational re-
source and propose Bitcoin-NG, which improves such fairness.
In [18], the authors consider approximate fairness among all
the miners and propose FruitChains with theoretical analysis.

A service provider is supposed to receive some rewards
if the service requester enjoys its service, which is fairness
between the service providers and requesters. In traditional
systems, the rewards are transferred with the help of a trust-
worthy third-party. The smart contract in blockchains provides
great potential to enhance such fairness since it removes the
third party and the transactions are automatically executed. In
[19], the authors solve the problem that malicious contractual
parties may prematurely abort from a protocol to avoid finan-
cial payment. In [20], the authors explore the solution space

for enabling the fair exchange of a cryptocurrency payment
for a receipt. The fairness between cloud service providers
and requesters are investigated in [21] and [22].

The fairness among the service requesters is insufficiently
explored in blockchain. In permissionless blockchains, the
service requesters are supposed to pay transaction fees in order
to make their transactions confirmed [23]. As a result, the
transactions with high transaction fees are more likely to be
confirmed earlier, which achieves general fairness although
not quantified. There is no native cryptocurrency to be paid as
transaction fee in permissioned blockchains. Hence, fairness
is not defined or investigated. In [16], the fairness problem in
permissioned blockchains was first studied and FAIR-FIRST
was proposed. However, it lacks theoretical analysis, and the
performance is not satisfactory.

IX. CONCLUSION

This paper presents FAIR-PACK, the first fairness-based
transaction packing algorithm for permissioned blockchain
empowered IIoT systems. In particular, we formally define
the fairness problem and transform it into the problem of
subset sum through a proof of the correlation between the
fairness and the subset sum of the transaction waiting times.
Then, a heuristic algorithm and a min-heap-based optimal
algorithm are proposed to solve the subset sum problem for
different parameter settings. The proof and the two algorithms
contribute to FAIR-PACK, a fairness-based transaction pack-
ing algorithm for permissioned blockchain empowered IIoT
systems. Extensive experimental results have articulated the
advantages of FAIR-PACK over prior packing algorithms in
terms of both fairness and average response time.
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