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Abstract—Recent advances in robotics technology have made
it practical to deploy a large number of inexpensive robots in a
wide range of application domains. In many of those applications,
a group of autonomous robots is required to form a predefined
geometric shape such as a line or a circle. This problem, namely
pattern formation, is one of the most important coordination
problems in multi-robot systems. A particular pattern extensively
studied in literature is the uniform circle, and the corresponding
problem is called uniform circle formation. In uniform circle
formation, a set of simple mobile robots (asynchronous, au-
tonomous), starting from arbitrary positions on the plane, have
to arrange themselves on the vertices of a regular polygon
eventually. Towards addressing the problem, existing works
usually make conveniently strong assumptions, i.e., the robots
are regarded as mass points and have unlimited sensing and
communication range. The question of whether the robots with
actual size and limited sensing and communication range could
form a uniform circle, to our knowledge, has remained open. In
this paper, we propose a new approach towards addressing this
issue. Three phases, consensus on the circle, circle formation, and
uniform transformation, constitute our approach. We propose
novel distributed algorithms for convex hull construction and
cardinality estimation. Simulation results, theoretical analysis,
and successful deployment have shown the effectiveness and
practicability of our approach.

Index Terms—multi-robot system, uniform circle formation,
distributed algorithm

I. INTRODUCTION

In recent years, advances in robotics, microelectronics and
other related fields have made it feasible for engineers to
fabricate inexpensive robots. It has been a trend in the robotics
community to use a set of robots to accomplish the tasks
instead of a single robot. The group of robots working in
collaboration with each other is commonly referred to as a
multi-robot system (MRS) [1][2]. The use of MRS provides
better scalability, reliability, flexibility, versatility and helps in
performing the tasks in a faster and cheaper way compared to
single robot systems [3]. MRS can be very useful in search
and surveillance applications, in particular in areas which are
difficult or impossible for humans to access. Another benefit
of MRS is that they have better spatial distribution [4]. Many
applications such as underwater and space exploration, disaster
relief, rescue missions in hazardous environments, military
operations, medical surgeries, agriculture and smart homes can
make use of distributed group of robots. It would not only be

difficult but also may result in wastage of resources if such
applications are developed using single robot systems.

In many multi-robot applications, a group of autonomous
robots is required to eventually form a predefined geometric
pattern such as a circle [5][6] or a line. This problem, namely
pattern formation problem [7], is one of the most important
coordination problems for MRS. There are various advantages
to forming a pattern such as enhancing coordination efficiency
of the system and reducing outer impacts on the system.
The pattern formation problem is also closely related to
the agreement problem, which is a fundamental problem in
distributed computing. For example, forming a single point
corresponds to the gathering problem requiring all robots to
gather at the same location, not determined in advance.

Pattern formation problem has been a hot research topic in
the field of MRS for a long time [8]. A particular pattern exten-
sively studied in literature is the uniform circle [9][10][11][12],
in which the points form a regular polygon. The corresponding
problem is called uniform circle formation. The problem of
uniform circle formation plays a major role in the coordination
problems in MRS due to the critical observation of formability
by Suzuki and Yamashita [13]. Their observations indicate
that uniform circles and points are the only patterns formable
from arbitrary initial configuration in FSYNC (and thus also
in SSYNC and ASYNC) [12].

The problem of uniform circle formation can be easily
solved in a centralized MRS, in which there is a central
computing station. The station knows all the information of the
system and is responsible for computing all the actions of the
robots. In this case, the problem of uniform circle formation
can be mapped as a minimum weight maximum matching
problem (MWMMP), in which a set of robots are assigned with
a set of target formation positions, and the weight is the sum
of distances from each robot to its goal position. MWMMP
is a typical combinatorial optimization problem, which can
be modeled as an integer linear programming problem and
optimally solved in polynomial time [14].

However, the uniform circle formation problem becomes
very challenging for distributed MRS, in which there is
no centralized computing station. The robots have to make
decisions by themselves independently, e.g., when and where
to move, and how to avoid collisions. Moreover, each robot can
only communicate with other robots inside its communication



(a) 6 robots, initial configuration (b) 6 robots, final configuration
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Fig. 1. several robots are forming uniform circles

range. In this case, the robots do not even know the total
number of robots. Therefore, there are many difficulties on
how to make a consensus on the circle to form and how
to achieve the uniform circle through distributed coordination
among the robots.

In this paper, we consider the problem of uniform circle
formation for distributed MRS. To solve the problem, we first
decompose it into three parts, namely consensus on circle,
circle formation and uniform transformation. In the part of
consensus on the circle, the robots estimate the total number
of robots in the MRS and decide the center and the radius
of the circle to form. In the part of circle formation and
uniform transformation, the robots form a circle first and then
move along the circle to make themselves evenly distributed
on the circle. After designing our algorithm, we deployed
it in our test-bed. Fig. 1 shows the running examples in
which six, seven and eight robots are forming uniform circles
respectively. We can see that our algorithm can successfully
arrange the MRS into uniform circles with different numbers
of robots and different initial configurations. The contributions
of this work are:

• We formulate the uniform circle formation for distributed
MRS and propose a three-phase solution, namely consen-
sus on the circle, circle formation and uniform transfor-
mation, to this problem.

• We propose distributed algorithms for convex hull con-
struction and cardinality estimation for MRS. We eval-
uate their performance and efficiency by simulation and
theoretical analysis. The results show that our algorithms
outperform existing ones. Furthermore, these algorithms
can widely be applied in other distributed systems.

• We deploy in a realistic test-bed to test our solution.
Successful experiments have implied the practicability
and effectiveness of our solution.

We organize the rest of the paper as follows. Section II
introduces the system model and problem definition. A three-
phase fully-distributed approach, as well as the simulation and
theoretical analysis, are discussed in Section III. In Section
IV, successful deployment in our test-bed is demonstrated.
Finally, related works are discussed in Section V and Section
VI concludes the whole paper.

II. PRELIMINARIES

In this section, we introduce the computational model of
the system in Section II-A and formally formulate the uniform
circle formation problem in Section II-B.

A. System Model

Consider a set of n computational entities R =
{r1, · · · , rn}, namely robots, located on a Euclidean plane
R2, on which they can move continuously. The robots are
capable of localization, communication, and sensing. For robot
ri at time t, it is aware of its position and orientation
pti = (xti, y

t
i , θ

t
i) under a common Cartesian coordinate system,

where θti is the clockwise angle to the direction of the y-
axis. Each robot can send and receive messages to and from
its neighbors within a common communication range Rc.
Besides communication, each robot can detect the relative
positions of its neighbors within a common sensing range
Rs. All robots are of identical size R, which is the radius
of the smallest circle that wraps the robot. The only way to
distinguish different robots is to use their unique identifiers
r1, · · · , rn. The identifiers can only be conveyed via wireless
communication.

Definition 1. (Configuration) Ct = {pt1, · · · , ptn} is the
collection of positions of all robots at time t.

Definition 2. (Collision-free Configuration) A configuration
Ct is said to be collision-free if the Euclidean distance
between pti and ptj is no less than 2R for all 1 < i < j < n.

Definition 3. (Active Range) The active range Ra of the robots
is defined as the minimal value between communication range
Rc and sensing range Rs. Two robots are connected if they
are within the connected range of each other.

Definition 4. (Connected Configuration) A configuration is
said to be connected if for all pti, there exists at least one ptj
(j 6= i) such that the Euclidean distance between pti and ptj is
no more than Ra.

In the beginning, we assume that the whole system R is
in a collision-free and connected configuration. This means
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Fig. 2. An example of initial configuration. It is collision-free and connected.

the robots do not collide with each other, and there is no
isolated robot in the system. Note that the assumption of full
connectivity is necessary, otherwise the whole system will be
divided into several small groups, and the problem is going to
be solved in several small MRSs separately. Fig. 2 gives an
example of an initial configuration of 8 robots. In the example,
each robot can only sense and communicate locally, and all
robots are identical in the system and form a distributed MRS.

Then, the robots repeatedly execute Sense-Process-Act cy-
cles. Each cycle can be divided into three sequential phases
as follows:

• Sense. The robot observes and collects data in the en-
vironment, itself and its neighbors. The collected data
includes the position of itself, the relative positions of
the robots within Rs and the messages from the robots
within Rc;

• Process. The robot executes a given deterministic algo-
rithm, which takes the collected data as input and outputs
the next position to go to and the messages to deliver.
Note that the algorithm is the same for all robots;

• Act: The robot moves directly toward the destination
point (or stays still) along a line segment and delivers
the messages. The destination point and the messages to
deliver are computed in the previous Process phase.

The robots are asynchronous with respect to their Sense-
Process-Act cycles. That is to say, the execution of each
Sense-Process-Act cycle of each robot is not only completely
arbitrary but independent of the cycles of the other robots as
well. In particular, it can be an arbitrarily long duration from
the time a robot collects data to the time it moves based on the
data. Also, one robot may be starting the Sense phase while
another robot is performing the Act phase. This computational
model is called asynchronous (ASYNC, also called CORDA)
[15], which is the most general model in distributed systems.

There are two other computational models FSYNC and

SSYNC, which have more restrictions than ASYNC. The robots
are fully synchronous (FSYNC) if all robots start every Sense-
Process-Act cycle simultaneously and synchronously execute
each of its Sense, Process, and Act. In the semi-synchronous
(SSYNC, also called SYM or ATOM) [16] setting, not all robots
are active in every cycle, but all of those who start a certain
cycle synchronously execute each of its Sense, Process, and
Act. Fig. 3 compares the three models of execution of the
Sense-Process-Act cycles.

Definition 5. (Uniformly-circular Configuration) A configura-
tion Ct is said to be uniformly-circular if there exists a regular
n-gon Pn such that each pti (1 ≤ i ≤ n) equals the position
of one of Pn’s vertex.

B. Problem Definition

With the definitions given in the Section II-A, we now
formally define the problem of uniform circle formation to
be solved in this paper as follows.

Definition 6. Uniform Circle Formation: Given a set of n
robots R = {r1, r2, · · · , rn} initially under a collision-free
and connected configuration, arrange them under a collision-
free and uniformly-circular configuration through a sequence
of collision-free configurations.

III. A FULLY-DISTRIBUTED APPROACH

In this section, we propose a fully-distributed approach to
solving the uniform circle formation problem stated in Section
II-B. In Section III-A, a general framework of the algorithm
is introduced. Then detailed steps are discussed from Section
III-B to Section III-G.

A. Algorithm Framework

When the system is just starting up, the robots are not
aware of their neighbors. A robot network should be built
up to enable the communication between the robots. This step
is called network construction. In Section III-B, a network
construction algorithm is proposed to construct neighbor lists
for the robots. Note that this step is critical since the topology
of the network remarkably affects the number and size of
messages passing among the robots.

After the network construction, the robots can communicate
with their neighbors. Since the circle to be formed is not
given in advance, the robots should negotiate with each other
to make a consensus on a common uniform circle to form.
Two parameters, the radius, and the center are necessary to
determine a uniform circle.

On the one hand, to make a consensus on the center, we
propose a distributed convex hull construction algorithm in
Section III-C. After execution of the algorithm, each robot
will be aware of the convex hull of all robots. Then each
robot makes the average of the positions of all robots as the
center.

On the other hand, to reach consensus on the radius, a
distributed cardinality estimation algorithm is proposed in
Section III-D. In the MRS, no robot is aware of the total
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Fig. 3. An illustration of execution of the Sense-Process-Act cycles of three robots for the models of FSYNC, SSYNC, and ASYNC.

number of robots. Also, to count the exact number of enti-
ties inside a distributed system is computationally expensive.
Therefore, our method is to estimate the approximate number
of robots in the system. Note that the estimation is crucial
since overestimation leads to unconnected configuration while
underestimation results in insufficient space to place all robots.

Definition 7. (Circular Configuration) A configuration Ct is
said to be circular on center point O and radius r if the
distances between each pti (1 ≤ i ≤ n) and O are equal to r.
Furthermore, a configuration Ct is said to be C-circular if C
is a circle and Ct is circular on the center and radius of C.

Definition 8. Circle Formation: Given a circle C and a set
of n robots R = {r1, r2, · · · , rn} initially under collision-free
and connected configuration, arrange them under a collision-
free, connected and C-circular configuration through a se-
quence of collision-free configurations.

Definition 9. Uniform Transformation: Given a set of n
robots R = {r1, r2, · · · , rn} initially under a collision-free,
connected and C-circular configuration, arrange them under
a collision-free and uniformly-circular configuration through
a sequence of collision-free configurations.

After reaching a consensus on the common circle, we
decompose the uniform circle formation problem into two sub-
problems, namely circle formation and uniform transformation
seen above. Informally speaking, the two steps are to form a
circle first and then to transform into a uniform circle. Here,
we assume for simplification that all robots will not isolate
themselves from the system during the movements of the
whole system.

B. Network Construction
In this section, each robot constructs a local communication

network with identifiers by running Algorithm 1. Initially,
each robot ri broadcasts a message containing its identifier
and its position pi to the neighboring robots within Rc. Upon
receiving a piece of message Msgj = {rj , pj}, robot ri will
testify whether there is any other robot within the circle whose
diameter is the segment with ending points pi and pj . If there
is no other robot in between, ri will add rj into its neighboring
list Ni.

Algorithm 1 Network construction for each robot ri
Input: ri: robot identifier; Ra: active range; Srelativei : the
relative positions of the robots within Rs
Output: Ni: neighbor list of robot ri
Begin:
Ni ← ∅ . Initialize the neighbor list as an empty set
Sabsolutei ← Srelativei + (xi, yi)
Broadcast the message containing the identifier and the
position Msgi = {ri, pi} to its neighbors
while Receive a message Msgj = {rj , pj} from a neigh-
boring robot do

dij ← distance(pi, pj). Measure the distance between
ri and rj

if dij < Ra then
circleij ← a circle with midpoint of ri and rj as

the center, and dij as the diameter
if No points in Sabsolutei are inside circleij then

Ni ← Ni ∪ {rj}
end if

end if
end while
return Ni

End

By running Algorithm 1, each robot ri can construct a new
local communication network Ni, which is also called the 1-
hop neighbors of robot ri. Compared to the original network
which is a circle with radius Rc, the number of messages can
be remarkably reduced by running the algorithm of convex
hull construction and cardinality estimation. It is obvious that
all the communication routes in the whole network are bi-
directional.

To demonstrate the advantages of utilizing our algorithm of
network construction, we compare it with the original network
by running the convex hull construction algorithm. We run the
distributed convex hull construction algorithm in our network
and the original network in an MRS with 3 to 1000 robots
and 10 different initial configurations for each number of
robots. Then, we calculate the average number of messages
needed in our network and the original network. Fig. III-C



(a) Average number of messages (b) Average size of messages

Fig. 4. Analysis on number of message and size of messages

shows the results, in which UDG (unit disk graph) means the
original network while DT (Delaunay triangulation) means our
network. It is oblivious that our network can significantly
reduce the number of messages.

C. Convex Hull Construction

In this section, we propose a distributed convex hull con-
struction algorithm (seen in Algorithm 2) to make all of the
robots aware of the convex hull of all robots.

In the algorithm, each robot ri maintains a local convex
hull convi. When the algorithm is starting up, the primary
convex hull for each robot ri only contains the position pi
itself. Then, each robot ri exchanges its local convex hull with
all of its 1-hop neighbors. Upon receiving a convex hull from
another robot, the robot locally runs Graham’s scan [17] to
merge its local convex hull with the received one. The resulting
convex hull is saved as the new local convex hull. Each robot
continues this procedure until the local convex hulls in two
successive rounds are identical.

Another straightforward algorithm to make all robots aware
of the common convex hull is that each robot sends all of its
neighbors to its 1-hop neighbors repeatedly. In this algorithm,
every robot can know all the robots in the system finally
and can compute the convex hull. To evaluate our distributed
convex hull construction algorithm, we compare it with the
straightforward algorithm. We run the distributed convex hull
construction algorithm and straightforward algorithm in DT
network and UDG network in an MRS with 3 to 1000 robots
and 10 different initial configurations for each number of
robots. Then, we calculate the average number of messages
as well as the average size of messages needed. Fig. 4 shows
the results, in which AR means the straightforward algorithm
while CV means our algorithm. According to the figure, we can
see that the number and size of messages can be significantly
reduced by using our convex hull construction algorithm.

D. Distributed Cardinality Estimation

In this section, we propose Algorithm 3 to estimate the
number of robots in the whole system. Algorithm 3 is adapted
from Algorithm 2 by modifying the content of messages and
adjusting the updating rule upon receiving messages. After
the execution of Algorithm 3, all robots will have a common
sense on xia for all a ∈ [1, k]. These parameters will be used
for estimating the total number of robots in Section III-E.

Algorithm 2 Distributed convex hull Construction for each
robot ri
Input: Ni: One hop neighbor list; pi: position; ri: robot
identifier
Output: convi: the convex hull of the MRS
Begin:

if not initialized then
convi ← {(ri, pi)} . Each robot

maintain a local convex hull as convi. Initially, the convex
hull of each robot is only the position of itself.

conv′i ← convi
Fin ← ∅ . F in records the robots whose messages

have been handled in current round.
for each rk ∈ Ni do

msglist(rk) ← an empty message queue
end for
Broadcast Msgi = {ri, convi} to its neighbors

else if receive message Msgj = {rj , convj} then
if rj ∈ Fin then

msglist(rj).push(convj)
else

conv′i ← merge(conv′i, convj) . Merge two
convex hulls by running Graham’s scan algorithm locally

Fin ← Fin ∪ {rj}
if |Fin| = |Ni| then

if conv′i = convi then
return convi

end if
convi ← conv′i
broadcast convi to ri’s neighbors
Fin ← ∅
for each rk ∈ Ni do

convk ← msglist(rk).pop()
conv′i ← merge(convi, convk)
Fin ← Fin ∪ {rk}

end for
end if

end if
end if

End

The general idea of Algorithm 3 is that each robot selects
one of l slots to be placed and finally makes a consensus on
all the occupied slots. This procedure is repeated k times. In
the algorithm, l and k are parameters which can be used to
achieve different accuracy requirements. The details will be
discussed in Section III-E.

E. Consensus on Circle

In this section, each robot determines the radius and the
center of the circle to form. To determine the center, we use
the resulting convex hull from Section III-C. To determine
the radius, we consider two methods. In the first method, we
calculate the area of the convex hull and divide the area of
the convex hull by the area of one robot to get the maximum



Algorithm 3 Distributed cardinality estimation for each robot
ri
Input: Ni: One hop neighbor list; l: an integer parameter; k:
another integer parameter
Output: n̂i: the estimation of total number of robots
Begin:

for a← 1 to k do
xia ← a variable of l bits with all bits to be 0
rand ← a random 0/1 string of l − 1 bits
y ← the number of leading continuous ’0’s in rand

from left hand
Set xia’s y + 1 bit to be 1
x′ia ← xia

end for
In Algorithm 2, incorporate {xi1, · · · , xik} into message
Msgi. The updating rule of xia is xia ← (xia | xja) when
receiving Msgj . Finally, when returning convi, also returns
xia for all a ∈ [1, k]

End

RREC

R
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r2

r3

rn

rn-1

Fig. 5. Caclulating the radius of the common circle using the estimation of
the number of robots.

number of robots in the area. In the second method, we
estimate the number of robots using the results from Section
III-D. Then, we take the minimum value of the results from
the two methods as the estimated number of robots in the
system. In this way, each root can have very high possibility
to find a place on the circle boundary. The performance of the
algorithm will be evaluated afterward.

After estimating the number of robots, each robot can
calculate the radius of the common circle as shown in Fig.
5. The exact algorithm is shown in Algorithm 4.

In [18], the authors give a local cardinality estimator using
the theorem proved in [19] as follows:

y = Σka=1y
i
a

p̂i = 1.2897× 2
y
k

The performance of the estimator can be guranteed by satis-
fying accuracy requirement. The accuracy requirement is said

Algorithm 4 Determination of the center and radius of the
circle to be formed for each robot ri
Input: xia: parameters for cardinality estimation generated in
Algorithm 3; k: parameter used in Algorithm 3; convi: convex
hull generated in Algorithm 2
Output: Oi: the center of the circle; RCIRi : the radius of the
circle
Begin:

for a← 1 to k do
yia ← the number of leading continuous ’1’s in xia

end for
y ← Σka=1y

i
a

p̂i ← 1.2897× 2
y
k . The result of distributed cardinality

estimation
Oi ← 1

|convi|Σ
|convi|
j=1 convi.pj . The center of the target

circle
areai ← area of convi . Area of the convex hull
q̂i ← γ areaiπR2 . The convex hull contains at
most areaiπR2 robots. We multiply it by a parameter γ ∈ [1, 2]
without loss of generality.
n̂i ← min(p̂i, q̂i)
RCIRi ← R/ sin π

n̂i

return {Oi, RCIRi }
End

to be satisfied if Pr[|n̂−n| ≤ βn] ≥ 1−α, in which α is the
error probability and β is the confidence interval (also called
error bound). Adapting the theorem in [19] to our context, we
get the constraints for k to guarantee the performance:

Theorem 1. Given α and β, the accuracy requirement is
satisfied if k ≥ max{[ −σ∞c

log2(1−β)
]2, [ σ∞c

log2(1+β)
]2}, where c is

obtained by solving 1 − α = erf( c√
2
), erf is the Gaussian

error function.

F. Circle Formation

After the previous steps, all the robots have made a con-
sensus on a common circle to form. Let O be the center of
the circle, RCIR be the radius of the circle and CIR be the
common circle. In this section, Algorithm 5 is proposed to
solve the circle formation problem.

At the beginning, each robot ri calculates the point Di as
the intersection point of the circle CIR and the ray Rayi
from O to pi. And Di serves as the target position of robot
ri. While robot ri moves to Di, it detects whether there is any
other robot ahead along Rayi. If so, it changes its target to the
next position Di+1 that is clockwise available for a robot on
the circle. Fig. 6 shows an example of Algorithm 5, in which
solid arrows are the planned routes of the robots. Since there
are enough spaces to place all the robots on the circle, there
must be an available position for each robot.

G. Uniform Transformation

After circle formation, the robots are going to do uniform
transformation as stated in Section II-B. First, the robots



Algorithm 5 Circle Formation for each robot ri
Input: O: the center of the circle; RCIR: the radius of the
circle; ri: robot identifier; α: speed control parameter
Output: All robots are located on the boundrary of a circle
Begin:
Cir ← the boundary of a circle with O as the center and
RREC as radius
Rayi ← the radial from O to pi
Di ← the intersection point of Oi and Rayi
while ri does not reach Cir do

if There is no other robot along Rayi then
Move along Rayi to Di

else
Di+1 ← the next robot position clockwise adjacent

to Di on the Cir
Rayi+1 ← the ray from O to Di+1

if There is no other robots along the shortest way
from pi to Rayi+1 then

Move along the shortest way from pi to Di+1

else
Wait in this round

end if
end if

end while
End

Fig. 6. Move to the boundary of the circle

can be aware of the total number of robots by clockwise
passing information in a straightforward way. Then, each robot
calculates the desired final robot inter-distance, namely d, on
the uniform circle. For robot r, r+ is notated as the clockwise
neighboring robot on the circle. We adapt the algorithm in [11]
to Algorithm 6 to solve the uniform transformation problem.

IV. EXPERIMENTAL RESULTS

To demonstrate the usefulness and evaluate the performance
of our solution proposed in Section III, we deploy a realistic

Algorithm 6 Uniform transformation for each robot ri
Input:d: the desired final robot inter-distance; p+: the position
of ri’s successor; CIR: the circle to form
Output: All robots are uniformly located along a circle
Begin:
d+ ← distance(pi, p

+)
if d+ > d then

Move toward the point p on the circle CIR at distance
d from p+, remaining on the circle CIR during the move-
ment.
end if

End

Fig. 7. The robots and the beacons

test-bed. Our realistic test-bed, as shown in Fig. 7, is com-
posed of three components, which are a localization system,
multiple (currently 8) intelligent robots and a programming
environment.

The localization system consists of two anchor beacons,
which are used for robotic localization. Each anchor beacon
is composed of a 2.4G wireless communication module, an
STM32 Microcontroller(MCU), an ultrasonic transmitter, a
temperature sensor, and a battery. In the procedure of lo-
calization, the 2.4G wireless communication module and the
ultrasonic transmitter will send signals simultaneously. Due to
the different propagation velocities of the 2.4G wireless signal
and the ultrasonic signal, each robot receives the two signals
at different moments. As a result, each robot can calculate
the distance between itself and the beacon using the principle
of TDOA (time difference of arrival). After calculating the
distance between the robot itself and the two anchor beacons,
the robot can calculate its location on the planar platform.
Since the velocity of the ultrasonic signal varies under different
temperatures, we add a temperature sensor to achieve a more
precise localization.

The robots, namely PiBots (The Hong Kong Polytechnic
University Intelligent Robot), are the 2nd version of our design
(version 1 is presented in [20]) in our laboratory. All the
robots are in the same shape and with the same size, which
is approximately a cylinder with 7cm radius and 18cm height.
The struct diagram of the robot is shown in Fig. 8. Each robot
is composed of two boards, the upper board and bottom board,
which are powered by the power management unit. In both of
the boards, there is an MCU which is responsible for data
storage and processing. Inside the MCUs, data can be stored
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Fig. 8. Structure Diagram of a Robot

in either 8Mbit static random access memory (SRAM) or
512Kbit flash memory. The two boards are connected by a SPI
(Serial Peripheral Interface) bus to achieve data transmission.

The bottom board includes two motor drivers, eight infra-
red sensors, a motor feedback signal processor and an STM32
MCU. The motor drivers can control the wheels with given
speeds separately and the motor feedback signal processor
can get the current speeds of the wheels. The eight infra-
red sensors can detect whether there are obstacles or not in
eight directions. The upper board includes an STM32 MCU,
three controlled buttons, a 2.4G wireless communication unit,
a 2K EEPROM, an ultrasonic receiver, a 3-axis accelerator
sensor, a 3-axis gyroscope, a 3-axis geomagnetic sensor, etc.
The wireless communication unit, which uses IEEE 802.15.4
as its protocol, enables communication between robots. Other
functionalities achieved by the bottom board includes local-
ization, direction awareness, etc.

The programming environment is based on FreeRTOS,
a popular real-time operating system kernel for embedded
devices. In FreeRTOS, programmers can define a set of tasks
(similar to threads in operating systems) with priorities to be
executed concurrently. For example, in our implementation of
uniform circle formation, a task to control motors, a task for
communication, and a task for the purpose of user-defined
application are used. Then, in every time unit, the tasks
will be executed one by one according to the pre-defined
priorities. Also, to simply the programming task, we utilize
the programming model proposed in [21]. Finally, we deploy
our algorithm for uniform circle formation in our test-bed with
parameters l = 10, k = 4 and γ = 1.2. The running examples
are shown in Fig. 1, in which scenarios with different numbers
of robots and different initial configurations are considered.
The results demonstrate the effectiveness and practicability of
our algorithm.

V. RELATED WORKS

The circle formation problem was first discussed and further
improved by Sugihara and Suzuki [22]. Their approach is
based on heuristics and works in SSYNC for the formation
of an approximate circle instead of a perfect one. Later on,
researchers cast light on a particular case of circle formation
called uniform circle formation in which the robots must be
arranged at regular intervals on the boundary of a circle. A
remarkable progress is attained by Defago and Konagaya [6].
They proposed a protocol in the SSYNC model and formally
prove their approach to converge toward a uniform circle.
With respect to ASYNC model, Flocchini et al. [12] addressed
the uniform circle formation problem by moving to smallest
enclosing circle (SEC) and avoiding pre-regular circumstance.

However, all the above algorithms are based on the assump-
tions of unlimited visibility and the punctiform hypothesis.
With unlimited visibility, each robot is aware of the positions
of all robots. However, robots can only sense their surround-
ings within a certain range in reality. With limited visibility, a
robot might not even know the total number of robots. Also,
assuming unlimited visibility makes this procedure unscalable
and computationally expensive, since each robot has to process
the information of all robots. On the other hand, robots
are represented as points under the punctiform hypothesis.
These assumptions greatly simplify the problem of uniform
circle formation by avoiding the details of the formation of a
consensus of the circle size, collision avoidance, etc.

The circumstance of limited visibility is understandably
challenging. To our knowledge, only a small number of algo-
rithmic results are known under the limited visibility scenario,
even in problems other than uniform circle formation. Multi-
robot gathering with limited visibility is well discussed and
investigated [23][24]. On uniform circle formation, known
results are conducted by Dutta et al. [25] and Datta et al.
[26]. However, both of them assume for convenience that the
circle to form is given in advance. In reality, consensus on the
circle is not trivial at all.

The boundary is a “tightly” wrapped contour around the
configuration of robots. In this paper, we incorporate the con-
vex hull for boundary detection. In computational geometry,
the algorithm of Grahams scan [17] is well-known to compute
the convex hull of a set of points in the two-dimensional space.
The algorithm of Grahams scan requires the computation to
be performed in a central computer, which does not meet our
requirement that the robots form a distributed system and are
with limited visibility. To our knowledge, only few algorithms
[27][28][29] are known for distributed boundary detection.
However, these algorithms only make each robot aware of
whether or not it is on the boundary. Each robot is not aware
of all the robots on the boundary.

Cardinality estimation, i.e., counting the approximate num-
ber of tags in a given region is widely discussed in RFID
systems [30][31]. However, in existing works, only the central
computation station, i.e., the RFID readers, are aware of the
estimation result. To our knowledge, the problem of cardinality



estimation has not been discussed yet in fully-distributed
systems.

VI. CONCLUSION

The problem of uniform circle formation is one of the
important coordination problems in multi-robot systems. The
question of whether robots with actual size and limited sensing
and communication range could form a uniform circle, to our
knowledge, has remained open. In this paper, we formulate the
uniform circle formation problem in a distributed multi-robot
system and propose a three-phase approach, namely consensus
on circle, circle formation and uniform transformation towards
solving it. Inside our approach, we propose several new algo-
rithms, i.e., distributed convex hull construction and distributed
cardinality estimation, which can be used in general distributed
systems. After designing our distributed algorithm, we deploy
it in our realistic test-bed and have done solid experiments.
The results imply the effectiveness and practicability of our
algorithms.
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