
An Ensemble-Level Programming Model with
Real-Time Support for Multi-Robot Systems

Shan Jiang, Junbin Liang, Jiannong Cao, and Rui Liu
Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Email: {cssjiang, csljunbin, csjcao, csrliu}@comp.polyu.edu.hk

Abstract—In this paper, we propose a novel programming
model RMR (Real-time programming for Multiple Robots) tar-
geting at programming multi-robot system (MRS) with timing
constraints. RMR is a logic programming model with real-time
support. In the light of the logic programming paradigm, RMR
allows developers to write simple code to accomplish complex
tasks and deploy the program in MRS in an efficient way.
Moreover, RMR supports timing constraints on the behaviors
of an ensemble of robots, which is not implemented by existing
works. We deploy RMR in a simulator and a test-bed to test
its performance in both cyber and physical world, and then
demonstrate RMR based on several applications. This paper
presents our current prototype.

I. INTRODUCTION

The remarkable progress of robotics technology has made it
feasible to deploy a large number of inexpensive robots with
complicated tasks. The robots together form a MRS, which
has better reliability, flexibility, scalability and versatility than
a single-robot system. However, the management of the robots
is a challenging issue. Therefore, a scalable programming
model is required to program MRS containing thousands or
even millions of robots. Moreover, the programming model is
supposed to support timing constraints on the behaviors of the
robots.

Traditional programming models for robots, such as NesC
[1] and ROS [2], can express almost all the robotic collabora-
tive behaviors, but require developers to address every detail
of the behaviors. In their programs, each robot should be
given a specific sequence of actions while performing tasks.
The actions include moving, sensing, communicating, etc.
These approaches have high programming complexity and low
scalability, so they are difficult to be used in the large-scale
MRS. Some other related works, such as P2 [3] and Meld
[4], consider each MRS as a whole and allow developers to
specify high-level description of what the set of the robots
should achieve. These languages implemented the low-level
details so that the developers do not need to pay more attention
to implementation. These languages have low programming
complexity and high scalability, but they are not suitable for
real-time tasks due to lack of real-time support.

In this work, we propose a novel programming model
for MRS, called RMR. It follows the logic programming
paradigm, which enables it to achieve high scalability. More-
over, it allows developers to specify timing constraints on
the behaviors of the robots, such as setting deadlines and
identifying the time order of actions. To support distributed

Fig. 1. Multiple robots are passing through a narrow corridor

execution of RMR programs, a compiler and a runtime system
are developed in RMR. The compiler is able to convert the
RMR programs into executable byte-codes, and then distribute
the byte-codes to each robot. The runtime system is responsi-
ble for interpreting and executing the byte-codes.

To evaluate the performance of RMR, we implemented and
deployed RMR in a simulator and a realistic test-bed, and
then developed several example applications. Fig. 1 shows one
of the applications utilizing RMR, in which multiple robots
cooperate with each other to pass through a narrow corridor.

II. PRINCIPLES AND SPECIFICATIONS OF RMR

In this section, we first introduce the principles of designing
RMR. Then, we present the key features of RMR, including
syntax and semantics.

A. Design Principles of RMR

RMR is a logic programming model, which encompasses a
set of facts and rules as basic elements. Facts can be used to
specify system states, sensed physical events, system config-
uration, etc, while rules allow programmers to describe how
the system evolves. In practical applications, it is important
to design good abstractions to mask the complexity of pro-
gramming MRS, and meanwhile provide real-time guarantee
for the coordination of the MRS. To this end, the following
principles are considered on designing RMR.

1) Ensemble-level abstraction: The entire MRS can be
viewed as a single and monolithic unit while developers write
RMR program. RMR enables a developer to think about what

Fig. 2. Overview of RMR Compilation

the whole set of robots should do in a global and easy-to-
understand perspective, and hide the detailed and complex
implementation of how to do. This greatly simplifies the
programming process, and benefits the developers to program
MRS with a large number of robots. This abstraction technique
is also used in programming modular robots [4], and is
referred to as macro-programming in the area of wireless
sensor networks [5].

2) Backward chaining logic: RMR adopts an inference
method named backward chaining for the execution of its
programs. Backward chaining starts with a list of goals and
works backwards from the consequent to the premises to build
a reasoning tree. The robots will use the reasoning tree to
derive new facts. Backward chaining has been proved to be
effective in the famous logic language Prolog [6].

3) Declarative specification of timing constraints: In MRS,
any job should contain a series of reasoning steps. When a
developer writing a program, he mainly concern about the
global deadline of finishing the entire job rather than the local
deadlines of individual reasoning steps. Therefore, it is highly
desirable that the developers only need to describe the global
deadline of the entire job and need not to worry about how
the local deadlines can be meet at the intermediate steps. This
style is referred to as a declarative specification of timing
constraints, which has been incorporated in RMR.

B. RMR Specification

In the following, we will describe the detailed specification
of RMR.

1) Variable, Constant and Boolean Expression: RMR fol-
lows the conventions of logic programming model when
defining variables and constants. Moreover, RMR supports
boolean expressions that can be calculated into boolean values
(true or false).

2) Fact: Facts are generally in the form of predicates, and
they can return boolean values according to the results whether
the facts are satisfied or not. A fact generally has a predicate
symbol (or name) and can take some arguments (variables)

as input. In RMR, facts are divided into three categories:
persistent facts, temporary facts and goal facts.
• Persistent facts refer to those that hold permanently, such

as ID of a robot. They can not be consumed along the
program lifetime, and must be declared with a bang mark
‘!’, which means “of course”.

• Temporary facts are those representing a temporary state
and can be consumed. For example, movealong(A,L)
is a temporary fact, which means an intermediate state
that a robot A is moving along the line L.

• Goal facts represent the goals of the program that must
be satisfied at some time. They must be declared with
a question mark ‘?’, which means “why not” or “to be
achieved”.

3) Rule: Rules have the following structure:

p1, p2, · · · , pk -o q

where q is a fact, and pi(i = 1, 2, · · · , k) are facts or boolean
expressions. The interpretation of the above expression is that
q can be derived if all pis in the body of the rule are satisfied.
Commas in the body are interpreted as logical conjunction.
The rules make the derivation of new facts from existing facts
possible. For example, a rule

online(A,L) -o {B | edge(A,B) |
ready(B,A)}

means that if robot A is on the line L, then a fact that A is
ready will be derived in any robot B who has an edge with
A.

4) Time assertion: We develop a new construct in RMR
called time assertion to allow developers to specify timing
constraints in declarative fashion. Specifically, the time asser-
tion for a real-time job A should be described in the following
form:

assert(sA, fA, dA, vA)

In the time assertion, sA and fA are facts (predicates) referring
to the system states when the real-time job A starts and ends,
respectively; dA is the deadline that needs to finish the job A;
vA is an action that will be derived if a violation of the time
assertion is detected. Let us denote the physical time when
the system state enters sA and fA by tA and t′A, respectively.
The above time assertion requires t′A − tA ≤ dA, or vA will
be derived. For example, a time assertion

assert(offline(A,L), online(A,L), 10,
broadcast(A))

means that if robot A does not move to the line L within
10 seconds since the last time it is not on line L, it will
broadcast a failure message.

With the principles mentioned in II-A, RMR creates a
new way of programming MRS applications with timing
constraints. After a program is written, it will be compiled into
byte-codes that can be executed on the robots. An overview
of the compilation is shown in Fig. 2. The highest level is the
RMR program, which is written by a developer and obeys a

Fig. 3. Simulation: multiple robots pass through a corridor

centralized and ensemble-level abstraction. A RMR compiler
in the middle level can convert the program into distributed
byte-codes ran on individual physical robots.

III. PROTOTYPE DEPLOYMENT

To evaluate performance of RMR, we have deployed RMR
in a simulator and a realistic test-bed, and have developed
several example applications. Moreover, we have implemented
the same applications with a traditional language, embedded C.
The comparison result indicates that RMR programs are sub-
stantially more concise (more than 10x shorter) than programs
written in embedded C, while running nearly as efficiently.

Our simulator is adapted from the VisibleSim simulator [7].
When our simulator starts to work, it first use RMR compiler
to compile RMR programs into byte-codes. Then, it initializes
and renders the scenario according to a configuration file.
Finally, its virtual machine interprets and runs the byte-codes.
Fig. 3 shows the simulation that 6 robots pass through a narrow
corridor.

Our test-bed contains a set of robots, which use FreeRTOS
[8] as their real-time operating system. The robot’s structure
diagram is shown in Fig. 4(a), and the real picture of the
robot is shown in Fig. 4(b). Each robot is powered by the
power management unit. In each robot, the microcontroller
unit (MCU) is responsible for data storage and processing.
Inside the MCU, data can be stored in either 8Mbit static
random access memory (SRAM) or 512Kbit flash memory.
Each robot is driven by the motors driver unit, which can
control the left motor and right motor separately. The wireless
communication unit, which uses IEEE 802.15.4 as its proto-
col, enables communication between robots. Received signal
strength indicator (RSSI) can be used to evaluate distances
between it and other robots. The sensors unit is used to acquire
information from external environment, which contains an
accelerometer sensor, a gyroscope sensor, an infrared sensor,
an ultrasonic sensor and a magnetic sensor. Moreover, each
robot can move smoothly by using feedback controller.

RMR is deployed into the robots by creating a parallel
task to process the rules in RMR program. A tiny database
is implemented to manage (include inserting, deleting, and
querying) facts. Time assertions are stored in a priority queue
(sorted by time) and invoked by hardware interrupts.

Fig. 1 and Fig. 5 show demos implemented by RMR in
the test-bed. In Fig. 1, multiple robots are attempting to pass

(a) Structure Diagram (b) Real Picture

Fig. 4. Structure Diagram and Real Picture of a Robot

(a) rectangle (b) triangle

(c) rhombus (d) line

Fig. 5. Demo: formation control of multiple robots

through a narrow corridor. The robots coordinate with each
other to form a line formation facing the corridor, and then
move through the corridor in order. In Fig. 5, formation control
is implemented to enable 4 robots to generate different shapes
of formations (rectangle in (a), triangle in (b), rhombus in (c),
and line in (d)).

REFERENCES

[1] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesc language: A holistic approach to networked embedded sys-
tems,” in Acm Sigplan Notices, vol. 38, no. 5. ACM, 2003, pp. 1–11.

[2] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: A programming
model for event-driven embedded systems,” in Proceedings of the 2003
ACM symposium on Applied computing. ACM, 2003, pp. 698–704.

[3] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica, “Implementing declarative overlays,” in ACM SIGOPS Operat-
ing Systems Review, vol. 39, no. 5. ACM, 2005, pp. 75–90.

[4] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,” in
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on. IEEE, 2007, pp. 2794–2800.

[5] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming wire-
less sensor networks using kairos,” in Distributed Computing in Sensor
Systems. Springer, 2005, pp. 126–140.

[6] W. Clocksin and C. S. Mellish, Programming in PROLOG. Springer
Science & Business Media, 2003.

[7] D. Dhoutaut, B. Piranda, and J. Bourgeois, “Efficient simulation of
distributed sensing and control environments,” in Green Computing
and Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and IEEE Cyber,
Physical and Social Computing. IEEE, 2013, pp. 452–459.

[8] R. Barry, FreeRTOS reference manual: API functions and configuration
options. Real Time Engineers Limited, 2009.

