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Abstract—Recently years, research in multi-robot systems has
attracted increasingly attentions. One important research topic is
to design programming models that can facilitate the developers
to programme large-scale multi-robot systems. However, existing
works fail to manage the robots to perform tasks with real-
time requirements. To address this issue, we propose a new
programming model called RMR (Real-time Multi-Robot). RMR
is a logic programming model with real-time support. On the
basis of the logic programming paradigm, RMR allows the code
for multi-robot system to be written from a global perspective,
rather than managing a large collection of independent robots.
Moreover, RMR allows developers to set timing constraints on the
behaviors of an ensemble of robots, which is not implemented
by state of the art. After designing RMR, we further develop
a compiler and a runtime system for distributed execution of
RMR programs. To evaluate the performance of RMR, we deploy
it in a simulator and a test-bed, and then demonstrate RMR
based on several applications. Our results indicate that RMR
greatly facilitates implementing correct collaborative multi-robot
applications.

I. INTRODUCTION

The remarkable progress of robotics technology has made
it feasible to deploy a large number of inexpensive robots
with complicated tasks. The robots together form a multi-
robot system (MRS), which has better reliability, flexibility,
scalability and versatility than a single-robot system. There
has been quantities of applications for MRS, such as multi-
robot exploration, multi-robot surveillance and multi-robot
manipulation. However, the management of the robots is a
challenging issue. Among the difficulties towards managing
MRS, one of the most important is the lack of dedicated
tools. In particular, one problem that is significant but has
received little attention is the programmability. To be specific,
a scalable programming model is required to program MRS
containing thousands or even millions of robots. Moreover,
the programming model is supposed to support setting timing
constraints on the behaviors of the robots, which is required
in many real-time multi-robot applications.

Traditionally, robots are programmed using an imperative
programming paradigm. Such programming tasks are expen-
sive in terms of time consumption and code complexity. For
example, the robots in our lab are programmed with embedded
C, which is an imperative programming language. There are
some other domain-specific imperative programming models
such as TinyOS [1], Swarm [2], Paintable Computing [3], and
CAs [4], all of which focus on the behavior of individual
devices instead of the aggregate.

General multi-robot applications require coordinated move-
ments with real-time decision making capabilities in an un-
structured environment. Hence, with respect to programming a
group of robots, the tasks of communication and coordination
needs to be abstracted instead of being explicitly written for
each of the robots. There have been several research efforts to
develop such programming models. Unfortunately, all of them
have focused on a dedicated programming model for a specific
application.

Early success in the development of programming models
that enable programmers to think on a macroscale arose from
the field of overlay networks and sensor networks. P2 [5]
and SNLog [6] showed that logic programming approach
could be used to allow an ensemble to be programmed as a
whole. Other such programming models for sensor networks
include Hood [7], TinyDB [8] and Regiment [9]. However,
these sensor network programming models are limited by
their focus on sensing and data gathering without attending to
actuation and control. Moreover, they presume a static network
of immobile nodes which changes infrequently due to node
failures. A notable exception is Pleiades [10], which could be
used in situations with dynamic network topologies of sensor
networks. But owing to adoption of a programming style
similar to OpenMP [11], it eventually leads the programmers
to focus on individual modules instead of the whole ensemble.

Inspired by the logic programming approach for sensor
networks, researchers tried to extend their application for
mobile robots. For example, Proto [12], which is effective for
programming stationary sensor-actuator networks as a whole,
has been extended to mobile robots as Protoswarm [13].
Protoswarm is a functional language that uses Amorphous
Medium Abstraction [14] for programming MRS. LDP [15]
is derived from a method for distributed debugging but is
originally designed for modular robotics. While it works well
in highly dynamic systems, it can lead to excessive messaging
in more static environments.

Meld [16] [17] is another logic programming language for
modular robots that enables the programmer to specify high-
level logic of what is to be decided or achieved, and leaves the
low-level details of data manipulation and communication to
the implementation of the programming language. However,
it is restricted to applications on modular robots which are
independently executing modules robots where inter-robot
communication is limited to immediate neighbors. Moreover,
for many real-time multi-robot applications, besides being



Fig. 1. Example application: multiple robots are passing through a narrow
corridor

logically correct, satisfying certain temporal constraints is a
hard demand to successfully achieve final targets with high
precision. Meld doesn’t provide any mechanism to support
real-time scheduling of the robots.

In this work, we proposed and designed a new programming
model for MRS, called RMR. It follows the logic program-
ming paradigm, which enables it to achieve high scalability.
Moreover, it allows developers to specify timing constraints
on the behaviors of the robots, such as setting deadlines and
identifying the time orders of actions. To support distributed
execution of RMR programs, a compiler and a runtime system
are developed for RMR. The compiler is able to convert the
RMR programs into executable byte-codes, and then distribute
the byte-codes to each robot. The runtime system is responsi-
ble for interpreting and executing the byte-codes. To evaluate
the performance of RMR, we deployed RMR in a simulator
and a realistic test-bed, and then developed several example
applications. Fig. 1 shows one of the applications utilizing
RMR, in which multiple robots cooperate with each other to
pass through a narrow corridor. Our main contributions are:

o We designed and proposed a new programming model

called RMR for MRS. RMR allows programmers to
specify timing constraints for large-scale MRS in a easy-
to-use fashion.

o We implemented and deployed RMR in both a simulator

and a realistic test-bed. To support distributed execution
of RMR programs, we developed a compiler and a
runtime system. Furthermore, we did solid real-world
experiments to evaluate the performance of RMR.

The reminder of the paper is structured as follows. Section
II introduces the design philosophy and main features of RMR.
In Section IV, we first describe the compiler of RMR , and
then present the mechanisms in our runtime system to support
the distributed execution of RMR programs. The deployment
of RMR in both simulator and realistic test-bed and the
evaluation in introduced in Section V. Section VI concludes
the paper with some future improvement directions.

II. DESIGN PRINCIPLE

Logic programming has a long history and there exist a
number of variants of logic programming languages. Com-

monly, a logic programming language encompasses a set of
facts and rules as its basic elements. Facts can be used to spec-
ify system states, sensed physical events, system configuration,
etc, while rules allow programmers to describe how the system
evolves. In practical applications, it is important to design
good abstractions to mask the complexity of programming
MRS, and meanwhile provide real-time guarantee for the
coordination of the MRS. To this end, the following principles
are considered on designing RMR.

A. Ensemble-level abstraction

With respect to a group of robots assigned with a task, it
is nature to think about what the robot ensemble as a whole
should do. This leads us to consider the deign principle of
ensemble-level abstraction. The entire MRS can be viewed
as a single and monolithic unit while programmers write
RMR program. RMR enables a developer to think about what
the whole set of robots should do in a global and easy-to-
understand perspective, and hide the detailed and complex
implementation of how to do. This greatly simplifies the
programming process, and benefits the developers to program
MRS with a large number of robots. This abstraction technique
is also used in programming modular robots [16], and is
referred to as macro-programming in the area of wireless
sensor networks [18].

B. Combination of forward and backward reasoning

In logic programming, forward reasoning and backward
reasoning are two main methods of reasoning. Backward
reasoning starts with a list of goals and works backwards
from the consequent to the premises to see if the consequent
is available. Backward reasoning is often used to specify the
direction of reasoning, e.g. in Prolog [19]. One the contrary,
forward reasoning starts with the available premises and uses
rules to derive new facts until the goal is reached. Forward
reasoning is often used to speed up the execution of programs,
e.g., in Meld [20].

Both backward reasoning and forward reasoning have ad-
vantages and disadvantages. It is natural to expect that the
general performance of the system could be improved by
combining the two kinds of reasoning. RMR successfully
combines forward and backward reasoning in the execution
of RMR programs. In this way, RMR will derive facts with
specific direction while guarantee the execution speed of the
RMR programs.

C. Declarative specification of timing constraints

In MRS, it is likely that a series of reasoning steps are
involved in order to perform a job. When a developer writing
a program, he mainly concern about the global deadline of
finishing the entire job rather than the local deadlines of
individual reasoning steps. For example, in wireless sensor-
actuator networks, the system need to respond in real-time to
the physical world events captured by sensors. Actually, this
is a complicated sensing-decision-actuation process involving
many intermediate steps, such as data aggregation for complex
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Fig. 2. Overview of RMR Compilation

event detection. It is highly desirable that the developers only
need to describe the global deadline of the entire job and
need not to worry about how the local deadlines can be
meet at the intermediate steps. This style is referred to as a
declarative specification of timing constraints, which has been
incorporated in RMR.

With the above principles, RMR language will create a
new way of writing programs for MRS. An overview of
programming steps is shown in Fig. 2. The highest level is the
RMR program, which is written by programmers and obeys
a centralized, ensemble-level abstraction. A RMR compiler in
the middle level is able to convert the ensemble-level program
into node-level byte-codes ran on individual physical robots.
To support the execution of such node-level code, a runtime
system embedded in the operating system is needed. The
runtime system plays the key role in ensuring the efficiency
of distributed reasoning and the satisfaction of deadline re-
quirements. In the following sections of this paper, we will
introduce these components one by one.

III. LANGUAGE SPECIFICATION

The design principles in Section II enable us to design
a language that can greatly simplify programmers’ thinking
processes and reduce their development efforts. In the follow-
ing, we will describe the detailed specification of RMR. RMR
comprises the following main elements.

A. Variable, Constant and Boolean Expression

RMR follows the conventions of logic programming model
when defining variables and constants. Variable names begin
with an uppercase letter, whereas constant names begin with a
lowercase letter. Moreover, RMR supports boolean expressions
that can be calculated into boolean values (true or false).

B. Fact

Facts are generally in the form of predicates, and they can
return boolean values according to the results whether the facts
are satisfied or not. Similar to constants, the identifier of a
fact should begin with a lowercase letter. A fact generally has
a predicate symbol (or name) and can take some arguments
(variables) as input. The first argument of a fact must be a
robot, which indicates the owner of the fact. Typically, a fact
can be used to represent a system state, a detected event, or
a relation between its arguments. In RMR, facts are divided
into three categories: persistent fact, temporary fact and goal
fact.

« Persistent facts refers to those that hold permanently, such
as ID of a robot. They can not be consumed along the
program lifetime, and must be declared with a bang mark
‘1”, which means “of course”.

o Temporary facts are those representing a temporary state
and can be consumed. For example, movealong (A, L)
is a temporary fact, which means an intermediate state
that robot A is moving along the line L.

e Goal facts represent the goals of the program that must
be satisfied if possible. They must be declared with a
question mark ‘?’, which means “why not” or “to be
achieved”.

Persistent fact and temporary fact are generally used in
logic programming language while goal fact is proposed in
our programming language and is one of the new elements.
Goal facts enable programmers to specify intermediate states
in their codes. This function is not supported in other logic
programming language.

// initial fact that R is in s
location (R, s).

// goal fact that go to middle if possible
?location (R, middle).

// rule 1: if R is in s,
location(R, L), L = s
-0 location (R, middle).

then go to middle

// rule 2: if R is in s,
location(R, L), L = s
-0 location(R, t).

then go to t

// rule 3: if R is in middle,
location(R, L), L = middle
-0 location (R, t).

then go to t

Fig. 3. RMR program to move a robot from area s to area t passing through
area middle without action

For example, if we want a group of robots to go from area s
to a specified area t while passing by area middle if possible.
In traditional logic programming language for robotic system,
such as Meld [16], we can write that there is an initial fact
that the robots are in area s. Furthermore, there are three rules.
The first one is that if the robots are in area s, then they can
go to area middle. The second one is that if the robots are
in area s, then they can go to area t. The last one is that if
the robots are in area middle, they can go to area t. Since



there are two areas middle and t to which the robots can
go from s, the robots will randomly choose one of them to go
to. This is true because we can not specify the procedure how
the robots go from s to t in traditional logic programming
language.

However, we can achieve it by adding a new element called
goal fact into logic programming language. The program is
shown in Fig 3. In the program, we first write down the
initial fact and the three rules. Furthermore, we add a goal
fact ?1location (R, m), which means that “Why not go to
the area middle if possible”. In this way, when the program
runs, it will only choose the the first rule to apply and go to
location middle if possible.

C. Action

As we have seen in Section III-B, there are nothing in-
volved with actuation and motion in the robotics system. To
support the motion control for realistic robots in language,
we introduce the concept of action. An action also has a
predicate symbol and can take some arguments as input. The
first argument of an action also must be a robot, which is the
executor of the action. Unlike fact, actions must be declared
as an action type in previous, so that the actions will not
stored and will be consumed immediately. The introduction of
“action” connects the programming language and the realistic
robot. A fact will only influence the execution of the program,
while an action can have effect on the physical environment
and the robot itself. To be specific, when an action is derived,
there will be some underlying function call according to the
action rather than being inserted in to the database of the facts.
The programmers are able to define actions on their own.

type action moveto (robot, area).

location (R, s).
?location (R, middle) .

// use action moveto instead

location(R, L), L = s -o moveto (R, middle).
location(R, L), L = s -o moveto(R, t).
location(R, L), L = middle -o moveto (R, t).

Fig. 4. RMR program to move a robot from area s to area t passing through
area middle with action

function moveto (Area p) {
// control the robot to go to Area p

// insert the location fact back
VM.insert_fact (type_location, p)

Fig. 5. The function moveto written in the operating system of a robot

We add actions in the example mentioned in Section III-B
and the modified program is shown in Fig. 4. We will explain
how the robotics system evolves in the following. At the head
of the program, a predicate of moveto is declared as a new
action type. Firstly, there is a initial fact location (R, s)
meaning that the robot is in the area s. Then the runtime

system will apply the first rule, delete the fact location (R,
s), and derive an action moveto (R, middle). The action
moveto (R, middle) will not be inserted into the database
of the facts but will call the underlying function moveto in
the operating system, which is demonstrated in Fig. 5. The
function moveto will control the robot to go to the area
middle and insert a new fact location (R, middle)
back into the runtime system of the robot. In this time, the
robot will have a new fact location (R, middle) and
the robotics system continues to evolve.

D. Rule

Rules have the following structure:

P1,P2, " sPm -0 41,492, " ,qn
where ¢;(i = 1,2,---,n) are facts or actions, and p;(i =
1,2,--- ,m) are facts or boolean expressions. The interpreta-

tion of the above expression is that all ¢;s can be derived if
all p;s in the body of the rule are satisfied. Commas in the
body are interpreted as logical conjunction. The rules make
the derivation of new facts and new actions from existing facts
possible.

For example, a rule

online(A,L) -o {B | edge(A,B) |
ready (B,A) }

means that if robot A is on the line L, then a fact that A is
ready will be derived in any robot B who has an edge with
A. Here, the braces are the symbol of a comprehension, which
enables the repeated application of a rule and is also used in
other logic programming language. Also, the programs in Fig.
3 and Fig. 4 also contain some examples about the usage of
rules.

E. Time assertion

We develop a new construct in RMR called time assertion
to allow developers to specify timing constraints in declarative
fashion. Specifically, the time assertion for a real-time job A
should be described in the following form:

assert(sa, fa,da,va)

In the time assertion, s 4 and f4 are facts (predicates) referring
to the system states when the real-time job A starts and ends,
respectively; d4 is the deadline that needs to finish the job A;
v4 18 an action that will be derived if a violation of the time
assertion is detected. Let us denote the physical time when
the system state enters s4 and f4 by ¢4 and ¢/, respectively.
The above time assertion requires 'y — ¢4 < dg4, or vy will
be derived.
For example, a time assertion

assert (offline(A,L), online(A,L),
broadcast (7))

10,

means that if robot A does not move to the line L within
10 seconds since the last time it is not on line L, it will
broadcast a failure message.



IV. COMPILER AND RUNTIME SYSTEM

In this section, we will first introduce the function of our
compiler, and then provide a suit of runtime system to support
the distributed execution of RMR programs.

A. Compiler

The compiler is responsible for translating the code written
in RMR to byte-codes. The byte-codes will be easier to be
interpreted by the robots than the RMR code. Inside the byte-
code file, there are hexadecimal data about the number of the
facts, the number of the rules, the offset to the description of
the first fact, the offset to the description of the fist rule and so
on. Since the computational capability of each robot is limited,
it will be much better to read such hexadecimal data than the
strings in the original RMR code. During the compilation of
RMR programs, the ensemble-level code will be transferred to
node-level code. Then the node-level code will be distributed
to each robot for interpretation and execution.

void Robot.receiveEvent (EveType type,
if type is NEW_ACTION
processAction (n,
if type is NEW_FACT
Wait Until VM is not busy
VM. computePredicate ()

ArgList list)

list)

Rule VM.selectOneRule ()
highPriority = list ()
lowPriority = list ()
for i in range (0, NUM_RULE)
if rule(i) is satisfied
if goal facts can be derived in rule (i)
highPriority.push (rule(i))
else
lowPriority.push(rule(i))
if highPriority is not empty
return a random element in highPriority
if lowPriority is not empty
return a random element in lowPriority
return null

void VM.computePredicate ()

busy = true

rule = selectOneRule ()

if (rule is null)
busy = false
return

Process The Rule rule

if there is any Action ac derived:
robot.receiveEvent (NEW_ACTION,

if there is any Fact derived:
robot.receiveEvent (NEW_FACT)

busy = false

ac)

void VM.startVM()
Do Initialization With The Byte-codes
VM.omputePredicate ()

Fig. 6. The Workflow of the Runtime System

B. Workflow of the Runtime System

To run the byte-codes generated by the RMR compiler, we
developed a runtime system. The workflow of the runtime
system is shown in Fig. 6.

When the robot is started, the runtime system will also be
started using the function VM. startVM. Inside the function,
the runtime system will be initialized with the byte-codes
at first. The initialization includes initializing the database
of the facts, inserting basic facts into the database, inter-
preting and storing the rules, handling the actions and the
time assertions, etc. Then, the runtime system will see if
the state of the system can be updated using the function
VM.computePredicate.

In the function VM.computePredicate, the runtime
system will see if there is any satisfied rule. If so, a piece
of selected rule will be applied, which means facts may be
deleted or added and actions may be derived. Then, if there is
any new actions or new facts derived due to the applied rule,
there will be events passing from the runtime system to the
operating system of the robots. For example, if new actions are
derived, there will be an event called NEW_ACTION received
in the operating system of the robot, and the robot will react
accordingly using the function Robot . receiveEvent.

Now, we come back to the function VM. selectOneRule.
This function is used to select a piece of satisfied rule if any.
To be specific, if there are any satisfied rules, this function
will classify the rules into two categories on the basis of
whether goal facts can be derived. The rules in which goal
facts can be derived will have higher priority to be applied.
If there are multiple rules with same priority, the function
will randomly choose one to return. The usage of different
priorities of different rules makes the functionality of the goal
facts possible.

C. Distributed Scheduling

In the previous part IV-B, we figured how the facts, rules and
actions work in the runtime system. In this part, we will figure
how the time assertions work. In Section III-E, we introduce
the specification of time assertion. In a time assertion, if the
starting event s 4 happens, the time assertion will be triggered.
The robot will be aiming at its finish event f4, which can be
seen as its target. When multiple robots are aiming at their
individual targets, there may be high resource competition of
time and space among the robots. For example, when two
robots are going to pass through a narrow corridor at the
same time, collision may happen if there is no cooperation
and coordination between them. To address such issue, we
proposed and implemented a distributed scheduling algorithm
in the runtime system. Fig. 7 shows the flow chart of our
algorithm. To be specific, our distributed scheduling algorithm
will schedule multiple robots with different deadlines for a
same event to make more robots satisfy their deadlines.

For a single robot A in which an event E is triggered, it
will broadcast a message to see if there has already been a
leader for the event E at first. If there is a piece of response
message that robot B is the leader for event E, then robot A
will transmit a piece of message to robot B for purpose of
joining the group of event E. Otherwise, robot A will create a
new group and serves as the initiator and leader of the event
E. After that, robot A will wait n seconds for new participators
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of event E. The waiting time n will be properly set according
to the deadline of event E in robot A. If robot A waits for too
long time, robot A will be more likely to miss the deadline.
If the waiting time is too short, the size of each group may
be too small, which leads to little coordination and worse
performance. For a leader of an event E, it will update the
scheduling list if there is a robot trying to join the group of
event E. The scheduling list is maintained according to the
deadline for the event.

D. Path Planning

When a robot is scheduled to start moving, it has to plan its
path from its current position to its destination. In this phase,
we will introduce the path planning problem for a group of
robots. In our test-bed, we found that the physical distances
between robots in the same group are not too large. In the
path planning algorithm, we can utilize such property to save
energy. Therefore, we will address the path planning problem
separately for the first robot to move (leader) and other robots
(followers).

1) Different Algorithms for the Leader and the Followers:
With respect to the leader, we utilize grid-based A* search al-
gorithm as the path planning algorithm, which is demonstrated
in the following four steps:

e Opverlay a grid graph on the working space

o Map the starting position Si, the target position 77 and

all the obstacles O1, Oa, ---, Oy, into grid points S7,
T{, {011,012, -+ ,O1n, }, {021,022, ,O2ny}, -+,
{Omla Om27 o

) Omnm .

(a) Realistic Environment

(b) Grid Overlay

Fig. 8. Grid Overlay for the Environment

o Utilize A* search algorithm to find a shortest path P|
from S{ to 7. The result P; will be reduced based on
the grid.

« Output the path planning result P; as S; — S7 — P| —
Tll — Tl

For the followers, they will make full use of the leader’s
planning result to determine their paths. The planning result
of robot k will be Py, : Sy — S| — P| — T{ + Tj. In this
way, we can save the energy, especially when the working
space is considerably huge.

2) Grid Overlay: The size of our test-bed is approximately
1.5m x 1.5m, which acts as the working space. We overlay a
N x N grid graph on the working space. The decision of NV
is of significance. If N is too large, the cost of path planning
will be too huge. Otherwise if IV is too small, the obstacles in
the working space cannot be properly abstracted. In our work,
we assign [N to be 30, by which the test-bed is divided into
nine hundred 5¢m x 5em small grids. Fig. 8 shows the realistic
environment of our test-bed and the corresponding grid graph
in which N equals 30. In the abstract grid graph, the grey
grids represents the obstacles while the white grids stands for
the reachable places.

3) Grid-Based A* Search Algorithm: After overlaying a
grid graph on the working place, we want to find a path from
the starting position S to the target position T in the grid graph.
First, we define the connectivity in the grid graph: two grids
are connected if their differences in x-axis and y-axis are no
more than 1. Moreover, we define the distance between two
connected grids as the Euclidean distance. That’s to say, the
distance between two grids sharing an edge is 1 while the
distance between two connected grids which do not share an
edge is v/2. Then, we use a best-first search strategy to find
a least-cost path from S to T. As we traverse the grid graph,
we build up a tree of partial paths. The leaves of this tree are
stores in a priority queue that orders the leaf nodes according
to a cost function, which combines a heuristic estimate of the
cost to each T and the distance traveled from S. In detail, the
cost function is f(n) = g(n) + h(n). Here, g(n) is the known
cost of getting from S to node n, which is tracked by the
algorithm, and h(n) is a heuristic estimate of the cost to get
from n to T. In our algorithm, h(n) is set as the Euclidean



Fig. 9. the Field of View of the Robots

distance between node n and T. We can prove that h(n) is
admissible since h(n) never overestimates the actual cost to
go to T.

E. Collision Avoidance

When the path of each robot has been determined, the
robots will start moving in the working space. At this point,
collisions may happen between robots from different groups.
Furthermore, in the same group, there can also be collisions
on account of out-of-control. Therefore, efficient mechanism
is supposed to be proposed to guarantee collision-free move-
ments. To achieve collision-free movements, we divide the
mechanism into two aspects: collision detection and collision
avoidance.

With respect to collision detection, we can define the field
of view by three parameters: orientation, angle of view and
depth of view. Then problem of collision detection is solved
with knowledge of computational geometry. To be specific, if
there is a robot R> who enters the field of view of another
robot R;, we say collision is detected in robot R;, which is
shown in Fig. 9. Our strategy of collision avoidance is based
on a principle that “stop if dangerous”. If some others robots
or obstacles appear in the field of view of a robot, it will
stop its motion at once, and then turn to another direction to
continue its movement.

V. DEPLOYMENT

To demonstrate the usefulness and evaluate the performance
of RMR, we deployed RMR in a simulator and a realistic
test-bed, developed two example applications, and tested the
execution time of the first example application.

A. Simulation

Our simulator is adapted from VisibleSim [21]. The simu-
lator is even driven, which means that everything is modeled
as an event and is scheduled for processing. The robot in
the simulator maintains a list of events ordered by time to
be processed. It always consumes the one at the top of the

Fig. 10. Simulation: multiple robots pass through a corridor

event list. Consuming an event means calling its associated
callback function. For the application developers, there are
only two steps to do to add a user-defined event. The first
step is to create a new type of event inherited from the base
event and the second step is to override the callback function
of processing it.

In VisibleSim, only wire communication is supported. We
have altered the communication approach from wire com-
munication to wireless communication by implementing a
message pool. The message that a robot want to send will
be pushed into the message pool. After that, the message
pool will deliver the message to the target robots. The robots
who receives a piece of message will receive an event called
ReceiveMessage. The robots are able to process the
message by processing the event. Furthermore, features of
wireless communication, such as package loss rate, bandwidth,
communication range can also be simulated.

When our simulator starts to work, it first use RMR
compiler to compile RMR programs into byte-codes. Then,
it initializes and renders the working space according to a
configuration file. Finally, its virtual machine interprets and
runs the byte-codes. Fig. 10 shows the simulation that six
robots pass through a narrow corridor. In the simulation, the
six robots first form into a line facing the corridor and then
pass through the corridor in order.

B. Real-world Experiments

Our realistic test-bed is composed of three components,
which are a localization system, multiple (currently 9) intelli-
gent robots and a programming environment.

1) Localization System: The location system consists of
two ultrasonic sensor. Utilizing ultrasonic sensors which
broadcast ten times per second, each intelligent robot is able
to get its position on the domo platform.

2) Intelligent Robots: Our test-bed contains a set of robots,
which use FreeRTOS [22] as their operating system.

The robots are home-made in our laboratory. The real
picture of one robot is shown in Fig. 11. All the robots are in
the same shape and with the same size, which is approximately
a cylinder with 7cm radius and 18cm height. At the bottom
of the robots are the wheels and motors. On the top of each
robot, various sensors are equipped. In the middle part, there
is a 8.4V lithium battery, which supply power for the whole
robot.
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The robot’s structure diagram is shown in Fig. 12. Each
robot is powered by the power management unit. In each
robot, the microcontroller unit (MCU) is responsible for data
storage and processing. Inside the MCU, data can be stored
in either 8Mbit static random access memory (SRAM) or
512Kbit flash memory. Each robot is driven by the motors
driver unit, which can control the left motor and right motor
separately. The wireless communication unit, which uses IEEE
802.15.4 as its protocol, enables communication between
robots. Received signal strength indicator (RSSI) can be used
to evaluate distances between it and other robots. The sensors
unit is used to acquire information from external environment,
which contains an accelerometer sensor, a gyroscope sensor,
an ultrasonic sensor and a magnetic sensor.

Equipped with different kind of sensors, the robots have
various functions. Also, more sensors can be equipped on
the robots if necessary. For example, the accelerometer sensor
can be used to calculate the moving distance. The magnetic
sensor is used to determine the orientation of each robot. And
the ultrasonic sensor, communicated with the beacons in the
localization system, the robots can be aware of where they are
on the platform.

3) Programming Environment: The programming environ-
ment is based on FreeRTOS [22], a popular real-time operating
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Fig. 13. Example application: formation control of multiple robots

system kernel for embedded devices. In FreeRTOS, program-
mers can define a set of tasks with priority to be executed
concurrently. For example, a task to control motors, a task to
get information from embedded sensors, a task for localization
and a task for purpose of user-defined application. Then, in
every time unit (1/60 second in this test-bed), the tasks will
be executed one by one according to the pre-defined priorities.
If not all tasks can be finished during the time unit, tasks with
lower priorities may be neglected.

Based on FreeRTOS, we successfully deployed RMR in our
robots with three steps. At first, we compile the RMR source
program into node-level byte-codes using the compiler and
write them into the SRAM of each robot. Then, we create
a task as the runtime system for each robot to interpret and
run the byte-codes. Finally, we write the callback functions in
the robots’ operating system triggered by the runtime system if
any. To summary, RMR is deployed into the robots by creating
a parallel task as the runtime system for RMR program. In
addition, a tiny database is implemented to manage (insert,
delete, and query) the facts and the time assertions are stored in
a priority queue (sorted by time) and are triggered by hardware
interrupts.

C. Example Applications

We developed two example applications to demonstrate
the usefulness of RMR. Fig. 1 and Fig. 13 show demos
implemented by RMR in our test-bed. In Fig. 1, multiple
robots are attempting to pass through a narrow corridor. The
robots coordinate with each other to form a line formation
facing the corridor, and then move through the corridor in
order. In Fig. 13, formation control is implemented to enable
four robots to generate different shapes of formations. The
robots first form into a rectangle in Fig. 13(a). Then they form
into the shape of triangle in Fig. 13(b), rhombus in Fig. 13(c),
and line in Fig. 13(d) respectively.

We further evaluate the efficiency of the runtime system in
the first demo. In detail, we conduct experiments in our test
bed to observe how execution time changes as the number of
robots increase. Here, the execution time refers to the total
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time spent on starting up robots, moving forward based on
the planned path and lining up at the destination. We run
the first application with from one to five robots and count
the execution time. As illustrated in Fig. 14, the result shows
that the total execution time increase slowly as the number
of robots increase, which demonstrates the efficiency of our
runtime system.

VI. CONCLUSION

While programming MRS with real-time requirements is
a difficult task at present, it can be greatly simplified by
making use of appropriate programming models. In this paper,
we presented RMR, a new programming model targeting at
programming large-scale MRS with timing constraints. With
the new elements “action” and “time assertion” proposed in
RMR, RMR enables programmers to specify motions and
real-time requirements in multi-robot tasks. After designing
RMR, we developed a compile system and a runtime system to
support the distributed execution of RMR programs. Further-
more, we have deployed RMR in a simulator and a test-bed
to demonstrate the usefulness and evaluate the performance
of RMR. By means of experiments in a real deployment,
we claimed that RMR is easy-to-use programming model for
multi-robot applications with timing constraints. In the future,
we can improve the performance of the runtime system by
proposing more efficient mechanisms of distributed scheduling
and others. Also, we can improve the programming model to
enhance the real-time support for MRS.
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