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Dynamic Task Offloading in Edge Computing based on
Dependency-aware Reinforcement Learning

Xiangchun Chen, Jiannong Cao, Fellow, IEEE, Yuvraj Sahni, Shan Jiang, and Zhixuan Liang

Abstract—Collaborative edge computing (CEC) is an emerging computing paradigm in which edge nodes collaborate to perform tasks
from end devices. Task offloading decides when and at which edge node tasks are executed. Most existing studies assume task
profiles and network conditions are known in advance, which can hardly adapt to dynamic real-world computation environments. Some
learning-based methods use online task offloading without considering task dependency and network flow scheduling, leading to
underutilized resources and flow congestion. We study Online Dependent Task Offloading (ODTO) in CEC, jointly optimizing network
flow scheduling to optimize quality of service by reducing task completion time and energy consumption. The challenge of ODTO lies in
how to offload dependent tasks and schedule network flows in dynamic networks. We model ODTO as the Markov Decision Process
(MDP) and propose an Asynchronous Deep Progressive Reinforcement Learning (ADPRL) approach that optimize offloading and
bandwidth decisions. We design a novel dependency-aware reward mechanism to address task dependency and dynamic network.
Extensive experiments on Alibaba cluster trace dataset and synthetic dataset indicate that our algorithm outperforms heuristic and
learning-based methods in average task completion time and energy consumption.

Index Terms—Task offloading; network flow scheduling; deep reinforcement learning; collaborative edge computing

✦

1 INTRODUCTION

The rapid proliferation of the Internet of Things (IoT)
devices with improved computation and communication
capacities has spurred numerous innovative applications,
such as autonomous vehicles, smart healthcare, and meta-
verse [1], [2]. Complex services offered by these appli-
cations, such as immersive 3D world rendering in the
metaverse [2], are always data-driven and computation-
intensive tasks, which involve many dependent components
and a large amount of data carried by components. These
services impose critical requirements in low latency, which
can hardly be provided by centralized cloud computing.
Collaborative edge computing (CEC) has been introduced
to support such services and applications. CEC has emerged
as a distributed computing paradigm where edge nodes
collaborate by sharing data and computational resources to
achieve individual and global objectives [3], [4].

Task offloading is one of the key enabling technologies in
CEC, which refers to the transmission of resource-intensive
computational tasks from end devices to a resource-rich
platform (i.e., edge nodes). In task offloading, we decide
when and at which edge node each task is executed,
considering the task profiles, available resources, network
conditions, etc. Data transfer time significantly influences
task completion time, especially in dependent tasks, because
dependent tasks are data-intensive and require access to
data distributed throughout the network. However, existing
works [5], [6], [7], [8] fail to adequately address the challenge
of integrated network flow scheduling, which can result in
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flow congestion and inefficient performance.

We study the problem of online dependent task of-
floading (ODTO) in CEC, jointly considering network flow
scheduling. The objective is to optimize Quality of Ser-
vice (QoS) by reducing task completion time and energy
consumption. Our research addresses several critical chal-
lenges, including: 1) How to simultaneously offload tasks
and schedule bandwidth in an online setting and 2) How to
optimize the task schedule considering task dependencies.

To address these challenges, we propose an Asyn-
chronous Deep Progressive Reinforcement Learning (AD-
PRL) algorithm. It is empowered by a Deep Deterministic
Policy Gradient (DDPG) strategy with asynchronous data
collection and a dependency-aware reward mechanism.
We model ODTO as the Markov Decision Process (MDP).
Through a dependency-aware reward mechanism, we pro-
gressively adjust the offloading decisions by taking two
important factors into account: the estimated completion
time of the selected tasks and the dependency of the se-
lected tasks in the whole DAG. Through asynchronous data
collection, we accelerate the model training.

The novelty of this work lies in leveraging the
dependency-aware reward mechanism to address task de-
pendency issues and balancing the tradeoff between task
completion time and energy consumption. By employing
the dependency-aware reward mechanism and reinforce-
ment learning, we can effectively respond to the evolving
demands of tasks, resource needs, and network conditions
in real-time. Our reward function enables the deep rein-
forcement learning model to adaptively explore the tradeoff
between task completion time and energy consumption.
This method leads to more informed decisions about task
dependency and dynamic network and more efficient task
offloading and execution. The major contributions of this
work are summarized as follows:

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3381646

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:29:49 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Task

R1

R21

R22

R31

R32

R33

50 Time (s)0 10 20 30
Waisted

40

e) Computing and Networking Separation

Task

R1

R21

R22

R31

R32

R33

100 20 30 40

Task

R1

R21

R22

R31

R32

R33

100 20 30 40

d) Early Release Time First (ERTF) 
Time (s)

Waisted

g) Our Algorithmf) The Optimal Schedule

Waisted

a) Task Information c) Network Model

Task Subtask DataTransmission
Time (Link1)

Computation 
Time (Node2)

Computation 
Time (Node1)

Release 
Time

R1 40
R21 60
R22 100
R31 70
R32 30
R33 70

SDN Controller

Network  
Decision

Node 1 Node 2

Link 1

b) Task Graph

R1

R21 R22

R33 R31

R32

Network  
Decision

Data Transmission of Tasks Computation Time of Tasks

Task

0 10 20 30 40 50

R1

R21

R22

R31

R32

R33 Waisted

50 Time (s) 50 Time (s)

R1

R2

R3

0

0

0

2

6
10

3
7

7

10

7
7

6
7

5

Fig. 1: Scheduling results of different methods for the tasks in CEC system architecture.

• We explore task dependency and dynamic network
in online joint task offloading and bandwidth allo-
cation in CEC. We investigate a novel optimization
problem for efficient online dependent task offload-
ing: ODTO, which is NP-hard.

• We build an optimization framework for online joint
task offloading and bandwidth allocation in CEC.
The objective is to optimize QoS by reducing task
completion time and energy consumption of tasks.
We thoroughly investigate the tradeoff between task
completion time and energy consumption.

• We propose ADPRL, an asynchronous deep pro-
gressive reinforcement learning algorithm, to op-
timize task offloading, bandwidth allocation, and
waiting time decisions. To address task dependency
and dynamic network issues, we design a novel
dependency-aware reward mechanism.

• We conduct extensive simulation experiments us-
ing the Alibaba cluster trace dataset and synthetic
dataset, covering a wide range of network topolo-
gies, task numbers, and device numbers that cor-
respond to the characteristics of real-world appli-
cations and computation environments. The results
show the superiority of our method compared to
both heuristic and learning-based algorithms.

2 A MOTIVATING EXAMPLE

In a simple case shown in Fig. 1, tasks (R1, R2, R3) originate
from an edge node (Node 1) and are dispatched to another
edge node (Node 2). In Fig. 1 a), we provide detailed task
and subtask information, including data transmission time
of links (Link 1), computation time of nodes (Node 1 and
Node 2), and the specific release time for each task and sub-
task. In Fig. 1 b), the task graph illustrates the dependencies
among tasks (R1, R2, and R3). Fig. 1 c) presents a network
model, elucidating the communication framework.

As shown in Fig. 1 f), the completion time of the op-
timal schedule is 40 units. As depicted in Fig. 1 f), the
optimal task schedule is the sequence of R21 → R33 →
R22 → R1 → R31 → R32, achieving a completion time

of 40 units. As shown in Fig. 1 d), a simple heuristic
method is suboptimal. We adopt a widely used heuris-
tic task scheduling algorithm, Earliest Release Time First
(ERTF). The inefficiency of ERTF arises from scheduling
tasks solely based on release time, neglecting dependencies,
and overall task execution and data communication needs.
For example, critical tasks with later release time may be
scheduled later than less critical ones, leading to longer
completion time and inefficient resource utilization. Fig. 1
d) shows that according to ERTF, the scheduling sequence
is R1 → R21 → R22 → R31 → R32 → R33 and the
completion time is more than 50 units, while the optimal
schedule can finish all tasks in 40 units (Fig.1 f)). As shown
in Fig. 1 e), scheduling computing and networking sepa-
rately without dependency information is also suboptimal.
Because it overlooks the interdependence between task exe-
cution and data communication. This can lead to suboptimal
scheduling, where tasks ready for execution are delayed
due to data unavailability or underutilization of network
resources. It can result in increased completion time and
inefficient resource utilization. Set the completion time as
the task execution time plus flow transmission time. In this
case, task preemption is allowed, the processing sequence is
R21 → R33 → R22 → R31 → R11 → R32, leading to a
completion time exceeding 40 (Fig. 1 e)).

Therefore, it is evident that existing scheduling methods
cannot optimally handle task dependencies. It is crucial to
consider dependency information in task scheduling, and
the joint scheduling of task offloading and network flow is
necessary for achieving optimal performance.

3 RELATED WORK

3.1 Offline Task Offloading in Edge Computing
In the realm of edge computing, the scheduling and of-
floading of tasks have been studied extensively. A variety of
approaches [9], [10], [11], [12] have been explored. These ap-
proaches range from algorithmic solutions for computation
offloading and bandwidth allocation to heuristic methods
for task offloading and resource optimization. However,
these methods often overlook task dependencies, impacting
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Fig. 2: System architecture of collaborative edge computing and example application with DAG tasks.

application service quality and resource utilization. Addi-
tionally, the scheduling of dependent tasks has been in-
vestigated [13], [14], [15]. Techniques such as the heteroge-
neous earliest finish time algorithm by Topcuoglu et al. [13],
Tetrium by Hung et al. [14] for geo-distributed clusters, and
Sundar et al.’s [16] heuristic algorithm for cloud computing
systems have been proposed. Despite their effectiveness,
these methods primarily focus on offline scenarios and face
challenges in adapting to online environments due to the
unpredictability of task profiles.

3.2 Online Task Offloading in Edge Computing
In edge computing, online task offloading has garnered
significant attention. Initial efforts [17], [18] focused on
heuristic scheduling methods. However, the effectiveness
of these heuristics is limited by the unpredictability of
task arrivals and dynamic network conditions. Deep Re-
inforcement Learning (DRL) has emerged as a promising
approach to address these challenges. Chen et al. [19] ex-
plored deep Q-Learning and double deep Q-networks to
optimize offloading strategies and reduce long-term delays.
However, these methods often overlook complex scenar-
ios like multi-hop offloading and high-dimensional action
spaces. Recent advancements have addressed these limi-
tations. Techniques ranging from policy gradient DRL [5],
[20], [21], meta reinforcement learning [6], Long Short-Term
Memory (LSTM)-enhanced Deep Q Network (DQN) [7], to
actor-critic algorithms [8], [22] have been employed for var-
ious aspects of task offloading, including latency reduction,
energy efficiency, and handling task dependencies. Despite
these advancements, a common limitation is the lack of
integrated network flow scheduling, which can result in
network congestion and suboptimal completion time.

4 SYSTEM MODEL AND PROBLEM FORMULATION

4.1 System Model
The CEC system operates in a time-slot manner. The time-
line is divided into K (K is a positive integer) time frames
(e.g., second, milliseconds). Each time frame can be re-
garded as the composition of time slots with length T , where
T is also a positive integer. Given a sequence of time slots
{0, 1, · · · ,K ∗ T − 1}, we define t as the beginning of each
time frame [t, t + T − 1], where t = k ∗ T and k represents
a non-negative integer. Fig. 2(a) shows the architecture of a
collaborative edge computing system where the intelligence
is distributed and pushed within the network by sharing

computation resources and data between the network of
edge nodes. The system architecture includes a software-
defined networking (SDN) controller and edge nodes con-
nected to each other. The role of the SDN controller with
global knowledge is responsible for making the decision for
offloading tasks and scheduling bandwidth in the network.
It includes different functional components responsible for
collecting information and making scheduling decisions.
Edge nodes can be heterogeneous in computation capacity.

Definition (Path) A path denotes a sequence of con-
nected nodes and links through which data can be routed
from its source to its destination. Each node represents a
device (such as routers, edge devices or end devices), and
each link represents the connection between these nodes.

Definition (Flow) A flow is defined as a sequence of
packets passing an observation point of a path during a cer-
tain time interval. All packets that are part of a specific flow
share a set of common properties, which may include, but
are not limited to, packet headers, source and destination
addresses, protocols used, and quality of service parameters.

Task Model is defined by a collection of DAG tasks,
denoted as CT . This collection CT includes each task
CTi, denoted as CT = {CTi|1 ≤ i ≤ β}, where β is the
total number of tasks. Each task i is modelled as a DAG
CTi = (Ti, Pi). Ti is the set of dependent subtasks in task
i. Ti = {j|1 ≤ j ≤ Ni}, where Ni is the number of subtasks
in task i. Pi = {Di,j,k|j ∈ Pdi,k, j ∈ Ti, k ∈ Ti} is the set of
dependencies (weights) among the subtasks in task i. Each
DAG can have general dependencies. Task dependency is
the degree to which the data and execution of different sub-
tasks within a composite task rely on one another’s outputs
or processing states. It reflects the interconnectedness and
the reliance of subtasks on the sequential or parallel flow of
information [23]. Fig. 2(c) shows an example of general task
dependencies by DAG topologies, ranging from low to high
task dependency, depicted by the density of connections
between subtasks. The amount of input data required for
task i is IDi. Each subtask j in task i is associated with the
computation load CLi,j . The weight of the link connecting
subtask j and k of task i is Di,j,k, which represents the data
transmission volume between dependent subtask j and k in
task i. The predecessors for subtask j in task i is Pdi,j .

Network Model is defined as a connected graph G =
(V,E). Inside, V = {k|1 ≤ k ≤ α} is the set of edge nodes,
where α is the total number of edge nodes. E is the set of
edge links, E = {ej,k,w|1 ≤ j ≤ p, ck,w = 1}, where p is the
number of edge links. ck,w indicates whether edge node k
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TABLE 1: Main Notations Used in the Paper

Symbol Definition

Ri,j Release time of subtask j in task i
IDi Amount of input data required for task i
CLi,j Computation load associated with each

subtask j in task i
Di,j,k Data transmission volume between dependent subtask j

and k in task i
Pdi,j Predecessor subtasks for subtask j in task i
CTi A task in the set CT
PSn,t Average processing speed of an edge node n at time t
δi,j,n,t Binary decision variable for task offloading at edge node n
PTn,i,j Computation time at edge node n for subtask j in task i
ξf Begin time of flow f transmission
Gef,i,j Binary variable indicating if subtask j in task i

generates flow f
Wn,i,j Waiting time of subtask j in task i at edge node n
FTi,j Finish time of subtask j in task i
TTi Finish time of task i
ηtf,i,j Bandwidth allocated to the flow f for subtask

j in task i at time t
νf,i,j Maximum path bandwidth available to flow f

for subtask j in task i
BTf,i,j Flow communication time of flow f for subtask j in task i
ϵf Waiting time of flow f at the edge node
WBf Waiting time of flow f for links on the path
ECi Total energy consumption of task i
PTx Transmission power level
PRx Reception power level
UTi Uplink transmission time for task i
DTi Downlink transmission time for task i
ECc

i,j Energy consumption of subtask j in task i during computation
P c
n Computational power of edge node n

ECx
i,j Energy consumption of subtask j in task i during transmission

J Quality of service metric
λt Scalar weight for task completion time in QoS
λe Scalar weight for energy consumption in QoS
EC Overall energy consumption for an offloading plan
Px
u Transmitting power of edge link u.
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Fig. 3: The dynamic task offloading framework.

and w are connected, with a value of ”1” representing the
connection. Otherwise, it is set to “0”. PSn,t indicates the
average processing speed of an edge node n at time t.

4.2 Problem Formulation

Computation offloading management contains a series of
operations to handle task computation demands in the
network area. It includes the task offloading decision and

bandwidth allocation decision of links. In a stochastic envi-
ronment, the computation demands of tasks on edge nodes
are uncertain and subject to constant change. Fig. 3 illus-
trates the dynamic task offloading framework. The offload-
ing scheduler will make joint decisions of task offloading,
bandwidth allocation, and waiting time at each time slot.

4.2.1 Task Offloading
Considering the device heterogeneity, tasks can be offloaded
to an edge device at a multi-hop distance. Therefore, the
CEC system needs to decide which edge node the tasks
will be offloaded. Task offloading decisions are significantly
influenced by task dependencies, as these dependencies
dictate the order and timing of task execution.

Definition (Task Offloading Decision) Let δi,j,n,t ∈
{0, 1} be a binary decision variable to indicate whether the
computing power at edge node n is allocated to subtask j
in task i at time t. The task dependencies imply that the
value of δi,j,n,t may be contingent on the completion of
predecessor tasks, thereby affecting the offloading decision.

Definition (Task Computation Time) Let PTn,i,j repre-
sent the computation time of edge node n for subtask j in
task i. It is composed of four parts: a) the time when the
task is uploaded to the edge nodes, b) the waiting time of
the task at an edge node, c) the calculation time of the task
at the edge nodes, and d) the download time when the task
result is returned to the user. The waiting time of subtask j
in task i on node n Wn,i,j becomes particularly crucial, as it
must account for the completion of all preceding dependent
tasks before the current task can commence processing.
This directly impacts the computation time PTn,i,j and, in
turn, influences the offloading decision. Computation time
PTn,i,j is defined as:

PTn,i,j = CLi,j/(PSn,t) +Wn,i,j if δi,j,n = 1 (1)

STi,j is the start time of subtask j in task i. ξf is the
begin time of flow f transmission. Gef,i,j = 1 ∈ {0, 1} is a
binary variable, which has the value “1” if subtask j in task
i generates flow f . Otherwise, it is set to “0”. STi is the start
time of task i. Ri,j is the release time of subtask j in task i.

4.2.2 Bandwidth Allocation
Task dependencies affect bandwidth allocation decisions.
The allocation of bandwidth to specific flows for subtasks
must consider the immediate demands of the subtask and
the requirements of dependent tasks that follow.

Definition (Bandwidth Allocation Decision) Let ηtf,i,j ∈
[0, νf,i,j ] be a continuous decision variable to indicate the
bandwidth allocated to the flow f for subtask j in task i at
time t. νf,i,j represents the bandwidth maximum available
to flow f for subtask j in task i on its path, determined
by the minimum bandwidth of all links in the path. The
task dependency determines the priority and amount of
bandwidth allocated, as dependent tasks might require im-
mediate and substantial bandwidth to ensure efficient data
transfer and timely task completion.

BWu,t is the remaining bandwidth of edge link u at time
t. χf is the finish time of flow f . ωf,i,j is a binary variable,
which has the value “1” if subtask j in task i requires flow f .
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Otherwise, it is “0”. Assume that the routing path is known,
the remaining bandwidth maximum νf,i,j is calculated as:

νf,i,j = min
j∈path

BWu,t (2)

Definition (Flow Communication Time) Let BTf,i,j

represent the flow communication time of flow f for subtask
j in task i. ϵf is the waiting time of the flow f at the
edge node. WBf is the waiting time of flow f for links
on the path. σf is the size of flow f . A high flow waiting
time of flow f WBf value may suggest reevaluating and
possibly increasing bandwidth allocation to accommodate
dependent tasks’ requirements. This directly affects the flow
communication time BTf,i,j and consequently influences
the bandwidth allocation decision.

The flow transmission time BTf,i,j of flow f for subtask
j in task i is now recalculated as:

BTf,i,j = max
k∈Pdi,j

FTk,j +
IDi,j

ηtf,i,j
+ ϵf (3)

where ϵf represents the waiting time of the flow f at the
edge node. The finish time FTi,j of subtask j in task i is
calculated as:

FTi,j = Ri,j + PTn,i,j +BTf,i,j (4)

In edge computing, the upload latency for task i to
an edge node k is denoted as UTi. During upload, task
i transmits a substantial data volume to node k via the
shortest network path. Let PRi be the data amount of
the task processing result. The transmission bandwidth
for uploading task UBi and downloading results DBi is
constrained by the lowest bandwidth link on the path. The
uploading time UTi and downloading time DTi for task i is
calculated as IDi

UTi
and PRi

DBi
, respectively.

The finish time TTi of task i is calculated as:

TTi = UTi + max
j∈CTi

FTi,j +DTi (5)

4.2.3 Energy Consumption
Energy consumption is a critical factor that impacts system
performance in CEC, which encompasses both computation
and transmission energy costs.

Computation Energy Consumption: Energy consump-
tion during local task execution is dominated by computa-
tional processes. The energy consumption ECc

i,j of subtask
j in task i is formulated as:

ECc
i,j = P c

n ∗ PTi,j (6)

Where P c
n represents the computational power of the

edge node n while c is a power coefficient [20]. PTi,j is
the computation time of subtask j in task i.

Transmission Energy Consumption: When a task is of-
floaded, transmission energy consumption ECx

i,j of subtask
j in task i is primarily due to data transmission. P x

u denotes
the transmitting power of edge link u.

ECx
i,j = P x

u ∗BTf,i,j (7)

The energy consumption ECi of task i is calculated as:

ECi = PTx ∗UTi +
∑

j∈CTi

(ECc
i,j +ECx

i,j)+PRx ∗DTi (8)

Where PTx and PRx are the transmission and reception
power levels, respectively, and UTi and DTi are the uplink
and downlink transmission time for task i.

The overall energy consumption for an offloading plan
of task i, considering both latency and energy, is given by:

TT =
∑

1≤i≤β

TTi/β (9)

EC =
∑

1≤i≤β

ECi (10)

Quality of service (QoS) serves as a metric for evaluating
the effectiveness of an offloading plan, taking into account
both task completion time and energy consumption. As
proposed in [20], the QoS can be quantified as a weighted
sum where task completion time TT and energy consump-
tion EC are normalized against their respective maximum
values, TTmax and ECmax.

J = −(λt ∗
TT

TTmax
+ λe ∗

EC

ECmax
) (11)

where λt and λe ∈ [0, 1] are scalar weights of task
completion time and energy consumption respectively.

Guidelines for Configuring Weighting Factors: We
present a comprehensive framework for the adjustment of
weighting factors, λt and λe, tailored to specific real-world
applications. The framework initiates with normalization,
where ACT and EC are normalized to ensure they are on a
similar scale by dividing each by their maximum observed
or possible value within the system. Weight assignment then
allocates weights λt and λe, based on the importance of
latency and energy consumption in real-world applications,
ensuring λt + λe = 1. In the calculation step, these nor-
malized values of ACT and EC are used to compute QoS,
quantifying QoS as the weighted average of latency and
energy differences. Finally, in adjustment and testing, we
adjust the weights based on real-world testing and feedback,
recognizing that different applications might require differ-
ent balances between latency and energy consumption. We
detail empirical values for λt and λe for three types of real
world applications.

1) Latency-Prioritized Applications: In applications
where latency is critical, such as those involving
real-time decision-making like pedestrian reidenti-
fication and traffic monitoring, a higher weight is
assigned toλt (>0.5) to prioritize latency reduction,
while λe is set lower (<0.5). An example can be seen
in [24], which minimizes latency in real-time video
surveillance for pedestrian reidentification.

2) Balanced-Priority Applications: Applications re-
quiring a balanced configuration to latency and
energy consumption, such as autonomous driving
systems. Both λt and λe are crucial, with a slight
preference for λt to ensure system responsiveness
while maintaining energy efficiency. An example of
autonomous driving services can be seen in [25],
which balancing latency and energy consumption.

3) Energy-Prioritized Applications: For scenarios
where energy consumption is a primary concern,
such as remote environmental monitoring systems,
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prioritizing lambdae>0.5 and lambdat<0.5 empha-
sizes energy efficiency over immediate task com-
pletion. This configuration is particularly relevant
for battery-powered devices deployed in isolated
locations, where extending operational life is cru-
cial. An example is detailed in [26], where a com-
prehensive environmental monitoring framework
integrates energy-aware optimization components.

4.3 NP-hardness Proofs

Theorem 1: The online joint dependent task offloading and
bandwidth allocation problem in G = (V,E) is NP-hard.

Proof: To establish the NP-hardness of the online joint de-
pendent task offloading and bandwidth allocation problem
in G = (V,E), we approach by demonstrating that even a
simplified version of this problem can be shown to be NP-
hard by reduction from a known NP-hard problem, specifi-
cally the Multi-dimensional Knapsack Problem (MKP) [27].

The MKP involves selecting a subset of N items to
maximize the total value without exceeding the multi-
dimensional capacity constraints of a knapsack. Each item n
has a value v(n) and consumes a certain amount of resource
rd(n) in dimension d, with the knapsack having a capacity
C(d) in each dimension d. The objective is to maximize
the total value of the selected items while respecting the
capacity constraints in all dimensions.

To relate this to our problem, we consider each task or
subtask in the online joint dependent task offloading and
bandwidth allocation problem as an item in MKP, where
the ”value” of an item corresponds to the negative of the
offloading and execution cost of a subtask on an edge node.
The multi-dimensional resources in MKP correspond to the
computation and bandwidth resources in our problem, and
the capacities in MKP are analogous to the computation and
bandwidth capacities of the edge nodes.

By demonstrating that any instance of MKP can be
mapped to our problem, we establish its NP-hardness. The
online nature, requiring decisions without future knowl-
edge, further maintaining NP-hardness. Thus, the online
joint dependent task offloading and bandwidth allocation
problem in G = (V,E) is NP-hard.

4.4 ILP Formulation of the Offline Problem Version

We formulate an integer linear programming (ILP) formula-
tion for the joint dependent task offloading and bandwidth
allocation problem. For the offline version, the objective of
the problem is to optimize the QoS by reducing the average
completion time and energy consumption of all tasks. The
joint dependent task offloading and bandwidth allocation
problem can be formatted as:

max J (12)

This is equivalent to:

minλt ∗
TT

TTmax
+ λe ∗

EC

ECmax
(13)

Subjects to Constraints:

FTi,j ≤ STi,k ∀CTi,j ∈ Pdi,k, (14)
Ri,j ≤ ξf if Gef,i,j = 1, (15)
χf ≤ STi if ωf,i,j = 1, (16)
P c
n ≤ P c

max,n ∀1 ≤ n ≤ α, (17)

P x
u ≤ P x

max,u ∀1 ≤ u ≤ p (18)

• Constraint (14) enforces that a subtask can start only
after preceding subtasks have finished.

• Constraint (15) enforces that the network flow starts
only after the preceding subtask.

• Constraint (16) enforces that the start time of a task is
at least equal to the finish time of the required flow.

• Constraint (17) ensures that computation power P c
n

of edge node n does not exceed its maximum power
threshold P c

max,n, preventing node overloading.
• Constraint (18) ensures that the transmission power

P x
u of edge link u does not exceed its maximum

power threshold P x
max,u, managing the power used

in wireless communication.

The ILP formulation can provide an optimal solution,
but it assumes request arrivals for all time slots are known.
This makes it impractical for real-world scenarios and limits
its applicability to dynamic problems.

5 ASYNCHRONOUS DEEP PROGRESSIVE REIN-
FORCEMENT LEARNING FOR ONLINE DEPENDENT
TASK OFFLOADING

This section models the ODTO problem as the Markov
Decision Process and presents our asynchronous deep pro-
gressive reinforcement learning algorithm.

5.1 Markov Decision Process
We employ the Markov Decision Process to model the
ODTO problem. Here, scheduling actions involve select-
ing an offloading target and bandwidth allocation for
each incoming task, initiating a state change described
by Pr[St+1 = s′|St = s,At = a]. In this expression,
St and St+1 represent the current and subsequent states,
respectively, while At denotes the scheduler’s action. The
scheduler, acting as the agent, aims to identify actions that
optimize state transitions towards maximizing overall re-
wards, effectively addressing the task offloading challenge.

5.2 State Space
When scheduling the task CTi, the state of the CEC system
depends on the scheduling results of the previous tasks and
network flows. Hence, we define the state space as a combi-
nation of the task information G (including DAG topologies
and task profiles) and the network information E (including
bandwidth conditions of links and load conditions of edge
nodes). Let A1:i denotes the offloading plan for the sequence
of tasks from 1 to i. The state S is represented by

S = {s(t)|s(t) = (G,E,A1:i)} (19)

G = {gi|gi = (CTi, Ti, Pi)} (20)

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3381646

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:29:49 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Optimizer

Target Online

Actor Network

Online

Actor Network

Sync Update

Policy

Gradient

Optimizer

Target Online

Critic Network

Online

Critic Network

Sync Update

Value

Gradient

Actor Critic

Gradient

∇𝜽

Store (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) Sample

Experience Pool

(𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏)
…

(𝒔𝒕, 𝒓𝒕, 𝒔𝒕+𝟏)

𝒂𝒕 = 𝝁 𝒔𝒕 𝜽)

(𝒔𝒕, 𝒓𝒕, 𝒔𝒕+𝟏)

𝒂𝒕 = 𝝁 𝒔𝒕 𝜽)

Asyn 

Update

Asyn 

Update

Environment 1

Environment n

…

Collaborative

Edge

Computing

Fig. 4: The diagram of asynchronous deep deterministic
policy gradient algorithm.

E = {Te1(t), ...T ep(t), Td1(t), ..., Tdα(t)} (21)

Specifically, task information G comprises of three ele-
ments: 1) an index CTi of the task; 2) a vector Ti of depen-
dent subtasks in task CTi; 3) a vector Pi of dependencies
(weights) among subtasks in task CTi. Network informa-
tion E is the condition of CEC network environment, con-
sisting of: 1) the bandwidth conditions of links represented
by the set of the waiting time for available bandwidth for
edge links {Te1(t), ..., T ej(t), ..., T ep(t)} in which Tej(t)
represents the waiting time for available bandwidth for edge
link j ; 2) the load conditions of edge nodes represented by
the set of waiting time for available computation power for
edge nodes {Td1(t), ..., Tdj(t), ..., Tdα(t)} in which Tdn(t)
represents the waiting time for available computation power
for edge nodes n at time slot t.

5.3 Action Space

By observing the current environment state, the agent will
take actions accordingly. The key step of task scheduling is
to choose the offloading decision that indicates which device
assigned to the current task and the amount of bandwidth
of the according flow. The actions at time t is defined as:

at = {ai,t|ai,t = {qi,t, ηi,t, ϵi,t}} (22)

Specifically, the action ai,t at time t for task i has three
vectors, the first vector qi,t = {δi,1,n,t, ..., δi,j,n,t, ..., δi,α,n,t}
where α is the number of edge nodes and δi,j,n,t indicates
whether subtask j in task i is allocated to edge node n.
The second vector ηi,t = {ηi,1, ..., ηi,f , ..., ηi,fn} where fn
is the number of flows and ηf ∈ [0, νf,i,j ] represents the
bandwidth allocated to flow f . The third vector ϵi,t =
{ϵi,1, ..., ϵi,f , ..., ϵi,fn} where fn is the number of flows and
ϵf ∈ [0,+∞] represents the waiting time of the flow f .

5.4 Reward Function Design

The reward function denotes the immediate benefit the
agent receives after executing an action. We define the
reward rt as the negative value of the weighted sum where
task completion time TT and energy consumption EC

Algorithm 1 ADPRL Algorithm
Input: Training episode length Y , training sample length
T ; DAG task number β, edge node number α, edge link
number p;

1: Randomly initialize actor network Aθ and critic network
Cw with weights θ and w, respectively

2: Initialize target network Aθ and Cw with weights w′ and
θ′, respectively

3: w′ ← w, θ′ ← θ
4: Initialize replay memory B
5: for episode← 0 to Y do
6: Get environment state st
7: Initialize a random process N for action exploration
8: for t← 1 to T do
9: Select action at = (qt, ηt, ϵt) according to the

current policy and exploration noise
10: In collaborative edge computing, execute action

at and obtain the reward rt and new state st+1

11: Store state transition (st, at, rt, st+1) in pool B
12: Randomly select a minibatch of N transitions

(si, ai, ri, si+1) from B.
13: yi ← ri + γQ′(si+1, µ

′
θ′(si+1);w

′)
14: Update the critic network by minimizing the loss

L = 1/N
∑

i(yi −Q(si, ai;w))
2

15: Update the actor network as follows: ∇θµJ ≈
1/N

∑
i Q(st, at;w)|st=si,a=µθ(si)∇θµµθ(st)|st=si

16: θ′µ′ ← tθµ + (1− t)θ′µ′ ▷ Update one of the target
networks

17: w′
Q′ ← twQ + (1− t)w′

Q′ ▷ Update the other
target network

18: end for
19: end for

are normalized against their respective maximum values,
TTmax and ECmax.

rt =
∑
i

−(λt ∗
TT

TTmax
+ λe ∗

EC

ECmax
) (23)

5.5 Deep Deterministic Policy Gradient
To better adapt to the CEC network environment, we for-
mulate it as a MDP. The system state transition obtained
at time slot t is denoted as (st, at, rt, st+1), which includes
state, action, reward and next state. The transition function
m(s′|s, a) of the MDP represents the probability of transit
from current state s to state s′, which can be defined as:

m(s′|s, a) = Pr{st+1 = s′|st = s; at = a} (24)

In Fig. 4, the DDPG model has actor network, critic
network and experience pool. The actor-network is policy-
based while the critic network is value-based. The experi-
ence pool can store each system state record (st, at, rt, st+1).
The deterministic strategy µ can be expressed as:

µ : st → at (25)

After approximating the strategy with parameter θ, the
deterministic strategy is defined as:

µθ(at|st) = P (at|st; θ) (26)
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Then, the objective of the agent is to learn the optimal
policy to maximize the progressive reward:

J(θ) = Est∼ρµ,at∼µ[r] (27)

where ρµ is the state transition probability given the
action distribution µ and r denotes the progressive expected
rewards. The term r in the policy gradient estimator leads
to high variance, as these returns can vary drastically as the
number of episodes increases.

The actor-critic network aims to address this issue by us-
ing a function Qω(s, a) to approximate the expected returns,
and replacing the original return term in the policy gradient
estimator. According to the deep determine policy gradient
theorem, the gradient of the objective J is:

∇θJ(θ) = Est∼ρµ

[
∇θµθ(a | st)∇aQ

′(st, a)|a=µθ(st)

]
(28)

The replay buffer stores the prior system state transition
experience in a replay memory pool. During training, we
randomly sample data (st, at, rt, st+1) from it to increase
learning performance. The replay memory pool comprises
observed state transitions and gained rewards produced by
activities in each time slot.

In order to train the critic network parameters, a batch
of stored experience is randomly selected from the replay
memory pool as samples. The purpose of the training
is to minimize the difference between Q(st, at;w) and
Q′(st, at;w

′). To represent the difference between Q and Q′,
we define a loss function L, which is,

L = 1/N
∑
i

(yi −Q(st, at;w))
2 (29)

yi = ri + γQ′(si+1, µ
′
θ′(si+1);w

′) (30)

where N denotes the number of samples drawn from the
experience pool, yi is the temporal difference (TD) target for
Q-learning, and w and w′ are parameter of critic network.

The scheduling algorithm is summarized in Algo. 1. The
scheduler first initializes the replay buffer, critic network,
and actor network with weight w and θ (lines 1-3 in Algo. 1).
After obtaining the state st of the environment, the agent
selects the action at according to the current policy and
exploration noise (lines 5-8 in Algo. 1). After performing
the action and interacting with the environment in the
processing pool, the agent will receive the reward rt and
observe the next state st+1 of the environment, then store the
state ⟨st, at, rt, st+1⟩ into the RB (lines 9-10 in Algo. 1). Then,
the agent randomly samples a mini-batch experience from
the B and updates the critic network by minimizing the loss
(lines 11-13 in Algo. 1). After each episode of interaction
with the environment, the agent updates the actor network
and critic network using the sampled policy gradient and
the target network parameters (lines 14-19 in Algo. 1).

5.6 Comparison between ADPRL and Optimal Offline
Solution
To further substantiate the efficacy of ADPRL, we present a
comparison with the optimal offline solution.

Consider a simple scenario of dynamic edge computing
environments depicted in Fig. 1, we compare ADPRL (Fig. 1

g)) and the optimal offline solution (Fig. 1 f)). Here, the
completion time is a crucial metric, defined as the aggregate
of task execution time and flow transmission time. Impor-
tantly, we incorporate task preemption into our scenario to
reflect the dynamic nature of real-world edge computing.
For the optimal offline solution, the completion time is
quantified at 40 units, as depicted in Fig. 1 f). The optimal
task schedule is the sequence of R21 → R33 → R22 →
R1→ R31→ R32, achieving a completion time of 40 units.
Compared to other methods such as Earliest Release Time
First (56 units in Fig. 1 d)), and scheduling computing and
networking separately (46 units in Fig. 1 e)), our ADPRL
algorithm demonstrates a remarkable efficiency(43 units).
As depicted in Fig. 1 g), ADPRL schedules tasks in a
sequence of R21 → R22 → R1 → R33 → R31 → R32,
achieving a completion time of 43 units. This performance
is notably closer to the optimal solution, thereby illustrating
the effectiveness of our proposed method.

This comparison demonstrates that while ADPRL does
not always achieve the theoretical optimum, it significantly
outperforms baselines and closely approximates the optimal
offline solution, thereby validating the effectiveness of our
proposed method in edge computing scenarios.

5.7 Scalability Analysis on Heterogeneous Edge Nodes

Our algorithm is uniquely equipped to manage the chal-
lenges of heterogeneous edge devices. By leveraging the
DRL framework, our approach adapts dynamically to the
varying computational states and bandwidth conditions of
these devices, learning through trial and error. This process
is facilitated by a state space that incorporates both com-
putational and bandwidth statuses, enabling the algorithm
to optimize offloading decisions about task allocation and
bandwidth distribution. These decisions encompass allocat-
ing tasks to specific devices and the corresponding band-
width allocation for the flow. The action space is informed
by current device statuses, and a reward function that pro-
vides performance feedback. These elements are central to
refining the decision-making process. This ensures continual
adaptation and optimal alignment with network conditions
and device capabilities, enhancing the management of het-
erogeneous edge environments.

However, there are two main challenges associated with
ADPRL in terms of scalability. One challenge is increased
signal transmission delays. As the number of edge nodes
increases, the volume of common signals transmitted be-
tween the central control and the edge nodes also escalates.
This increase in signal traffic results in higher transmission
delays, potentially affecting the overall system efficiency.
Another challenge is the slower convergence of model train-
ing. This is due to the more complex and varied data being
processed and the need for more extensive coordination and
synchronization across nodes.

While these challenges are crucial to the scalability and
performance of CEC systems, our algorithm has certain lim-
itations in directly addressing them. Our work primarily fo-
cused on optimizing task offloading, bandwidth allocation,
and waiting time decisions under small-scale networks and
nodes. In our future studies, we will explore efficient data
compression techniques and optimize network protocols to
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mitigate increased signal transmission delays. For slower
model convergence, we will consider advanced parallel
training algorithms to accelerate the model training.

6 PERFORMANCE EVALUATION

6.1 Simulation Settings
We consider the average completion time (ACT) and energy
consumption (EC) as performance metrics. ACT is calcu-
lated as the total completion time of tasks divided by the to-
tal number of tasks. EC measures the electrical energy used
by system components like CPUs and networking equip-
ment [20]. Computation energy consumption is measured
by the power used in processing tasks, considering both
active and idle states. Transmission energy consumption
evaluates the energy used in data transmission, factoring
in data volume and network efficiency.

Network Model: We adopt a random topology generator
[28] to generate such a network topology. The link weight
between two edge nodes represents the link bandwidth.
Due to device heterogeneity, the processing speed of edge
nodes is chosen from a normal distribution, with a default
mean of 40 Mcps (megacycles per second) and a variance
of 80%. Similarly, the bandwidth of each link is chosen
from a normal distribution, with a default mean of 10 Mbps
(megabits per second) and a variance of 80%. These default
values may be subject to modifications as needed.

Synthetic Dataset: We adopt a random DAG generator
[23] to generate DAG tasks. The properties of each DAG
task include task id, subtask id, data size, computation load,
release time, and source device. The node and layer number
of DAGs are chosen from a normal distribution [1, 100].
The number of edges (dependencies) between two layers
in the DAG is selected from a uniform distribution [1, 100].
The tasks are randomly generated at edge nodes. The data
size of each task is generated randomly from a normal
distribution with a mean of 500 Mbit and a variance of 80%.
The computation load of each task is randomly selected
from a normal distribution with a mean of 500 KCC (Kilo
Clock Cycles) and a variance of 60%. The release time of
each task is randomly selected using a Poisson distribution.

Alibaba cluster trace dataset: Alibaba cluster trace
dataset contains the DAG information of real-world work-
load traces [29]. Due to the lack of certain information in the
Alibaba cluster trace dataset, we have modified and used
it to generate DAGs. The computation loads of tasks are
acquired by properly scaling the value of “start time” minus
“end time” multiplied by “plan cpu”. The data size of each
task is randomly selected using a normal distribution with
a mean of 500Mbit and variance of 80%. The release time of
each task is randomly selected using a Poisson distribution.
Tasks are generated at edge nodes randomly. We divide the
dataset into two groups, where one group is the training
dataset, and the rest is the test dataset.

In our experiments, we set two different objectives: la-
tency optimization (LO) and energy efficiency (EE), follow-
ing the guidelines for configuring weighting factors outlined
in Section 4.2.3. The LO objective focuses on minimizing
latency, and therefore we assign λt = 1.0 and λe = 0.0.
The EE objective aims to optimize both latency and en-
ergy consumption, hence we assign λt = λe = 0.5. We

implement ADPRL on our platform with 32 cores and 2
GPU cards. The training converges at events for around
10, 000. The training parameters are described as follows.
The replay memory size is 10000. The mini-batch size is 64,
representing the number of memories used for each training
step. The learning rates of actor and critic networks are
relatively 0.001 and 0.002. The reward decay is 0.001. For
the setting of asynchronous deep reinforcement learning,
the number of servers and workers is 1 and 4, relatively.
The training information of each worker will be merged
by the server. After training, we acquire two models: one
for the LO target and the other for the EE target, which
are subsequently deployed to edge nodes. The inference
overhead is negligible compared to the time costs of task
offloading [20]. We implement four competitive task algo-
rithms of task offloading for performance comparison. The
baseline algorithms are as follows.

• Random: Tasks are offloaded randomly to the edge
nodes, and flows are transmitted randomly through
the network links.

• Local Execution (LE): Tasks are executed on the edge
node where they are generated, negating the need for
network flow scheduling.

• Greedy: This strategy computes the estimated com-
pletion time for each device and prefers the device
with the minimal time for offloading. Network flow
scheduling follows First Come First Served (FCFS).

• DQN + FCFS: Tang et al. [7] proposed a DRL-based
online offloading algorithm that incorporates the
LSTM, dueling DQN, and double-DQN techniques
without considering task dependency.

6.2 Comparison of ADPRL and Baselines on Testbed
We implement the Testbed with one IP camera, three edge
devices, and a master device. For edge devices, we employ
one NVIDIA Jetson Xavier NX and two NVIDIA Jetson TX2
units. The Jetson Xavier NX is equipped with a 384-core
Volta GPU and 8GB of RAM, whereas each Jetson TX2 fea-
tures a 256-core GPU along with 8GB of RAM. Notably, the
Jetson Xavier NX boasts significantly higher computational
capabilities compared to the TX2 units. In order to simulate
a heterogeneous resource environment, the memory of the
Jetson TX2 units is artificially limited to 4 GB [24]. The
master device is a high-performance workstation, contain-
ing four Intel Core i5-8300H processors and 16GB of RAM,
serving as the scheduler. Network connectivity among the
edge devices and the camera is established through a router.

Pedestrian Face Tracking Analysis Pipeline: We uti-
lize SSD-MobileNet-V2 [30] and VGG-16 [31] for process-
ing input images, facial localization, and emotion analysis.
SSD-MobileNet-V2 is a streamlined deep convolutional net-
work employing depth-wise separable convolutions. VGG-
16, with its 16 convolutional layers, excels in extracting
complex features from images, a key aspect for our facial
feature extraction and emotion analysis tasks. In Fig. 5, we
efficiently extract facial features and analyze emotions for
effective face tracking. We fine-tune the pre-trained models
of SSD-MobileNet-V2 and VGG-16 to optimize them for
our specific application. These models are developed under
serverless principles and accessed via RESTful APIs [32].
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Fig. 5: Demo of pedestrian face tracking analysis. The left
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of a camera are shown on the right.
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Fig. 6: Comparison of ADPRL (LO) and Baselines on Testbed

Experiment Result: In Fig. 6, in terms of ACT, ADPRL
(LO) exhibits superior performance when compared to the
baselines. This can be attributed to the fact that ADPRL
(LO)’s sophisticated decision-making process allows for
more effective prioritization of tasks, thereby ensuring ef-
ficient task completion. In particular, ADPRL (LO) is 36.9%
less than Random, 20.6% less than LE, and 26.3% less than
Greedy, while also maintaining a 30.0% less ACT compared
to DQN+FCFS. In Fig. 6, in terms of EC, ADPRL (LO)
outperforms the baselines significantly, further highlighting
its efficiency. This efficiency is attributed to its advanced
learning mechanisms, which optimize the balance between
computational load and energy usage. ADPRL (LO) is
35.9% less than Random, 11.8% less than LE, and 22.0%
less than Greedy, while also maintaining a 26.2% less energy
consumption compared to DQN+FCFS.

6.3 Tradeoff between Task Completion Time and En-
ergy Consumption

We delve into the tradeoff between task completion time
and energy consumption, a pivotal aspect of our system’s
performance. As mentioned earlier, we set λt as the weight-
ing factor of task completion time and λe as the weighting
factor of energy consumption to study the tradeoff between
energy consumption and task completion time.

In Fig. 7, we study the performance of ADPRL on the
Alibaba cluster trace dataset with different values of λt =
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Fig. 7: Tradeoff between task completion time and energy
onsumption

a) Offloading Ratio Results on Alibaba Dataset 

 

Algorithm Task Number Subtask Number Bandwidth Computation Node Number 

 10 20 30 40 25 50 75 100 2 4 6 8 10 20 30 40 25 50 75 100 

Random 0.86 0.88 0.89 0.93 0.83 0.84 0.85 0.87 0.81 0.84 0.85 0.87 0.83 0.89 0.9 0.93 0.81 0.84 0.87 0.89 

LE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Greedy 0.86 0.88 0.89 0.9 0.9 0.91 0.92 0.96 0.9 0.91 0.93 0.94 0.79 0.80 0.89 0.94 0.91 0.92 0.94 0.95 

DQNFCFS 0.86 0.87 0.88 0.89 0.87 0.88 0.97 0.98 0.85 0.87 0.88 0.9 0.81 0.85 0.95 0.98 0.93 0.94 0.96 0.99 

APDRL (LO) 0.91 0.94 0.96 0.99 0.96 0.97 0.98 0.99 0.94 0.96 0.97 0.99 0.89 0.9 0.95 0.99 0.96 0.97 0.98 0.99 

b) Offloading Ratio Results on Synthetic DAGs 

 

Algorithm Task Number Subtask Number Bandwidth Computation Node Number 

 10 20 30 40 25 50 75 100 2 4 6 8 10 20 30 40 25 50 75 100 

Random 0.81 0.83 0.83 0.84 0.8 0.86 0.86 0.88 0.79 0.81 0.83 0.84 0.86 0.86 0.86 0.86 0.65 0.71 0.79 0.87 

LE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Greedy 0.87 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.86 0.89 0.93 0.96 0.83 0.86 0.88 0.89 0.72 0.75 0.79 0.93 

DQNFCFS 0.88 0.88 0.88 0.87 0.87 0.87 0.87 0.88 0.82 0.85 0.87 0.89 0.81 0.83 0.84 0.87 0.88 0.91 0.97 0.97 

APDRL (LO) 0.54 0.7 0.77 0.87 0.54 0.57 0.61 0.64 0.75 0.77 0.8 0.95 0.71 0.76 0.77 0.79 0.96 0.97 0.99 0.99 

Fig. 8: Simulation Reult on Offloading Ratio

0.1, 0.3, 0.6, 0.9 and λe = 0.9, 0.7, 0.4, 0.1 in four scenarios.
In the first two scenarios, we assign lower values to λt (0.1
and 0.3) and higher values to λe (0.9 and 0.7), emphasizing
energy efficiency. In the latter two scenarios, the focus shifts
to task completion time by setting higher values for λt (0.6
and 0.9) and lower values for λe (0.4 and 0.1). When the
weighting factor for energy consumption (λe) is increased,
we observe a reduction in energy consumption (EC), as
the system is optimized more towards energy efficiency.
With the decrease in λt, the system places less emphasis
on completion time, potentially adopting strategies that are
more energy-efficient but slower.

6.4 Simulation Results on Offloading Ratio

The offloading ratio (OR) is defined as the number of sub-
tasks multi-hop offloading to remote edge nodes divided by
the total number of subtasks. OR can reflect the behaviour
of task offloading and the number of network flows.

For the Alibaba cluster trace dataset, in Fig. 8 a), we
observed that the OR increases with the number of tasks,
subtasks, and available bandwidth, as well as with the pro-
cessing speed and number of edge nodes. Similarly, in Fig. 8
b), in the synthetic dataset, the trend remains consistent
with the increase in task and subtask numbers, as well as
bandwidth and processing speed. However, the OR shows
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more variability across different algorithms, highlighting
the impact of task characteristics on offloading decisions.

6.5 Influence of Change in the Number of Tasks
6.5.1 Simulation Results for Alibaba Cluster Trace Dataset
Fig. 9(a) shows the effect of changing the number of tasks
from 10 to 40 on ACT. As shown in Fig. 8 a), the offload-
ing ratio of DQN+FCFS arises with the number of tasks
increasing from 10 to 40. Consequently, the increase in ACT
for DQN+FCFS is due to both increased network flows and
computation loads. There is a significant difference in ACT
between ADPRL (LO) and Random. The ACT difference
between LE and ADPRL (LO) decreases from 63.3% at
20 tasks to 60.5% at 40 tasks. When the number of tasks
increases to 40, ADPRL (LO) achieves an average delay of
40.3% lower than those of DQN + FCFS and Greedy.

Fig. 10(a) illustrates the impact of increasing the number
of tasks from 10 to 40 on energy consumption. All algo-
rithms’ energy consumption increases with the increasing
number of tasks. This increase is primarily attributed to
the increasing number of network flows and computation
loads as it manages a higher volume of tasks. A significant
difference in energy consumption is evident between the
ADPRL (EE) and Random strategies. ADPRL (EE) outper-
forms the Random strategy due to its efficient bandwidth
allocation and optimized task scheduling. Specifically, the
energy consumption disparity between LE and ADPRL (EE)
increases from approximately 10.4% at 20 tasks to around
35.6% at 40 tasks. Notably, when the task count reaches 40,
ADPRL (EE) demonstrates a lower energy consumption, av-
eraging 19.6% less than that of the DQN+FCFS and Greedy
strategies. This is due to ADPRL (EE)’s advanced learning-
based optimization, which becomes increasingly effective as
the number of tasks increases.

6.5.2 Simulation Results for Synthetic Dataset
As shown in Fig. 9(b), there is an increase in ACT for all
algorithms due to both increases in waiting time at the
devices to execute the subtasks and the total number of
network flows. The increase of network flows can be proved
by the rising OR in most algorithms from 10 tasks to 40 tasks
in Fig. 8 b). ADPRL (LO) is significantly better than Random
and LE. Since DQN + FCFS cannot learn an effective task
offloading policy, it obtains around 26.4% higher than the
ADPRL (LO) at task 40. ADPRL (LO) is around 10% lower
than Greedy in terms of ACT.

In Fig. 10(b), ADPRL (EE) demonstrates superior perfor-
mance compared to the baselines on EC. As the number of
tasks increases from 10 to 40, the EC of ADPRL (EE) is con-
sistently lower than that of the other strategies, highlighting
its efficiency. Specifically, at 40 tasks, ADPRL (EE)’s EC is
approximately 68.4% less than Random, about 63.0% less
than LE, around 16.5% less than DQN+FCFS, and about
45.3% lower compared to Greedy.

6.6 Influence of Change in the Number of Subtasks
6.6.1 Simulation Results for Alibaba Cluster Trace Dataset
Fig. 9(c) shows the effect of changing the number of subtasks
from 25 to 100 in a task. ADPRL (LO) is significantly better

than Random. For LE, tasks are executed at the devices
where they are generated, which leads to a longer wait-
ing time as the number of subtasks increases. There is a
significant difference in ACT between ADPRL (LO) and LE
from about 10% at 25 subtasks to 74.1% at 100 subtasks.
The difference in ACT between ADPRL (LO) and DQN +
FCFS is 40.0% at 100 subtasks because DQN + FCFS does
not perform well with a large number of network flows. It
can be strengthened by Fig. 8 a), which shows the OR of
both ADPRL (LO) and DQN + FCFS is above 90.0% at 100
subtasks. ADPRL (LO) is around 35.9% better than Greedy.

Fig. 10(c) demonstrates the impact of increasing the
number of subtasks from 25 to 100 on EC. All algorithms
exhibit an increase in EC with the growing number of
subtasks. This rise in EC is mainly due to the augmented
computational load and network flows required to handle
the increasing subtask number. Compared to Random, AD-
PRL (EE) exhibits up to 29.9% less energy consumption at
100 subtasks. The EC disparity between LE and ADPRL (EE)
increases from about 26.2% at 50 tasks to around 41.7%
at 100 tasks. ADPRL (EE) demonstrates an approximate
average reduction of 9.15% compared to the DQN+FCFS
and Greedy strategies. This energy saving is due to ADPRL
(EE)’s ability to optimize task execution and bandwidth
allocation, reducing unnecessary computational efforts and
data transmissions. As a result, ADPRL (EE) consumes less
energy while improving task completion time.

6.6.2 Simulation Results for Synthetic Dataset
In Fig. 9(d), ADPRL (LO) is significantly better than both
Random and LE. Since DQN + FCFS schedules task of-
floading and network flows separately, it obtains around
11.8% higher than Greedy when the number of subtasks
increases to 100. Since ADPRL (LO) can effectively leverage
task dependency into a deep deterministic policy gradient,
it achieves an average delay of 25.2% lower than those of
DQN + FCFS and Greedy at 100 subtasks.

In Fig. 10(d), ADPRL (EE) maintains a consistently lower
energy consumption compared to the baselines with the
number of subtasks from 25 to 100. At 100 subtasks, ADPRL
(EE)’s energy consumption is 68.8% less than Random,
66% less than LE, and 46.5% less than Greedy, while also
maintaining a relatively slighter edge of 33.4% less energy
consumption compared to DQN+FCFS.

6.7 Influence of Change in Network Bandwidth
6.7.1 Simulation Results for Alibaba Cluster Trace Dataset
Fig. 9(e) shows the effect of changing the average bandwidth
value in edge links from 2 Mbps to 8 Mbps on ACT of tasks.
The ACT of LE is constant because all tasks are run on edge
nodes where they are generated, which can be strengthened
by the OR of LE remaining at 0 in Fig. 8 a). It is expected that
ADPRL (LO) performs significantly better than baselines in
the low bandwidth condition while sharing similar results
with baselines in the high bandwidth condition. There is a
significant difference in ACT performance between ADPRL
(LO) and Random. Greedy is not able to make full use
of computation and bandwidth resources when offloading
tasks to target nodes. There is an increase in ACT perfor-
mance difference between ADPRL (LO) and Greedy from
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Fig. 9: Simulation Results for Average Completion Time

about 10% at the average bandwidth 8 Mbps to 56.6% at the
average bandwidth 2 Mbps. ADPRL (LO) is around 44.8%
less than DQN + FCFS in terms of ACT.

In Fig. 10(e), EC of ADPRL (EE) decreases as bandwidth
increases from 2 Mbps to 8 Mbps. This decrease can be
attributed to the enhanced efficiency in data transmission
at higher bandwidths, reducing the time devices spend in
energy-consuming states. The EC of LE is constant due to no
network flows. Additionally, when comparing ADPRL (EE)
with other algorithms, it is evident that ADPRL (EE) is more
energy efficient. Specifically, at the highest bandwidth of 8
Mbps, ADPRL (EE)’s EC is about 73% less than Random,
around 62.4% less than DQN+FCFS, and approximately
30.4% less than Greedy. By efficiently managing network
resources, ADPRL (EE) minimizes energy waste, thus con-
suming less energy than the other methods.

6.7.2 Simulation Results for Synthetic Dataset
Fig. 9(f) shows the effect of changing the average bandwidth
value in edge links from 2 Mbps to 8 Mbps on the ACT
of tasks. The ACT of LE is constant because all tasks are
run on edge nodes where they are generated. When the
bandwidth increases to 8 Mbps, the proposed algorithm
ADPRL (LO) achieves an average delay of 43.1% lower than
those of Random and LE. Given that the number of network
flows remains relatively constant, low bandwidth leads to
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Fig. 10: Simulation Results for Energy Consumption

high latency. Conversely, high bandwidth can substantially
decrease latency. Since DQN + FCFS schedules tasks and
network flows separately, which can hardly adapt to dy-
namic networks, there is an increase in ACT performance
difference between ADPRL (LO) and DQN + FCFS from
about 10% at the average bandwidth 2 Mbps to 21.13% at
the average bandwidth 8 Mbps. ADPRL (LO) is around 10%
less than Greedy in terms of ACT.

Fig. 10(f) shows the effect of changing the average value
of bandwidth in edge links from 2 Mbps to 8 Mbps on the
EC of tasks. The EC of LE remains constant as all tasks are
executed on edge nodes where they are generated. When
the bandwidth increases to 8 Mbps, ADPRL (EE) achieves
an average EC that is 82% lower than both Random and
LE. The EC gap between ADPRL (EE) and Greedy increases
from approximately 48.3% at an average bandwidth of 2
Mbps to about 71.4% at 8 Mbps. ADPRL (EE) is also around
15.8% less than DQN+FCFS, showcasing the adaptability of
ADPRL (EE) to dynamic network conditions.

6.8 Influence of Change in Processing Speed
6.8.1 Simulation Results for Alibaba Cluster Trace Dataset
Fig. 9(g) shows the effect of changing the average value of
processing speed in edge links from 10 Mcps to 40 Mcps
on ACT of tasks. It is expected that the ACT gap between
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ADPRL (LO) and baselines will decrease as the processing
speed condition transitions from low to high. There is a
significant difference in ACT performance between ADPRL
(LO) and Random. Greedy cannot make full use of computa-
tion and processing speed resources when offloading tasks
to target nodes. There is an increase in ACT performance
difference between ADPRL (LO) and Greedy from about
11.3% at the average processing speed of 40 Mcps to 48.0%
at the average processing speed of 10 Mcps. ADPRL (LO) is
around 71.5% less than DQN + FCFS on ACT.

Fig. 10(g) shows a trend of all algorithms decreasing EC
as processing speed increases from 10 Mcps to 40 Mcps. All
algorithms demonstrate a decrease in EC with faster pro-
cessing speeds. This decrease is attributed to more efficient
task processing, leading to reduced active time and energy
usage of devices. Furthermore, ADPRL (EE)’s EC is more
pronounced compared to other baselines like Random, LE,
Greedy, and DQN+FCFS. Specifically, at 20 Mcps, ADPRL
(EE)’s energy consumption is approximately 62.7% less than
Random, around 58.5% less than LE, about 22% lower than
DQN+FCFS, and nearly 31% less than Greedy. By efficiently
managing computational resources through optimized of-
floading decisions, ADPRL (EE) minimizes energy waste,
thus consuming less energy than the other methods.

6.8.2 Simulation Results for Synthetic Dataset
Fig. 9(h) shows the effect of changing the average value of
processing speed in edge links from 10 Mcps to 40 Mcps on
the ACT of tasks. When the processing speed increases to
40 Mcps, the proposed algorithm ADPRL (LO) achieves an
average delay of 58.9% lower than those of Random and LE.
ADPRL (LO) demonstrates a decrease of around 51.7% in
ACT compared to the DQN+FCFS. ADPRL (LO) is around
41.6% less than Greedy in terms of ACT.

Fig. 10(h) shows the energy consumption trend as pro-
cessing speed increases from 10 Mcps to 40 Mcps. Specif-
ically, at 40 Mcps, ADPRL (EE) shows remarkable energy
efficiency compared to the baselines. ADPRL (EE) is ap-
proximately 85.1% less than Random, around 83.4% less
than LE, about 79.8% less than DQN+FCFS, and nearly
35.7% less than Greedy on energy consumption. ADPRL
(EE)’s efficient computational resource management and
optimized offloading decisions result in significantly lower
energy consumption than other methods.

6.9 Influence of Change in the Number of Edge Nodes
6.9.1 Simulation Results for Alibaba Cluster Trace Dataset
Fig. 9(i) shows the effect of changing the number of edge
nodes from 25 to 100 on the average completion time of
tasks. It is expected that an increase in the number of edge
nodes decreases the average completion time due to the
availability of more resources. Given that task and data
generation are assumed to be confined to the first 25 nodes,
the ACT of LE is constant. It is expected that ADPRL
(LO) performs significantly better than baselines. There is a
significant difference in ACT performance between ADPRL
(LO) and Random. Greedy is not able to make full use
of computation and bandwidth resources when offloading
tasks to target nodes. There is an average ACT performance
difference of 24.8% between ADPRL (LO) and Greedy at the

number of edge nodes ranging from 25 to 100. ADPRL (LO)
is around 44.8% less than DQN + FCFS in terms of ACT.

Fig. 10(i) reveals a trend of decreasing EC for all algo-
rithms except LE as the number of edge nodes increases
from 25 to 100. This is due to a more balanced task distribu-
tion across the network, reducing the workload and active
time for individual nodes, which consequently lowers en-
ergy consumption. However, it’s important to consider the
tradeoff, as excessively increasing the number of edge nodes
may not yield proportional gains in energy efficiency and
task completion time. Given that task and data generation
are assumed to be confined to the first 25 nodes, the number
of edge nodes does not impact the EC of LE. Specifically,
at 100 nodes, ADPRL (EE)’s EC is approximately 58.4%
less than Random, around 35.8% less than DQN+FCFS,
and about 7.7% lower compared to Greedy. These differ-
ences illustrate ADPRL (EE)’s effective task allocation and
resource management strategies, which optimize task dis-
tribution across multiple nodes, minimizing energy waste
while efficiently utilizing computational resources.

6.9.2 Simulation Results for Synthetic Dataset
As shown in Fig. 9(j), there is a decrease in ACT for all
algorithms due to an increase in the number of edge nodes.
Given that task and data generation are assumed to be
confined to the first 25 nodes, the ACT of LE is constant.
ADPRL (LO) is significantly better than Random and LE.
The ACT of DQN + FCFS is around 36.4% higher than that
of ADPRL (LO). ADPRL (LO) is around 11% lower than
Greedy in terms of ACT.

Fig. 10(j) shows the effect of changing the number of
edge nodes from 25 to 100 on EC of tasks in the synthetic
dataset. Given that task and data generation are assumed
to be confined to the first 25 nodes, the EC of LE is con-
stant. Specifically, at 100 nodes, ADPRL (EE) demonstrates
remarkable energy efficiency compared to the baselines.
It consumes approximately 94.5% less energy than Ran-
dom, about 94.3% less than LE, about 90.6% less than
DQN+FCFS, and nearly 70.8% less than Greedy. ADPRL
(EE) effectively utilizes the increased number of edge nodes
to distribute tasks more evenly, thus reducing the energy
consumption on individual nodes and the overall network.

6.9.3 Challenges with Increasing Number of Edge Nodes
There are two main challenges associated with our ap-
proach, especially as the number of edge nodes scales from
25 to 100, and even more nodes. One challenge is increased
signal transmission delays. As the number of edge nodes
increases, the volume of common signals transmitted be-
tween the central control and the edge nodes also escalates.
This increase in signal traffic results in higher transmission
delays, potentially affecting the overall efficiency of the
CEC system. Another challenge is the slower convergence
of model training. This is due to the more complex and
varied data being processed and the need for more extensive
coordination and synchronization across nodes.

While these challenges are crucial to the scalability
and performance of CEC systems, our current study has
certain limitations in directly addressing them. Our work
primarily focused on optimizing task offloading, bandwidth
allocation, and waiting time decisions under small-scale
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networks and nodes. In our future studies, we will explore
efficient data compression techniques and optimize network
protocols to mitigate increased signal transmission delays.
For slower model convergence, we will consider advanced
parallel training algorithms to accelerate the model training.

6.10 Performance Analysis Across Different Datasets
The primary reason for employing both the Alibaba cluster
trace dataset and the synthetic dataset was to showcase
the adaptability and effectiveness of our algorithm across
different scenarios. Both the Alibaba cluster trace dataset
and the synthetic dataset exhibit a trend where ACT and
EC increase as the number of tasks or subtasks rises and
decrease as bandwidth, processing speed, and edge node
number increase. However, the specific factors contributing
to this trend vary between the datasets.

This similarity of performance on the Alibaba cluster
trace and synthetic dataset arises primarily due to common
distribution properties and modifications to the Alibaba
cluster trace dataset. Alibaba cluster trace dataset and syn-
thetic dataset exhibit similar distribution characteristics in
some attributes, such as data size and release time. The
Alibaba cluster trace dataset, while comprehensive, lacks
specific information crucial for our experiments. To address
this, we modified the dataset, particularly in attributes like
data size and release time, to generate DAGs suitable for
our analysis. These modifications, while necessary, led to a
certain level of uniformity in the dataset’s behavior, align-
ing it more closely with the Synthetic Data. For instance,
the release time of each task of two datasets is randomly
selected using a Poisson distribution. The data size of each
task is generated randomly from a normal distribution with
a mean of 500 Mbit and a variance of 80%.

However, there are performance variations observed be-
tween the two datasets. In the Alibaba cluster trace dataset,
the rise in ACT is primarily due to increased network
flows. For instance, as shown in Fig. 9 c), as the number
of subtasks increases from 75 to 100, ACT sharply rises
due to a dramatic increase in network flows. Conversely, in
the synthetic dataset, ACT is influenced by device waiting
time for executing tasks and the total number of network
flows. For example, in Fig. 9, with an increasing task number
and subtask number, the ACT trend in the synthetic dataset
differs from the trend on the Alibaba cluster trace dataset.
It initially shows a slow increase followed by a rapid esca-
lation. This reflects the distinct nature of task characteristics
in this dataset. The difference can be attributed to the
controlled, synthetic nature of the dataset, which allows for
a more varied and extensive range of task characteristics.

7 CONCLUSION

In this work, we study the ODTO problem and propose AD-
PRL, an asynchronous DRL-based algorithm. We evaluate
ADPRL on simulation experiments with the Alibaba cluster
trace dataset and synthetic dataset. The simulation results
demonstrate that ADPRL outperforms both heuristic and
learning-based baselines. In future work, we will focus on
developing strategies to improve the scalability of our ap-
proach, particularly by reducing signal transmission delays
and accelerating model training.
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