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Decentralized Task Offloading in Edge Computing:
An Offline-to-Online Reinforcement
Learning Approach

Hongcai Lin ¥, Lei Yang ¥, Hao Guo

Abstract—Decentralized task offloading among cooperative
edge nodes has been a promising solution to enhance resource
utilization and improve users’ Quality of Experience (QoE) in
edge computing. However, current decentralized methods, such
as heuristics and game theory-based methods, either optimize
greedily or depend on rigid assumptions, failing to adapt to the
dynamic edge environment. Existing DRL-based approaches train
the model in a simulation and then apply it in practical systems.
These methods may perform poorly because of the divergence
between the practical system and the simulated environment.
Other methods that train and deploy the model directly in real-
world systems face a cold-start problem, which will reduce the
users’ QoE before the model converges. This paper proposes
a novel offline-to-online DRL called (O20-DRL). It uses the
heuristic task logs to warm-start the DRL model offline. However,
offline and online data have different distributions, so using
offline methods for online fine-tuning will ruin the policy learned
offline. To avoid this problem, we use on-policy DRL to fine-tune
the model and prevent value overestimation. We evaluate 020-
DRL with other approaches in a simulation and a Kubernetes-
based testbed. The performance results show that O20-DRL
outperforms other methods and solves the cold-start problem.

Index Terms—Edge computing, decentralized task offloading,
deep reinforcement learning (DRL).

1. INTRODUCTION

ITH the proliferation of the Internet of Things de-
vices (e.g., wearable devices, smartphones), many new
computation-intensive and latency-sensitive applications (e.g.,
face recognition, augmented reality) have recently emerged.
Due to the demand for high network bandwidth in these
applications, edge computing (EC) becomes a preferable
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paradigm for processing data near end-users at the network
edge. However, edge nodes are typically limited in computa-
tion resources. Yet, the computation workload in edge nodes
is highly dynamic and geographically imbalanced. Therefore,
it is challenging for an individual edge node to provide sat-
isfactory computation service all the time. Fortunately, we
can exploit cooperation among edge nodes [1] to enhance re-
source utilization and improve users’ Quality of Experience
(QoE). For example, overloaded edge nodes can forward part
of their workload to other edge nodes with light computation,
thereby balancing workload among geographically distributed
edge nodes.

Most of the literature on task offloading attempts to min-
imize the latency or energy consumption [2], [3], [4], [5] in
collaborative edge computing. However, each operational unit
in network systems, such as edge nodes and transmission links,
is unstable and may fail while processing tasks. Therefore,
the task offloading scheduler in edge nodes should be more
intelligent to balance the latency and reliability of tasks.

Existing solutions in collaborative edge computing can be
divided into two categories, centralized approaches, and de-
centralized approaches. Note that these methods only optimize
latency or energy consumption without considering reliability.
Specifically, the centralized approaches [6], [7], [8] require
global knowledge of the system state to make the task offloading
decision of each task in the edge network. Nevertheless, up-
to-date global knowledge of fast-changing information, such
as task information and the workload of edge nodes, would
require prohibitive transmission overhead, which is unrealis-
tic in practical large-scale networks. Traditional decentralized
heuristic approaches [9], [10] are based on greedy optimization
and may trap into suboptimal from a long-term perspective. On
the other hand, game theory-based methods [4] heavily rely
on rigid assumptions to calculate the static Nash Equilibrium
(NE), making it difficult to characterize real-world scenarios
comprehensively.

Recently, Deep Reinforcement Learning (DRL) has at-
tracted significant attention in both academia and industry [11].
DRL-based task offloading approaches can enjoy the following
advantages. First, DRL can adaptively make task-offloading
decisions based on the dynamic environment. Second, DRL
aims to maximize the discounted cumulated reward to optimize
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the objective from a long-term perspective. However, existing
DRL-based approaches [12] train the DRL model in the simu-
lation environment and deploy the model in real-world systems.
Since it is difficult to characterize the real-world system in the
simulation environment, the model that achieves good results in
the simulation environment may not be effective when deployed
to the actual system.

Alternative methods [1], [2], [3], [13] directly train and
deploy the DRL model in the edge computing environment,
which is also called online learning. Online learning usually
encounters the cold-start problem, which might cause poor QoE
to users before model convergence. The recent offline DRL
[14], [15] provides another practical way to apply DRL to edge
computing. Offline DRL trains the DRL model using previously
collected datasets without further interaction with the environ-
ment. Therefore, the offline DRL model can be deployed in the
edge computing environment for task offloading. However, the
behavior policy of datasets may be sub-optimal, and we cannot
correct the learning policy via interaction with the environment,
leading to an unsatisfactory performance offline DRL model.
Therefore, it is necessary to fine-tune the DRL when deploying
the DRL model in a real-world system.

In this paper, we study the problem of decentralized task
offloading in edge computing. Each edge node can process the
arrival tasks locally or offload them to other edge nodes based
on local information. First, we formalize this problem as a
Decentralized Partially Observable Markov Decision Process
(Dec-POMDP). Then, we propose an offline-to-online DRL
solution called O20-DRL. O20-DRL first trains a DRL model
in the offline phase using heuristic task running logs to warm-
start the DRL model. Then, in the online stage, due to the
distribution shift between offline and online data [14], [16],
directly applying offline DRL in online learning will lead to
the high bias estimation of unseen observations and destroy
the good policy obtained via offline DRL. Therefore, O20-
DRL uses on-policy DRL to fine-tune the model and avoid
performance degradation in the initial online phase.

In sum, our main contributions can be summarized as
follows:

o We consider the problem of decentralized task offloading
among cooperative edge nodes. Each edge node makes
the task offloading decision independently based on local
information. We are the first to consider the reliability of
tasks during execution and transmission in this decentral-
ized edge network.

o We formalize the decentralized task offloading problem as
a Dec-POMDP and propose a novel offline-to-online DRL
solution called Offline-to-Online DRL (O20-DRL). Our
approach can build upon most prior heuristic algorithms to
enhance their performance. To our knowledge, this is the
first work to solve the cold-start problem when applying
DRL in edge computing.

o We compare O20-DRL with benchmark approaches in a
numerical simulation and a Kubernetes-based testbed. The
performance results show that O20-DRL has advantages
in the success rate of tasks over state-of-the-art DRL meth-
ods and avoids the cold-start problem.
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The rest of this paper is organized as follows. The related
work is reviewed in Section II. The system model and problem
formulation are presented in Section III. The details of the
DRL approach are described in Section I'V. Simulation results
are presented in Section V. The experiment in the Kubernetes-
based testbed is presented in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

Recent research [7], [17], [18], [19] has considered the co-
operation between edge nodes. The authors in [17] study the
joint multi-task partial computation offloading and network
flow scheduling problem. They propose a heuristic algorithm
to minimize the average completion time of all tasks. [18] ad-
dresses the peer offloading problem in mobile-edge computing,
focusing on the optimization of time-average throughput under
energy consumption and worst-case response time constraints.
They propose two online algorithms to manage the stochastic
arrival of computation tasks, with a particular emphasis on
the often-neglected worst-case response time, a critical quality
of service metric in real-time applications. However, these re-
searches need centralized control, which may cause prohibitive
transmission overhead, and are not scalable to large-scale
edge networks.

Some work investigated the decentralized task offloading
problem based on heuristic algorithms [9], [10], [20], [21].
In [9], the authors studied the task offloading problem in a
sensor network, where each device aimed to minimize the
execution latency and energy consumption. They proposed a
reactive distributed algorithm to solve the problem. The au-
thor in [21] introduced an efficient load-balancing protocol for
fog computing, which utilized a threshold-based mechanism
to efficiently distribute computational tasks, adapting to node
heterogeneity and reducing delay and overhead. However, those
methods mainly focus on greedy optimization, which may be
suboptimal solutions from a long-term perspective.

Some papers propose decentralized task offloading algo-
rithms based on game theory [4], [S], [22]. For example, the
authors in [4] investigated the task offloading problem in fog
computing. They formulated the problem as multi-user compu-
tation offloading game and proposed a Static Mixed Nash Equi-
librium (SM-NE) algorithm to derive the NE. Furthermore, [22]
extended the scope of this research by employing a multileader
multifollower Stackelberg game to delineate optimal pricing
strategies for MEC servers and user data offloading strate-
gies. Their approach uniquely incorporates user risk awareness,
which is articulated through prospect-theoretic utility functions,
and addresses the potential for server overexploitation by uti-
lizing the theory of the commons. However, these approaches
are built on rigid assumptions and may not characterize
real-world scenarios adequately. Moreover, game theory-based
methods must frequently recalculate the optimal policies, which
would cause a non-negligible computational overhead at the
execution phase.

Deep reinforcement learning (DRL) has recently attracted
significant attention from academia to industry [1], [2], [11],
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TABLE I
MAIN NOTATIONS

Notations  Description

The set of edge nodes in the network.

The set of transmission links in the network.
The total number of edge nodes.

1%
E
N
7 The index of an edge node.
eij
t
T
Ai

The transmission link between edge node 4 and j.
The index of time slot.

The total time slots.

The task arrival probability of edge node 3.

K;(t) The task generated at edge node 4 in time slot ¢.
s;(t) The input size of task Kj;(t).
c;i(t) The CPU cycles of task K (t).
di(t) The deadline of task K;(¢).
Tij The transmission rate from edge node 7 to j.
F; The computation capacity of edge node i.
a; The failure rate of edge node <.
Bij The failure rate of the transmission link e;;.
oi The observation of edge node ¢ in time slot ¢.
al The action of edge node 7 in time slot ¢.
¢ The team reward in time slot ¢.

[23]. The authors in [2] studied the decentralized task offloading
problem in a pervasive edge computing network that consists
of multiple edge devices. A decentralized task offloading algo-
rithm is proposed based on multi-agent imitation learning. The
authors in [23] studied the joint task partitioning and power con-
trol problem in a fog computing network with multiple mobile
devices (MDs) and fog devices (FDs). They proposed a multi-
agent deep deterministic policy gradient (MADDPG) based task
offloading algorithm to reduce the system utility. However, the
above work directly applies DRL to edge computing, which will
encounter the cold-start problem that may significantly affect
the user’s QoE before the DRL model converges. Offline DRL
[14], [15] considers training the DRL model without interacting
with the environment. The authors in [16] consider the offline-
to-online problem by balancing the replay buffer between the
offline and online buffer. However, it still suffers from a perfor-
mance decline in part of their experiment.

In this paper, we consider decentralized task offloading
among edge nodes. Different from prior works, we further
consider the reliability of task execution and transmission re-
liability. Furthermore, to our knowledge, we are the first to
solve the cold-start problem effectively in the context of edge
computing with DRL.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. System Model

The system model is shown in Fig. 1. We consider a het-
erogeneous edge network that is modeled as a connected graph
G = (V,&), where V is the set of edge nodes, V = {i|1 <i <
N}, and & is the set of links connecting different edge nodes,
& ={e;jlt,j € V}. Note that this model can be applied to both
wired and wireless scenarios. The time is slotted with a con-
stant slot duration, and the time slot index can be denoted by
t, where ¢t € {1,2,...,T}. Each edge node i € V may receive
computation-intensive and delay-sensitive tasks from end-users
in each time slot. We assume that a new task arriving at edge
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W

End Devices

Fig. 1. Overview of the system model. The system includes a set of edge
nodes that receive tasks from end devices. Each edge node maintains an
execution queue to process tasks, receiving queues for receiving tasks from
other edge nodes and sending queues for transmitting tasks to other edge
nodes.

node 7 within time slot ¢ follows a Bernoulli distribution [24],
[25], [26] with probability \;. K;(t) denotes the task arriving at
the edge node ¢ in time slot ¢, which can be described by a tuple
{si(t),ci(t),d;(t)}. s;(t) is the size of the program code and
input data; ¢;(t) = 6;(t) * s;(t) [4], [27] is the number of CPU
cycles required to finish the task, where J, (¢) is the computation
intensity that indicates the required CPU cycles per bit; d;(t) is
the deadline of the task. Each edge node 7 can either process the
arriving task locally or offload it to other edge nodes. Each edge
node ¢ maintains an execution queue with tasks scheduled based
on First-In, First-Out (FIFO) order. Current tasks must wait
in the execution queue if other tasks occupy the computation
resources. We denote by F; the computation capacity of edge
node i. Thus, the computation time for the task K;(¢) processed
by the edge node j can be calculated as
_ai(?)

T5 (1) = =5 (1)
J

Let r;; denote the transmission rate between edge node ¢ and j.
Thus, the transmission time to send task K;(t) from edge node
1 to j can be computed by

7t () = 50 @)

Each edge node maintains N — 1 receiving queues for receiving
tasks from other edge nodes and N — 1 sending queues for
transmitting tasks to other edge nodes. The tasks are transferred
following the FIFO order. After task K;(¢) is received by edge
node j, it waits in the execution queue for processing and no
longer forwards the task to other edge nodes [2], [4]. This is
because in this fully connected network, the result of multiple
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forwarding of a task can be completed by one forwarding, and
reducing the transmission time.

The system’s reliability depends on the failure probability
of each operational unit when processing tasks, such as edge
nodes and transmission links. The failure of these components
includes hardware, software, etc. Any failure case can be nor-
malized to a Poisson distribution driven by a failure rate [28],
[29], [30]. In this article, the processing time taken by edge node
J to complete task K;(t) without failure is 777;(¢). During the
time interval (0, 7 (t)], failure occurs and is assumed to be a
Poisson process with failure rate parameter «;. The total num-
ber of failures that happen in the edge node j when processes
task K;(t) is denoted by N;(T7;(t)). Therefore, the probability
of N;(Tf;(t)) =k during the time interval (0, T};(t)] can be
computed as

(0 T5 (1))
k!

where k = 0 if the task K;(t) is processed successfully during
time interval (0,77;(t)]. Therefore, the reliability of the task
K;(t) processed by the edge node j can be calculated as

Pr{N;(T5(t)) = k} = e T k>0, (3)

R () = e T, @

We assume that the failure is a one-off incident that would
not affect subsequent tasks [31]. Similarly, the reliability of
the task K;(t) when transferred from edge node i to j can be
calculated as

—T;(t)Bi; ’

(&)

where f3;; denotes the failure rate of the transmission link
between edge node 7 and edge node j.

Rfj(t) =e

B. Problem Definition

1) Decision Variable: In time slot ¢, when an edge node
¢ has a task to process, it can either process it locally or
offload it to other edge nodes. Binary decision variable x;;(t)
denotes whether task K;(¢) is offloaded to edge node j, where
x;;(t) = 1 if task K (¢) is offloaded to edge node j, otherwise
x;;(t) =0. For generality, z;;(t) =1 denotes edge node %
processes its arrival task locally.

2) Constraint: Each task is executed by only one edge node
if a task arrives at edge node ¢ in time slot ¢, which can be
expressed as

N
> w(t) <1 (6)
j=1

The completion time of task K (t) can be calculated as
Tilt) =D iy ()(T5 (1) + Tiy(1) + T (1) + T5(8), ()
JEN

where T}”(t) and T};(t) denote the transmission waiting time
and transmission time from edge node 7 to j, respectively.
T°(t) and Tj(t) denote the execution waiting time and
execution time in edge node j, respectively. The task K;(t)
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—> Collect offline data @ Heuristic controller
e Collect online data .
Task offloading % DRL model
e Model deployment
Load offline model
Edge Node 1

e
B

-==-» DRL control

Offline Training Online Fine-tuning

Heuristic control

Fig. 2.  Overview of O20-DRL. O20-DRL uses the task running logs
generated by existing heuristic approaches to train an offline DRL model.
Then, O20-DRL fine-tunes the model using online logs when deploying the
model in the real system.

should be completed before its deadline, which can be ex-
pressed as

Ti(t) < di(2). ®)

Otherwise, the task is overdue and automatically dropped from
the edge node.

3) Objective: The objective is to maximize the success rate
of tasks in the duration time 7. A task K (t) is successful if its
completion time does not exceed its deadline d;(t) and executes
successfully without any failure in execution or transmission.
The objective is to maximize the task success rate defined
as follows

|K succ|
|Ksucc| + |Kdr0p| + ‘[(fail|7
where | K| denotes the number of tasks processed success-
fully. | Kgrop| denotes the number of tasks that exceed their dead-

line and are dropped from the edge network, and | K| denotes
the number of tasks that failed during execution or transmission.

€))

IV. PROPOSED OFFLINE-TO-ONLINE DRL APPROACH

This section presents a novel offline-to-online DRL approach
for decentralized task offloading between cooperative edge
nodes. We provide the overview of O20-DRL in Fig. 2.

A. Reinforcement Learning

Reinforcement Learning (RL) involves an agent learning and
optimizing its behavior through interaction with the environ-
ment to maximize cumulative rewards. In each interaction, the
agent observes the environment state sy, takes action a;, and
receives a reward 7y, leading to the next state s;4;. Actions

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:28:24 UTC from |IEEE Xplore. Restrictions apply.



LIN et al.: DECENTRALIZED TASK OFFLOADING IN EDGE COMPUTING: AN OFFLINE-TO-ONLINE REINFORCEMENT LEARNING APPROACH

can be discrete or continuous, governed by stochastic policies
a; =m(.|s;) or deterministic policies a; = p(s;). The agent
aims to maximize the discounted cumulative reward R; =
Yoo re, where y € (0,1). The interaction is modeled as a
Markov Decision Process (MDP) defined by (S, A, R, P, po)-
Here, S denotes the state space; A is the action space; R :
S x AxS— R represents the reward function, with r, =
R(s¢,at, S141); P S x A— P(S) is the state transition func-
tion, where P(s'|s,a) denotes the probability of transitioning
to state s’ given the current state s and action a; py is the initial
state distribution.

B. Dec-POMDP Formulation

A Dec-POMDP can be described as a tuple (NS, A,
P,r,0,p,v). N ={1,..., N} denotes the set of N agents. s; €
S describes the state of the environment at time slot ¢. The initial
state sg ~ p is drawn from distribution p. At each time step ¢,
each agent i € V' chooses an action a! € A, forming a joint
action a; = {a!}Y . This causes a transition in the environ-
ment according to the state transition function P(s;y1|st, at).
Then, all agents receive a scalar team reward r, = (s, at). We
consider a partially observable scenario in which each agent
i € N has individual observation o} € O and chooses its action
with a decentralized policy ai ~ 7%(-|o}) that is based only on
its observation. -y is the discounted factor of the return R;, where
Rt = Zzo ﬁ/i’l‘t_t,_i.

For the decentralized task offloading problem, the agents
correspond to the edge nodes, the observation of each edge node
corresponds to the local network information, and the action of
each edge node is the task offloading decision. The feedback of
each task is a scalar value to denote whether a task is successful,
failed, or dropped. The reward is the sum of feedback at the
current time slot. Therefore, we establish the Dec-POMDP for
our problem next.

1) Observation: Attime slot ¢, each edge node ¢ observes its
local information from the edge network. such as the task arrival
probability \;, the execution failure rate «;, the computation
capacity Fj;, the length of execution queue [/; and receiving
queues [} s the transmission rate r;; to communicate with other
edge nodes and the task information including task size s;(t),
task complexity ¢;(t) and task deadline d;(¢) when a task ar-
rives. Thus, the observation of edge node 7 at time slot ¢ can be
defined as

0f = {\i, i, By, {l;, Lty rigs {si(t), ci(t), di(t)}}.

Note that the observation includes different magnitudes of vari-
ables, so we let each element of the observation divide by the
corresponding maximum value. This will make each element in
the range of [0, 1], ensuring that all elements are equally crucial
for training the DRL model.

2) Action: At time slot t, if a task arrives, each edge node ¢
chooses an action a! to offload the task to edge node 7, including
itself, according to its current observation o}. So each edge node
at least needs [V discrete action to represent all the edge nodes.

In this dynamic edge environment, an edge node may not
receive a task from end-users in some time slots. However, the
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edge node also needs to select an action to form a transition
(0}, a},ry,05,,). Therefore, we add another action to the list
of available actions to represent the case when an edge node
does not receive a task from end-users. In this case, the edge
node does not need to make the offloading decision and can
only choose this action. This can be implemented by masking
other available actions when an edge node does not need to
make the offloading decision. Our proposed method can process
random arrival tasks in the most realistic scenarios with this
modification.

The neural network has a random policy in its initial training
phase. It is helpful to guide the DRL model converging to a
better solution by controlling the available actions. For example,
if an edge node has a heavy workload, it will not want to
receive the task from other edge nodes. Therefore, when an edge
node needs to make a task offloading decision, it requests other
edge nodes, whether their workload exceeds their execution
queue length. Then, the edge node masks the available action
to offload the task to those edge nodes whose workload has
exceeded their queue length. This only needs 1 bit to send.
Hence, the query of the workload state only incurs a small
signaling overhead and can be ignored [25].

3) Reward: A task may be completed across multiple time
slots. For task K;(t), edge node i will receive +1 feedback
if task K;(¢) is processed successfully in the later time slot.
Otherwise, it will receive -1 feedback later if task K;(¢) is
dropped or failed. In this Dec-POMDP, all edge nodes share
a team reward. The team reward in each time slot is defined as
the sum of feedback of all edge nodes in this time slot.

C. Offline-to-Online DRL

Deploying models trained through DRL directly into oper-
ational environments, especially within the realms of the In-
ternet of Vehicles (IoV) and robotics, presents considerable
challenges [32]. The fundamental nature of DRL necessitates
active engagement with the environment to gather data through
a process known as exploration, which can inadvertently re-
sult in irreversible system faults. This exploration phase can
escalate the costs of trial-and-error learning and degrade the
user’s QoE before the DRL models converge. However, heuris-
tic approaches have been proposed and can be directly deployed
in an edge computing environment without the training phase.
We can deploy heuristic approaches in the edge networks and
collect task running logs to train an offline DRL model. Then,
when we deploy the DRL model in the edge network, we can
collect new data by fine-tuning the DRL model. Therefore, our
proposed approach consists of three phases, which are existing
heuristic control, offline training, and online fine-tuning, and
will be introduced next.

1) Heuristic Control: Heuristic-based task offloading ap-
proaches have generally been deployed in a real-world network
system. However, these approaches have no learning mecha-
nism, which cannot benefit from the history task running log.
We can collect these data to train an offline DRL model. The
DRL model can imitate the policy from heuristic approaches
and improve its performance through the learning mechanism.
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The benefit of using the task running log of traditional heuristic
approaches to train the DRL model can be summarized in the
following two aspects. First, we can warm-start the DRL model
with a good policy instead of a random policy in the initial
online phase. A random policy may significantly affect users’
QoE. Second, the heuristic policy in the task running log can
guide the DRL model to converge to a better solution. We would
show it in the experiment part.

2) Offline Training: 1t is intuitive to train N DRL models
for each edge node using individual task running logs. However,
the network information in each agent’s observation is limited.
Each edge node cannot aware of the task offloading decision
made by other edge nodes. It is challenging for all the agents
to converge to a good solution. To address this problem, we
can utilize the task running logs of all edge nodes to train
a sharing DRL model and deploy the sharing DRL model in
each edge node for decentralized task offloading. However, the
definition of observation in Section IV-B1 is insufficient for the
neural network to discriminate each edge node’s observation.
Therefore, we modified the observation by combining it with
a one-hot encoding of the edge node index. For example, the
one-hot encoding of edge node ¢ is an array with length NN,
where the index ¢ — 1 is 1 while other are 0. Since the training
is an offline process, we can train the offline DRL model in a
powerful edge node or in the cloud server. After training, we
can deploy the DRL model in each edge node for decentralized
task offloading.

In order to train an offline DRL model using the task running
logs of heuristic approaches, we use off-policy DRL in the
offline phase. DQN [33] is the most classical off-policy DRL
method and has been widely applied in edge computing. How-
ever, DQN uses a e-greedy policy, which cannot explore a good
solution to utilize the computation resources of all edge nodes
in our online decentralized task offloading problem while action
random choices based on the probability of each action can
utilize the computation resource of all edge nodes. Therefore,
we design offline training of the DRL model based on Discrete
SAC [34], [35].

Two Q networks are used to avoid value overestimation. Let
¢1 and @9 be the parameters of two Q networks, respectively.
Correspondingly, ¢; and ¢, be the target network parameters
of ¢1 and ¢, respectively. 6 denotes the parameters of the actor
network. The soft value function can be calculated as follows

V(o) =m0(oh0)T ( min Qo (o1,) — alogmtof.) ).
Then, the target value can be calculated as

y(re,0f 1) =re + 7V (0f4 ).

we can update each Q network by minimizing the following
Mean Square Error (MSE) using gradient descent:

N
vdﬁ%‘ Z Z(Q@ (Oiv a;) - y(rt’ Oi+1))2'

B i=1

However, there exists a distributional shift between the policy
of heuristic approaches that collected the data and the offline
learning policy [14]. To address the problem, we adopt the CQL
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regularizer [15] to optimize the Q network. The regularizer can
be expressed as

R(Oia a;) = log ZGXP(Q@ (Oia a)) - Q¢i (0i7 azzf)

Note that we need to minimize the regularizer. Therefore, the
first term is to decrease the Q values for unseen actions and
the second term is to increase the Q values for seen actions in
the offline data. With the regularizer, we update the Q network
by minimizing the following equation using gradient descent:

N
1 i i i i
Vi, E Z Z(an (0, ap) — y(re, 0t+1))2 + AR(0}, ay),

B i=1
(10)

where ). is the weight of the regularizer.
For the actor update, we need to maximize the soft value
function using gradient ascent:

1
Veﬁ Z Z V(0i41)-

B i=1

(1)

Importantly, in order to fine-tune the DRL model based on
online data generated by the DRL scheduler, we can train
the model with on-policy actor-critic methods. Therefore, we
train an additional critic network in the offline phase. Let w
be the parameters of the critic network. We update the critic
parameters by minimizing the following MSE objective using
gradient descent:

1 N , _
v”@;;(m(oz) —y(re,0041))*. (12)
Notes that the critic network will be used in the online phase.

The reward value in each step has a wide range, which
seriously affects the learning of neural networks. Therefore,
we normalize the rewards in the offline task running logs to
improve convergence speed and performance. We provide the
algorithm to train the offline DRL model in Algorithm 1.

3) Online Fine-Tuning: Although we can directly deploy
the offline DRL model in the system for online task offloading,
we can further improve its performance via online fine-turning.
When deploying the DRL model in the system, each edge node
will accumulate new task running logs during execution. There-
fore, we can periodically collect the real time data in all edge
nodes to fine-tune the DRL model and then update the DRL
model in each edge node. Note that we only need to deploy the
actor network in each edge node for online task offloading. The
actor network only uses three fully connected layers to build
the neural network. Therefore, the data size of the actor model
is less than 100KB, which only causes a small communication
overhead. Moreover, we only update the model when collecting
enough data to ensure the adjustments are based on sufficient
information and avoid overfitting or frequent model changes.

The challenge that prevents online optimization is the distri-
bution shift between offline data and online data [16]. The Q
network and critic network is pre-trained based on offline data,
which will cause overestimation for unseen observations in the
online phase. Notes that we have trained an additional critic
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Algorithm 1: Offline Training

Algorithm 2: Online Fine-Tuning

input : Initialize Q network Q4,, Q4,; actor
network 7rg; critic network V.
Initialize target Q network Qg, < Q4,,
Qg < Qg

Load offline data D.

Normalize the rewards r; in data D.

1 for t<1to N do
2 Sample min-batch B from D.

3 Train the critic network V,, using gradient
descent from equation (12).
4 Train the actor network 7y using gradient ascent

from equation (11).
5 Train the @, and @4, network using gradient
descent from equation (10).
6 | Update the target Q network Qy,, @4, with
7| gi=(1—T7)p +7¢; fori=1,2.
8 end
output: actor my, critic V,,.

network in the offline phase. Therefore, we can use on-policy
actor-critic DRL to fine-tune the DRL model.

To address this issue, we leverage the GAE in [36] to balance
the bias of value estimation and variance of return. The exper-
iment in Section V shows that our approaches can address the
overestimation problem and avoid performance degradation in
the initial online fine-tuning phase.

We can calculate the GAE recursively as

13)
(14)

Ay =0, + (M)A,
(5; =T+ ,vaold (01-1-1) - Vwold (0;)7

where 6! is the Temporal Difference (TD) error. Therefore, the
target value can be calculated as follows,
Vi = Af + Vi (0)). 5

We use clip trick in PPO [37] to update the actor network.
Therefore, we update the actor network by maximizing the
following objective using gradient ascent:

[min (r(0)AL,n(r(0))A})],  (16)

where r(6) is the ratio between the new policy and the
old policy:

mo(aj|o})

r(l)=——r 5 17
TOo1a (at ‘Ot)
and 7(x) is a clip function expressed as
14¢e, >1+¢
n(x) =< x, l—e<z<l+c¢. (18)
1l—¢, <1—¢

input : load offline actor 7y and critic V,,.

1 while True do
2 Collect a set of trajectories Dy, by running policy
mp in the edge network.
Normalized the rewards r; in Dy.
Compute advantage A%
for k <1 to K epochs do
Update the actor network using gradient
ascent by equation (16).
7 Update the critic network using gradient
descent by equation (19).

QA U A W

8 end
9 end
output: actor 7y, critic V.

We update the critic network by minimizing the following
MSE objective using gradient descent:

1 T N . N2
VwWZZZ(Vw(Ot)*Vt) :

D t=0i=1

19)

Similar to offline training, we normalized the rewards in col-
lected trajectories to improve the DRL convergence speed and
performance. We provide the algorithm for online fine-tuning
in Algorithm 2.

V. EVALUATION

In this section, we first present the setup and benchmarks
in our simulation. Then we use simulation environments to
evaluate the performance of our proposed approach for solving
the decentralized task offloading problem.

A. Simulation Setup

We use Python to implement a simulator for the edge com-
puting environment. The default parameter of the environment
is as follows. The number of edge nodes is 20. The total number
of time slots is 100, and each time slot is 0.5s. The task arrival
probability at each edge node in each time slot is uniformly
distributed on [0, 1]. The input size of tasks follows a uniform
distribution on [1000, 8000]KB. The complexity of tasks is
uniformly distributed on [800, 2400] cycles/bit [13]. The dead-
line for the task is 4s. The number of CPU cores in the edge
node is randomly selected from {4, 8, 16,20, 24, 28,32} [3],
and the CPU frequency of each core is 3GHz [3]. The trans-
mission rate among edge nodes follows uniform distribution
on [10, 40]MB/s. The failure rate of edge nodes is uniformly
distributed on [0, 0.1]. The failure rate of transmission links is
uniformly distributed on [0, 0.03] [28].

We use the Pyforch machine learning framework to build and
train the DRL model. The number of hidden layers in the Q,
critic, and actor networks is 2. The dimension of the hidden
layer is 64. The activation function in the above networks is
the relu function. The learning rate of the above networks is
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Fig. 3. The learning curve of task success rate.

0.0003. The discount factor ~ of the reward is 0.99. The soft
update parameter 7 in the Q network is 0.0005. The buffer size
and batch size in offline training are 10°, 128, respectively. The
a is 0.05. The weight A of the regularizer is 0.1. The A is 0.95.
The clip parameter € is 0.2. The epochs K in online training is 4.

B. Baseline Approaches

We compare our proposed O20-DRL approach against the

following approaches.

« Reliability-Aware Two Choices (RATC). Inspired by the
“power of two choices” in distributed task scheduling [10],
[21], [38], we proposed this distributed heuristic approach
considering reliability. Specifically, when an edge node
receives a task, it randomly probes two edge nodes. If
both edge nodes can process the task within its deadline,
it selects the more reliable one. Otherwise, it selects the
edge node to process the task with lower latency.

+ Reactive Distributed Algorithm (RDA) [9]. When a task
arrives in an edge node, it processes the task locally if
the length of its execution queue is below the max queue
length. Otherwise, it broadcasts the information to other
edge nodes for task offloading. Then it waits for two edge
nodes that respond to it and selects the edge node that can
process the task with a lower delay.

« Offline only. It only uses the offline training in O20-DRL
without further fine-tuning.

e Online only. It only uses the online training method of
020-DRL without warming up the neural network models
with offline training.

To evaluate each method’s performance, we run 10 episodes

in each edge network setting and draw the mean and standard
deviation of the task success rate of each method in the figures.

C. Convergence of Proposed Method

Fig. 3 shows the learning curves of the task success rate of
020-DRL compared with Online only. O20-DRL includes two
phases: offline training and online fine-tuning. The experiment
results show that O20-DRL can converge to a better solution by
using the task running logs of the heuristic approach to warm
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Fig. 4. Success rate of tasks under different heuristic approaches.

up the neural network parameters. In the offline phase, O20-
DRL uses the task running logs of the traditional decentralized
approach, RATC, to train the DRL model without interaction
with the network system. O20-DRL can avoid converging to
a sub-optimal solution compared with directly online learn-
ing. The heuristic policy, RATC, can guide the DRL model
to explore a better solution. We notice that our approach can
further improve the performance of the DRL model in the
online fine-tuning and avoid performance degradation in the
initial online phase. Notably, the stochastic generation of tasks
may lead to slight fluctuations in the success rate between
the starting point of online fine-tuning and the termination
point of offline training, as indicated by the blue horizontal
dashed line in Fig. 3, consistent with our expected outcomes.
Furthermore, because we use on-policy DRL to fine-tune the
DRL model in an actor-critic style, we can leverage GAE to
balance the bias and variance for unseen observations in the
online phase.

D. Impact of the Heuristic Approaches

020-DRL uses the task running logs of traditional heuristic
approaches to train an offline DRL model. Then, it uses the on-
line data to improve its performance when deploying the model
in the online system. Therefore, different heuristic approaches
will affect the performance of O20-DRL. Consequently, we
evaluate the performance of O20-DRL under different heuristic
approaches, as shown in Fig. 4. The results show that O20-DRL
has a higher success rate of tasks based on the task running logs
of RATC compared with building on other heuristic approaches.
When an edge node deploys RDA for task offloading, it will
process tasks locally if its queue length is under the max queue
length. As a result, O20-DRL may learn to imitate the RDA
to let more tasks be processed locally, leading to sub-optimal
performance. The RATC considers both latency and reliability,
which can guide the DRL model to explore a better solution.
We notice that O20-DRL even can use the task running logs of
the poorest performance approach, Random, to learn a relatively
good policy. Therefore, O20-DRL is robust to existing heuristic
approaches and can build on these approaches to improve its
performance via the learning mechanism.
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Fig. 5.

E. Impact of Task Sizes

We compare O20-DRL with other methods under different
task sizes, as shown in Fig. 5(a). The results show that O20-
DRL has a significant advantage over other methods. Herein,
the task size refers to the maximum size of tasks generated in
the network.

‘We notice that when the task size becomes large, the success
rate of all approaches becomes low. The reason can be divided
into two folders. First, as the task size becomes large, the trans-
mission time and execution time of each task become longer,
prolonging the task completion time. Therefore, more tasks will
be over their deadline and will be dropped from the network
system. Second, as the transmission time and execution time
increase, the reliability of tasks in transmission and execution
will decrease, and more tasks will fail. When the task size is
uniformly distributed in [1000, 10000]KB, the success rate of
all methods drops significantly. This is because all edge nodes’
computation and communication resources are limited and can
not satisfy all the computation-intensive and delay-sensitive
tasks. Moreover, the online only exhibits inferior performance
compared to the RATC due to the influence of low-quality early-
stage data, leading the learning process astray and resulting in
the agent being ensnared in a locally optimal solution.

F. Impact of Task Arrival Probabilities

To investigate the task arrival probability that influences the
performance of our proposed methods, we vary it and test the
task success rate. The simulation results are shown in Fig. 5(b),
where the task arrival probabilities range from [0,0.6] to [0, 1].
The results show that O20-DRL outperforms other approaches
at all the task arrival probabilities. We find that the success
rate decreases as the task arrival probability increases. This is
because the same edge nodes can provide limited computation
resources and can not afford large concurrent requests.

The performance of Online only drops significantly as the
task arrival probability increases. This is because directly online
training the DRL model without other heuristic knowledge will
converge to a sub-optimal solution. Moreover, as more tasks
arrive in each time slot, it is hard for Online only to explore a
good policy starting from a random policy in the initial online
learning, which will trap into local optimization. Compared
with Online only, the task running logs of RATC can guide

0.8 .
Task arrival probability

(b) Impact of task arrival probabilities.

0.9 1.0 0.1 0.15 0.2 0.25 0.3
Execution failure rate

(c) Impact of execution failure rates.

Success rate of tasks under different: (a) task sizes; (b) task arrival probabilities; (c) task execution failure rates.

Offline only and O20-DRL to converge to a better solution.
When the task arrival probability is uniformly distributed in
[0, 0.6], RATC can offload more tasks to reliable edge nodes to
avoid execution failure and performs better than RDA, which
only focuses on latency without considering reliability. On
the other hand, when the task arrival probability is uniformly
distributed in [0, 1.0], the workload of all the edge nodes is
heavy, and the delay becomes the critical factor affecting the
task success rate. Therefore, the task offloading policy of RATC
will induce additional transmission overhead and has relatively
poor performance compared with RDA.

G. Impact of Execution Failure Rates

The execution failure rate denotes the probability that a task
will fail during one period. Fig. 5(c) presents the experiment
results with a varied execution failure rate of edge nodes which
from [0, 0.1] to [0, 0.3]. The results show that our approach
always outperforms other benchmarks, which illustrates the
advantage of the O20-DRL in improving the success rate of
tasks. We can observe that the success rate of tasks for all
methods decreases with the increased execution failure rate of
edge nodes. That is because more tasks will fail as the execution
failure rate of edge nodes increase. DRL-based methods can
trade-off between delay and reliability via the design of reward
function. Since an edge node will receive -1 feedback when its
task is failed or is dropped and receive +1 feedback when it is
successful. These methods can balance the latency and reliabil-
ity for a higher success rate. However, O20-DRL outperforms
Online-only and Offline-only in all execution failure rates due
to the heuristic guide of RATC and online fine-tuning.

H. Impact of the Number of Edge Nodes

We evaluate the performance of our approach with a different
number of edge nodes in the system, as shown in Fig. 6. We
can find that O20-DRL performs better than other approaches
in all test numbers of edge nodes. The results show that O20-
DRL is scalable to a large number of edge nodes. The perfor-
mance of all methods is sensible to the configuration of edge
nodes and task arrival probability in each edge node. Online
only trains the DRL model directly by online learning in the
edge network. Therefore, it will fall into a sub-optimal solution
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without a heuristic guide. Offline only uses the task running
logs of RATC to train a DRL model and achieve a relatively
good performance. However, O20-DRL can further improve
its performance by online fine-tuning.

VI. EXPERIMENT IN KUBERNETES-BASED TESTBED

To validate the practicality and applicability of the O20-
DRL approach, we build a testbed based on Kubernetes. The
Python simulator used in Section V can quickly verify our
idea. However, since each edge node is just an instance in the
program, we can not deploy the real application in the edge node
to test it. Moreover, the communication between edge nodes is
implemented within the program without real communication
based on TCP/IP protocol. Using containerization technology,
we can create multiple emulated edge nodes with isolated com-
puting space and network space in a single computing server.
These emulated nodes can run applications and communicate
with each other through networks.

A. Testbed

Fig. 7 depicts a high-level overview of the architecture of
our designed testbed. The architecture comprises DRL Layer,
Control Layer, Execution Layer, and the Middleware. All the
components run on top of the Kubernetes. The Container Run-
time we used in Kubernetes is the Docker Engine. Therefore, we
can use the Dockerfile to build the image of Trainer, Controller
and Edge Node. The testbed is implemented via Java language.
The source code of the testbed has about 5000 lines of code.
It is open-sourced on GitHub via the link: https://github.com/
Ihc0512/edge-computing.

The top layer is the DRL Layer. This layer is responsible
for training the DRL models. The Trainer runs as a Pod in
the Kubernetes. We provide the DRL algorithm implemen-
tation based on Deep Java Library (DJL), which is a deep
learning framework for Java. The DRL algorithm consists of
three parts, which include Model, Buffer, and Agent. The Model
contains the neural network of DRL models. The Buffer stores
the transitions containing observations, actions, and rewards.
These transitions are reconstructed from the task running logs
stored in the Database. The Agent provides two main functional
interfaces, predict and train. The predict is responsible for the
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Fig. 7. The architecture of testbed. The testbed consists of DRL Layer,
Control Layer, Execution Layer, and the Middleware. All the components run
on top of the Kubernetes.

Agent to select an action based on current observation, and the
train is to train the DRL Model using the Buffer. We build
the image of Trainer based on nvidia’s docker images to train
the DRL model in the container using GPU. We provide the
Results Visualization to help users conduct tests. The models,
buffers, and experiment results are stored in the Distributed File
System (DFS).

Below the DRL Layer is the Control Layer. The Controller
runs as a Pod in the Kubernetes. The Controller acts as a
coordinator between users and Edge Nodes. First, the users
can write the configuration files in the Service Configuration.
Then the Node Configuration and Network Configuration of
the Controller are responsible for parsing the configuration
file into specific deployment. Next, the Controller writes the
deployment information into the Database. The responsibil-
ity of Task Configuration is to parse the configuration file in
Service Configuration. Then, The Task Generation acts as the
end devices to generate tasks and send these tasks to Edge
Nodes for task offloading. Overall, the Controller functions as
a virtual rather than a centralized scheduling node, responsible
for configuring the network environment and generating tasks.
It abstains from engaging in task offloading decisions, leaving
the responsibility of task scheduling autonomously managed by
individual nodes.

The bottom layer is the Execution Layer. Each Edge Node
runs as a Pod in the Kubernetes. When setting up the Edge
Nodes, the Network Deployment and the Node Deployment are
responsible for reading the network and node information from
the Database to deploy, respectively. The Queues in each edge
node include an execution queue to execute the tasks and N — 1
sending queues and N — 1 receiving queues to communicate
with other edge nodes. The Application denotes the type of
application that each edge node runs. The Scheduler module

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:28:24 UTC from |IEEE Xplore. Restrictions apply.


https://github.com/lhc0512/edge-computing
https://github.com/lhc0512/edge-computing

LIN et al.: DECENTRALIZED TASK OFFLOADING IN EDGE COMPUTING: AN OFFLINE-TO-ONLINE REINFORCEMENT LEARNING APPROACH

of each Edge Node is responsible for deciding where and when
to offload the computational tasks within the Application. The
Scheduler can be a heuristic or DRL scheduler. A DRL sched-
uler needs to load the actor model from the DFS.

The Middleware includes Service Registry, Service Config-
uration, Database, and Distributed File System (DFS). The
Trainer, Controller, and Edge Node are registered as services in
the Service Registry. The Service Registry stored the IP and port
of each service. Then, each service can discover other services
and communication with them via querying from the service
list in the Service Registry. To detect the health of each service,
the registry maintains communication with the services through
a heartbeat mechanism. We use Nacos as the implementation
of Service Registry. The configuration files of Trainer, Con-
troller, and Edge Nodes are stored in Service Configuration.
When each service starts, it reads the configuration file from the
Service Configuration and configures each component based
on the configuration file. When the configuration files have
been modified, the Service Configuration can send the changed
content to refresh the corresponding service. We also use Nacos
as the implementation of Service Configuration. The metadata
of task running logs is stored in the Database. This information
includes task id, time slot, source of the task, execution place
of the task, running status, task size, CPU cycle, deadline,
transmission time, transmission waiting time, execution time,
and execution waiting time. We use MySQL as the Database.
The DFS is responsible for storing files such as DRL models,
DRL buffers, and figures of experiment results. For example,
the Trainer can upload its DRL models in the DFS, and Edge
Nodes can download the DRL models from the DFS for task
offloading. The Trainer can upload the buffers constructed from
the task logs in Database. In addition, the Trainer can upload
the figures of training information to the DFS. We use HDFS
as the DFS.

B. Deployment of O20-DRL on the Testbed

020-DRL consists of three parts: data collection by heuristic
approaches, offline training, and online fine-tuning. For the first
part, we can select the heuristic Scheduler in the Edge Node.
During the execution, the task running logs will be stored in
the Database. After collecting enough task running records,
we use these logs to construct the transitions of DRL, which
include observations, actions, and rewards. Then, we stored
these transitions in DFS for offline training.

In the offline training phase, we select the offline DRL Algo-
rithm in Trainer and load the transitions from DFS into Buffer.
Then, we can train an offline DRL model and store the model
in DFS. Finally, the edge nodes can load the actor model from
the DFS into the Scheduler for online task offloading.

In the online fine-tuning phase, we can select the online
DRL Algorithm in the Trainer. Then, we load the offline DRL
model from the DFS for online task offloading. During the
execution, the edge nodes will record new task running logs
into the Database. After some time, we can read the logs to
reconstruct the transitions of DRL. Then, load these transitions
into the Buffer and fine-tune the DRL model using online DRL
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Algorithm. Then, we can store the updated DRL model in the
DFS and notify all the edge nodes to update their actor model
through Controller.

C. Experiment Results

Furthermore, we evaluated the performance of O20-DRL in
this testbed. The testbed runs on a server. The CPU configu-
ration of the server is the AMD Ryzen Threadripper 3990X,
which has 64 cores and 128 threads. The memory of the server
is 256GB. The number of edge nodes is 10. To verify our
methods quickly in this testbed, we focus on task offloading
for small tasks. The duration of the time slot is 0.1s. The total
time slots are 50. The deadline for tasks is Is. The buffer size in
offline training is 10000, which needs 200 episodes to collect
heuristic data. The number of episodes for online fine-tuning is
50. We compare O20-DRL with other methods under different
task sizes. The results are shown in Fig. 8. We can find that
020-DRL outperforms other approaches under all the different
task sizes. On the other hand, we can observe that the success
rate of tasks for all methods decreases with the increase of task
sizes. The reason is as follows: As the input data of a task
increases, the transmission time and computation time of each
task become longer. However, the computing resources of all
edge nodes are limited, and more tasks will be dropped when
the task completion is over the deadline. At the same time, the
reliability of tasks during transmission and execution decreases,
resulting in more task failures. The overall manifestation is a
decrease in the success rate of the task. Compared with the
simulation in Section V-E, the offline buffer is 10000 and less
than 10°. However, Offline-only can still converge to a good so-
lution. Likewise, Online-only and O20-DRL can converge into
50 episodes. In short, the simulation environment in Section V
can quickly verify our idea, while the testbed can validate the
practicality and applicability of the O20-DRL.

VII. CONCLUSION

This paper proposed an O20-DRL approach for task offload-
ing in the edge network with decentralized execution. To max-
imize the success rate of tasks from a long-term perspective,
we first defined the decentralized task offloading problem by
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considering task delay and reliability. Then, we transformed
the formulated problem into a Dec-POMDP. To alleviate the
cold-start problem caused by DRL, we leveraged the task run-
ning logs from traditional heuristic approaches to warm-start
the online DRL. Moreover, we can further improve the DRL
model’s performance by using on-policy actor-critic DRL to
fine-tune the DRL model when deploying the model into the
edge network. Extensive experimental results show that our
approach can significantly improve the task success rate and
avoid the cold-start problem compared to alternative baselines.

In this study, our emphasis has been on single-hop net-
works featuring indivisible tasks. As a future work, we intend
to broaden this scope to multi-hop networks, integrating task
offloading decisions with network routing selection. The task
types could also be expanded to encompass Service Func-
tion Chain (SFC) or tasks modeled as directed acyclic graphs
(DAG), such as distributed training and inference of large lan-
guage models. This will enhance the theoretical foundation of
our research and aid in the practical application of edge com-
puting, particularly in scenarios with high task complexity and
dynamic network conditions, tackling the complex challenges
of modern networked computing environments.
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