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Unit interval graphs
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Definition

There are a set of unit-length intervals .# on the real line and ¢: V — .# such that
uve E(G) iff ¢(u) intersects ¢(v).
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Unit interval graphs
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There are a set of unit-length intervals .# on the real line and ¢: V — .# such that
uve E(G) iff ¢(u) intersects ¢(v).

3/60



Forbidden induced subgraphs

[Wegner 1967]
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Forbidden induced subgraphs

[Wegner 1967]
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unit interval < interval c chordal (hole-free)
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Proper interval ordering
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Theorem (Looges 1993)

G is a unit interval graph iff there exists an ordering {v1,...,v,} such that for every
l<i<j<ksn, vivp€ E(G) implies vivj, vivi € E(G).
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Theorem (Looges 1993)

G is a unit interval graph iff there exists an ordering {v1,...,v,} such that for every
l<i<j<ksn, vivp€ E(G) implies vivj, vivi € E(G).

The ordering of the left (right) endpoints of the intervals will do.
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Proper interval ordering
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Theorem (Looges 1993)

G is a unit interval graph iff there exists an ordering {v1,...,v,} such that for every
l<i<j<ksn, vivp€ E(G) implies vivj, vivi € E(G).

The ordering of the left (right) endpoints of the intervals will do.

If1<i<j<n and vivj€ E(G), then {v;---,vj} is a clique.
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The problem

Unit interval vertex deletion

Input: A graph G and an integer k.
Task: A set V_ of <k vertices such that G— V_ is a unit interval graph.

NP — complete
[Lewis & Yannakakis 1980]
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The problem

Unit interval vertex deletion

Input: A graph G and an integer k.
Task: A set V_ of <k vertices such that G— V_ is a unit interval graph.

NP — complete
[Lewis & Yannakakis 1980]

FPT O((14k+ 14)*+1 . knd) 06~ - n% 06 - (n+m))
[Marx 2006] [van Bevern et al. 2010] [Villanger 2010] [C 2015]
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Kernelization

Definition

Given an instance (x, k), a kernelization algorithm produces an equivalent instance
(X, k) with |X| = O(f(k)) and ¥ <k in time (|x] + k)W,

(Ix] + &) o)
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Kernelization

Definition

Given an instance (x, k), a kernelization algorithm produces an equivalent instance
(X, k) with |X| = O(f(k)) and ¥ <k in time (|x] + k)W,

(Ix] + &) o)

O(k>3) O(k*)
[Fomin, Saurabh, Villanger 2013] [this talk]
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@ Use the 6-approximation algorithm to produce a modulator M.
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@ Use the 6-approximation algorithm to produce a modulator M.

e Partition the vertices in G— M, a unit interval graph, into O(k*) cliques.
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@ Use the 6-approximation algorithm to produce a modulator M.
e Partition the vertices in G— M, a unit interval graph, into O(k*) cliques.

e Pick O(K®) vertices from each clique to make the kernel.
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@ Use the 6-approximation algorithm to produce a modulator M.

Partition the vertices in G— M, a unit interval graph, into O(k?) cliques.

Pick O(K®) vertices from each clique to make the kernel.

O(k>) — O(k*), with more refined counting.
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The modulator

Theorem (C 2015)

There is a 6-approximation for unit interval vertex deletion.

@ We start by founding an approximate solution M to G.
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The modulator

Theorem (C 2015)

There is a 6-approximation for unit interval vertex deletion.

@ We start by founding an approximate solution M to G.

o If |[M| > 6k, then return a trivial no-instance.
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The modulator

Theorem (C 2015)

There is a 6-approximation for unit interval vertex deletion.

@ We start by founding an approximate solution M to G.

o If |[M| > 6k, then return a trivial no-instance.

@ Henceforth, G— M is a unit interval graph, where |M| < 6k.
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The clique partition

e Find a unit interval model for G- M. [Corneil 2004]
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The clique partition

e Find a unit interval model for G- M. [Corneil 2004]

@ Choose the first unassigned vertex, and all its unassigned neighbors;
repeat till all vertices assigned.
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The clique partition

e Find a unit interval model for G- M. [Corneil 2004]

@ Choose the first unassigned vertex, and all its unassigned neighbors;
repeat till all vertices assigned.
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The clique partition

e Find a unit interval model for G- M. [Corneil 2004]

@ Choose the first unassigned vertex, and all its unassigned neighbors;
repeat till all vertices assigned.

U3 Us
I Vg
2 Yo
,_M n41 | U , Us .
4] %2 (2] Vg ~ ~ 77777 [
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The clique partition

e Find a unit interval model for G- M. [Corneil 2004]

@ Choose the first unassigned vertex, and all its unassigned neighbors;
repeat till all vertices assigned.

U Us
A A | Ya
41 1 V3 i Vs |
v 15 Uy Vg 00T T T TTTToo Ittt
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The clique partition

e Find a unit interval model for G- M. [Corneil 2004]

@ Choose the first unassigned vertex, and all its unassigned neighbors;
repeat till all vertices assigned.

U Us
A A | Ya |
112 | : Us |
41 i U3 i Us i
v 15 Uy Vg 00T T T TTTToo e -

QO N(Kj)) € Ki—1 UKiy1.
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The clique partition

e Find a unit interval model for G- M. [Corneil 2004]

@ Choose the first unassigned vertex, and all its unassigned neighbors;
repeat till all vertices assigned.

U Us
| Ya |
112 | : Us |
41 i U3 i Vs i
v 15 Uy Vg 00T T T TTTToo TTTTT TS TS T o T o

Q@ N(Kj < Ki—1 UK.
@ for i<, the distance between u€ K; and ve Kjis = j—i.
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The Number of Cliques
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Bypassing a clique

delete K;, and @ B
add all possible edges between
N(K)NnKj—p and N(K)NKjy1.
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Bypassing a clique
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Bypassing a clique

; e —
|
,,,,,,,,,,,,,, S =
delete K;, and @ B
add all possible edges between
N(K)NnKj—p and N(K)NKjy1. . N(K)NK;—y | .
! ! l S —
L ! ! ] |
L : : T :
e o N(Ky) N Ky |
‘ } L= : .'
,,,,,,,,,,,,,, | =
a p i}

The graph obtained by bypassing a clique in the partition is still a unit interval graph. \
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Cliques adjacent to M

Rule 1. If a vertex ve M has neighbors in = k+5 cliques, then (G, k) — (G—{v},k—1)

There is a claw if v has neighbors in =5 cliques. Ol
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Cliques not adjacent to M

9 consecutive cliques nonadjacent to M
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Cliques not adjacent to M

9 consecutive cliques nonadjacent to M

No vertex in K;_», ..., Ki;» can be in any claw, net, or tent.
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Cliques not adjacent to M

9 consecutive cliques nonadjacent to M

No vertex in K;_», ..., Ki;» can be in any claw, net, or tent.

Because its distance to M is at least 4.
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Cliques not adjacent to M

9 consecutive cliques nonadjacent to M

No vertex in K;_», ..., Ki;» can be in any claw, net, or tent.

Because its distance to M is at least 4.

Rule 2. Find a minimum u— v separator S in G— M.
One of Ki—; and Kj4; is disjoint from S, which is a clique; bypass it.
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The number of cliques

Rule 1 bounds the number of cliques containing neighbors of M.
|M|(k+4) < 6k* +24k.
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The number of cliques

Rule 1 bounds the number of cliques containing neighbors of M.
|M|(k+4) < 6k* +24k.

Rule 2 bounds the number of cliques lying between them.
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The number of cliques

Rule 1 bounds the number of cliques containing neighbors of M.
|M|(k+4) < 6k* +24k.

Rule 2 bounds the number of cliques lying between them.

Lemma.
If neither of Rule 1, 2 is applicable, then the number of cliques (in G— M) is O(K?).
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Irrelevant Vertices
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Pick a vertex set U< V(G)\ M such that

any solution X for GIlUuU M] is also a solution for G.
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e for each pair x;,x, € M and each i=1,...,t, we pick the first/last k+1 vertices
from K; for each of the four patterns—adjacent to both; adjacent to only xi;
adjacent to only x2; and adjacent to neither.

e for each xe M, each i=2,...,¢, and each y of the last k+1 non-neighbors of x in
Ki-1, we pick the last k+1 common neighbors of x and y in K;.

o for each xe M, each i=2,...,t, and each y of the first k+ 1 neighbors of x in K;_,
we pick the first k+1 vertices in K; that are neighbors of x but not y

o for each xe M, each i=2,...,t, and each y of the last k+1 neighbors of x in K;_1,
we pick the last k+ 1 vertices in K; that are neighbors of y but not x.

@ for each three pairwise nonadjacent vertices in M, we arbitrarily pick k+1
common neighbors of them in V(G)\ M.

@ For each triple of vertices in M that induces a P3, we arbitrarily pick k+ 1 vertices
in V(G)\ M that are adjacent to only the center vertex among them, and k+1
vertices in V(G) \ M that are nonadjacent to only the center vertex among them.
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For each pair x1,x2 € M, pick the first/last k+1 vertices from K; that are adjacent to
(1) both x; and xp; (2) only x1; (3) only x2; and (4) neither of them.
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For each pair x1,x2 € M, pick the first/last k+1 vertices from K; that are adjacent to
(1) both x; and xp; (2) only x1; (3) only x2; and (4) neither of them.

E.g., k=2 and K>:

(1) {10, 12, 13} U {v1g, U121, 104}
(2 o

(3) {v1a, 123}

(4)

1
2
3
4) {v11, 15, v1e} U {v2g, V22, U251}

1 U25
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Example: claws

A vertex v is either picked or irrelevant, i.e., (G—v,k) < (G, k).
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Example: claws

A vertex v is either picked or irrelevant, i.e., (G—v,k) < (G, k).

we have picked the
first k+1 vertices
adjacent to y but not x.
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Example: claws

A vertex v is either picked or irrelevant, i.e., (G—v,k) < (G, k).

we have picked the
first k+1 vertices
adjacent to y but not x.

we have picked the
last k+1 vertices
adjacent to y but not x.
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Example: claws

A vertex v is either picked or irrelevant, i.e., (G—v,k) < (G, k).

we have picked the
last k+1 vertices
adjacent to y but not x.

we have picked the
first k+1 vertices
adjacent to y but not x.

T

if uis not picked, then at least k+1 claws containing x,y, v,

of which one has to be in a solution of G[U U M].
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Similar arguments work for other configurations and for C;'s.
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Other obstructions

We may use similar arguments for nets, tents, and longer holes.
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Other obstructions

We may use similar arguments for nets, tents, and longer holes.

But, such an exhaustive case analysis would be long and excruciatingly hard to verify.
(For example, a long hole may go through M many times.)
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Other obstructions

We may use similar arguments for nets, tents, and longer holes.

But, such an exhaustive case analysis would be long and excruciatingly hard to verify.
(For example, a long hole may go through M many times.)

Instead, we use a constructive argument for them:
From a unit interval model for GIU U M], we build a unit interval model for G.

(For a vertex v we didn't select, we derive an interval from intervals of other vertices in
the same clique.)
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Conclusion

We pick O(k®) vertices from each clique.
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Conclusion

We pick O(k®) vertices from each clique.

_ = An O(K®)-vertex kernel.
There are O(K?) cliques.

An improved analysis:
e We pick O(K®) vertices from each of O(k) cliques.
e We pick O(K?) vertices from each of the other cliques.
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Conclusion

We pick O(k®) vertices from each clique.

_ = An O(K®)-vertex kernel.
There are O(K?) cliques.

An improved analysis:
e We pick O(K®) vertices from each of O(k) cliques.
e We pick O(K?) vertices from each of the other cliques.

Final remark:
It can be produced in O(nm) time.
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Thanks!

yixin.cao@polyu.edu.hk
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