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Graph modification problems

For every graph class G , we can study:

Definition (Graph modification problem)

Input: a graph G of size n and a nonnegative integer k

Task: find ≤ k modifications that transform G into a graph in G?

Typical modification operations:
deleting edges,
adding edges, or
deleting vertices.

Combined modification operations:
deletion: vertex deletions and edge deletions;
edge editing: edge additions and edge deletions;
editing: all three modifications.
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Graph modification problems

For every graph class G , we can study:

Definition (Graph modification problem)

Input: a graph G of size n and a nonnegative integer k

Task: find ≤ k modifications that transform G into a graph in G?

In other words, the question is if G belongs to the class

G +ke: a graph from G with k extra edges;

G −ke: a graph from G with k missing edges;

G +kv: a graph from G with k extra vertices.
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Unit interval graphs

v1 v2

v3

v4

v5

v6

Definition
There are a set of unit-length intervals I on the real line and φ : V →I such that

uv ∈ E(G) iff φ(u) intersects φ(v).
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Characterization by forbidden induced subgraphs

Completely described by [Wegner ’67]

(e) claw (f) net (g) sun (h) C4 (i) C5

unit interval ⊂ interval ⊂ chordal (hole-free)
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Characterization by forbidden induced subgraphs

Completely described by [Wegner ’67]

(k) claw (l) net (m) sun (n) C4 (o) C5

unit interval ⊂ interval ⊂ chordal (hole-free)
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Previous work

[Kaplan et al. (FOCS’94, SICOMP’99)] showed unit interval completion is FPT.

[Cai ’96] gave a better analysis, O(4k · (n+m)).

[Marx (WG’06, Algorithmica’10)] showed Chordal Deletion Is FPT, implying.

[van Bevern et al. ’10] gave a direct algorithm (iterative compression).

[Villanger (IPEC’10, Algorithmica’13 with van’t Hof)] showed

[Fomin et al. ’12] polynomial kernel for unit interval vertex deletion (n53).

[Bliznets et al. ’14] An 2o(k) ·nO(1)-time algorithm for unit interval completion,
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Standard technique

A small subgraph F can be found in n|F | time and dealt with an |F |-way branching.

completion: the approach of chordal completion works here
The number of ways a `-hole can be triangulated is exactly the (`−2)nd Catalan
number C`−2, which is at most 4`−3. [Kaplan et al. ’94; Cai 96].

vertex deletion: to break all claws/nets/suns, and then to solve it using chordal
vertex deletion [Marx ’06].

edge deletion: the approach above doesn’t work (in a straightforward way)!
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Unit interval vertex deletion

Theorem (van Bevern et al. ’10)

The disjoint version of unit interval vertex deletion can

be solved in O∗((14k)k) time on

{claw,net,tent,C4,C5,C6}-free graphs.

Theorem (Villanger ’13)

Unit interval vertex deletion can be solved in linear time

on {claw,net,tent,C4,C5,C6}-free graphs.

Theorem (van Bevern et al. ’10)

Unit interval vertex deletion remains NP-hard on {claw,net,tent}-free graphs.

Question (Villanger ’13)

How about unit interval vertex deletion on {claw,net,tent,C4}-free graphs.
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Theorem (van Bevern et al. ’10)

The disjoint version of unit interval vertex deletion can

be solved in O∗((14k)k) time on

{claw,net,tent,C4,C5,C6}-free graphs.

Theorem (Villanger ’13)

Unit interval vertex deletion can be solved in linear time

on {claw,net,tent,C4,C5,C6}-free graphs.

the brute-force used in

dealing with small sub-

graphs induces a large

polynomial factor (n6)

in the running time.

Theorem (van Bevern et al. ’10)

Unit interval vertex deletion remains NP-hard on {claw,net,tent}-free graphs.

Question (Villanger ’13)

How about unit interval vertex deletion on {claw,net,tent,C4}-free graphs.
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(Proper) circular-arc graphs

Theorem (Villanger ’13)

A {claw,net,tent,C4,C5,C6}-free graph is a proper

circular-arc graph.

Definition (Circular-arc graphs)

A graph is a circular-arc graph if there are a set A

of arcs on a circle and φ : V →A such that

uv ∈ E(G) iff φ(u) intersects φ(v).

proper: no arc properly contains the other. A proper circular-arc graph

by David Eppstein
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Proper Helly circular-arc graphs

Helly: Any set of

pairwise intersecting arcs

has a common point.

A bad example

Definition (Proper Helly circular-arc graphs)

A graph having an arc model that is both proper

and Helly.

a

b

A Helly model

c

a b

net

a

b

c

A proper model

26 / 85



Proper Helly circular-arc graphs

Helly: Any set of

pairwise intersecting arcs

has a common point.

A bad example

Definition (Proper Helly circular-arc graphs)

A graph having an arc model that is both proper

and Helly.

a

b

A Helly model

c

a b

net

a

b

c

A proper model

27 / 85



Proper Helly circular-arc graphs

Helly: Any set of

pairwise intersecting arcs

has a common point.

A bad example

Definition (Proper Helly circular-arc graphs)

A graph having an arc model that is both proper

and Helly.

a

b

A Helly model

c

a b

net

a

b

c

A proper model

28 / 85



Why proper Helly?

Theorem (Tucker ’74; Lin et al. 13)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net,

tent, W4, W5, C6, or C∗
`

for `≥ 4 (a hole C` and another isolated vertex).

A trivial corollary
If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.
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{Claw, net, tent, C4}-free graphs

Main structual theorem
Let G be a connected graph.

1 If G is {claw,net,tent,C4}-free, then it is either a fat W5 or a proper Helly

circular-arc graph.

2 In O(m) time we can

detect an induced claw, net, tent, C4 of G,

partition V (G) into six cliques constituting a fat W5, or

build a proper and Helly arc model for G.

33 / 85



{Claw, net, tent, C4}-free graphs

Main structual theorem
Let G be a connected graph.

1 If G is {claw,net,tent,C4}-free, then it is either a fat W5 or a proper Helly

circular-arc graph.

2 In O(m) time we can

detect an induced claw, net, tent, C4 of G,

partition V (G) into six cliques constituting a fat W5, or

build a proper and Helly arc model for G. 10
20

7

7

21 4

34 / 85



{Claw, net, tent, C4}-free graphs

Main structual theorem
Let G be a connected graph.

1 If G is {claw,net,tent,C4}-free, then it is either a fat W5 or a proper Helly

circular-arc graph.

2 In O(m) time we can

detect an induced claw, net, tent, C4 of G,

partition V (G) into six cliques constituting a fat W5, or

build a proper and Helly arc model for G. 10
20

7

7

21 4

35 / 85



Big picture

circular-arc graphs (CAG)

proper CAG chordal graphs

proper Helly CAG interval graphs (IG)

unit Helly CAG

unit IG = proper IG

PHCAG ∩ CHORDAL =
UHCAG ∩ CHORDAL =

UIG.
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Big picture

circular-arc graphs (CAG)

proper CAG

normal CAG Helly CAG

normal Helly CAG chordal graphs

proper Helly CAG interval graphs (IG)

unit Helly CAG

unit IG = proper IG

PHCAG ∩ CHORDAL =
UHCAG ∩ CHORDAL =

UIG.
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How about unit Helly circular-arc graphs?

This is actually the CI(`,1)

graph defined by [Tucker

’74]; see also [Lin et al. ’13].

Remark
Therefore, proper Helly circular-arc graphs are the best we can expect in this sense.
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Vertex deletion: the appetizer

α

easy for proper Helly circular-arc graphs.

10
20

7

7

21 4

trivial for fat W5’s.

Results

an O(6k ·m)-time parameterized algorithm; and

an O(nm)-time approximation algorithm of ratio 6.
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Edge deletions

Conjecture
a minimal solution of edge deletion is “local” to some point in an arc model for G.

u1

u2u3

u4

u5 u6

v1

v2v3

v4

v5 v6
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To break long holes

Definition

−→
E (α) = {vu :α ∈ Av, α 6∈ Au,v → u},

where v → u means that arc Av intersects arc Au from the left.

α

0 `

A trivial corollary

For any point α, the subgraph G−−→
E (α) is a unit interval graph.
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To break long holes

Definition

−→
E (α) = {vu :α ∈ Av, α 6∈ Au,v → u},

where v → u means that arc Av intersects arc Au from the left.

α

0 `

A nontrivial corollary

Any minimum solution is
−→
E (α) for some point α.
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To find Achilles’ heel

Both deletion problems reduce to find a weakest point.
A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

it suffices to try 2n different points (n actually).

finding an arbitrary point ρ and calculate
−→
E (ρ).

scan clockwise, until an endpoint met;

if it is a clockwise endpoint, then
−→
E (ρ′) =−→

E (α).

otherwise, the difference between
−→
E (ρ) and

−→
E (α)

is the set of edges incident to v.

Theorem
both unit interval vertex deletion and unit interval edge deletion can be solved in

O(m) time on proper Helly circular-arc graphs.
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it suffices to try 2n different points (n actually).

finding an arbitrary point ρ and calculate
−→
E (ρ).

scan clockwise, until an endpoint met;

if it is a clockwise endpoint, then
−→
E (ρ′) =−→

E (α).

otherwise, the difference between
−→
E (ρ) and

−→
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is the set of edges incident to v.

Theorem
both unit interval vertex deletion and unit interval edge deletion can be solved in

O(m) time on proper Helly circular-arc graphs.
61 / 85



To find Achilles’ heel

Both deletion problems reduce to find a weakest point.
A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

it suffices to try 2n different points (n actually).

finding an arbitrary point ρ and calculate
−→
E (ρ).

scan clockwise, until an endpoint met;

if it is a clockwise endpoint, then
−→
E (ρ′) =−→

E (α).

otherwise, the difference between
−→
E (ρ) and

−→
E (α)

is the set of edges incident to v.

Theorem
both unit interval vertex deletion and unit interval edge deletion can be solved in

O(m) time on proper Helly circular-arc graphs.
62 / 85



The running time

10
20

7

7

21 4
Again, trivial for fat W5’s.

Result

An O(9k ·m)-time algorithm for unit interval edge deletion ⇒ O(4k ·m) ⇒ O(3.xxk ·m).
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The editing problem

Definition

(V−,E−,E+) is an editing set of G if the deletion of E− from and the addition of E+ to

G−V− create a unit interval graph.

The unit interval editing problem: Is there an editing set such that |V−| ≤ k1 and

|E−| ≤ k2 and |E+| ≤ k3.

We use k := k1 +k2 +k3 as the parameter.

Remark
This is different to ask for “at most k modifications” to make G a unit interval graph:

If asked that way, it is computationally equivalent to unit interval vertex deletion.
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Phase I: reduction

A graph is called reduced if it contains no claw, net, tent, C4, C5, or C` with `≤ k3+3.

1 find a claw, net, tent, C4, C5 if there is one.
2 find a shortest hole H from the remaining proper Helly circular-arc graph.
3 if its length is less than k3 +4, then branch on O(|H|) ways of dealing with it, and

recurse.

After that all forbidden subgraphs are long holes (of length at least k3 +4).
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Phase II

Now all the holes are longer than k3 +4, only breakable by deletions.
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Phase II

β

α

If there is Achilles’ heel, we solve it. e.g., if k1 ≥ 2, we take α; if k2 ≥ 6, we take β;
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Phase II

Otherwise, we need to delete both vertices and edges.
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Phase II

Main observation: after the deletion of V−, it reduces to the edge deletion problem .
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Phase II

We are looking for a weakest point in G−V−, but we don’t know where V− is.
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Phase II

E− must be local to some point, and V− has to be local to the same point as well!
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Phase II

V− should be chosen to be those incident to the most number of crossing edges.
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Phase II

With the similar idea, by scanning the model once, we can find a combined weakest

point in linear time. ⇒ an O((k3 +1)k ·m)-time algorithm.
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Open problems

Chordal graphs

Interval graphs (IG)

Unit IG = Proper IG

a polynomial kernel for chordal vertex deletion?

a polynomial kernel for interval vertex deletion?

a reasonably small kernel for unit interval vertex deletion?

a subexponential-time algorithm for unit interval edge deletion?

ETH lower bound of chordal/(unit) interval completion problems.

study of mixed separators: to separate s, t by deleting both vertices and edges;
[Marx, O’Sullivan, & Razgon, ’13; C. & Marx ’15; this work.]
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Thank you!
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