Unit Interval Editing is Fixed-Parameter Tractable

CAO Yixin (操宜新)

Department of Computing, Hong Kong Polytechnic University 香港理工大學 電子計算學系 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)

> ICALP 2015 Kyoto, Japan (日本京都市) July 08, 2015

Graph modification problems

For every graph class \mathcal{G} , we can study:

Definition (Graph modification problem)

Input: a graph G of size n and a nonnegative integer k

Task: find $\leq k$ modifications that transform G into a graph in \mathcal{G} ?

Typical modification operations:

- deleting edges,
- adding edges, or
- deleting vertices.

Combined modification operations

- deletion: vertex deletions and edge deletions;
- edge editing: edge additions and edge deletions;
- editing: all three modifications.

Graph modification problems

For every graph class \mathcal{G} , we can study:

Definition (Graph modification problem)

Input: a graph G of size n and a nonnegative integer k

Task: find $\leq k$ modifications that transform G into a graph in \mathcal{G} ?

Typical modification operations:

- deleting edges,
- adding edges, or
- deleting vertices.

Combined modification operations:

- deletion: vertex deletions and edge deletions;
- edge editing: edge additions and edge deletions;
- editing: all three modifications.

Graph modification problems

For every graph class \mathcal{G} , we can study:

Definition (Graph modification problem)

Input: a graph G of size n and a nonnegative integer k

Task: find $\leq k$ modifications that transform G into a graph in G?

In other words, the question is if G belongs to the class

- $\mathcal{G} + ke$: a graph from \mathcal{G} with k extra edges;
- $\mathscr{G} ke$: a graph from \mathscr{G} with k missing edges;
- $\mathcal{G} + kv$: a graph from \mathcal{G} with k extra vertices.

Unit interval graphs

Definition

There are a set of unit-length intervals $\mathscr I$ on the real line and $\phi: V \to \mathscr I$ such that $uv \in E(G)$ iff $\phi(u)$ intersects $\phi(v)$.

Unit interval graphs

Definition

There are a set of unit-length intervals $\mathscr I$ on the real line and $\phi: V \to \mathscr I$ such that $uv \in E(G)$ iff $\phi(u)$ intersects $\phi(v)$.

Characterization by forbidden induced subgraphs

Completely described by [Wegner '67]

unit interval ⊂ interval ⊂ chordal (hole-free)

Characterization by forbidden induced subgraphs

Completely described by [Wegner '67]

unit interval ⊂ interval ⊂ chordal (hole-free)

- [Kaplan et al. (FOCS'94, SICOMP'99)] showed unit interval completion is FPT.
- [Cai '96] gave a better analysis, $O(4^k \cdot (n+m))$.
- [Marx (WG'06, Algorithmica'10)] showed Chordal Deletion Is FPT, implying.
- [van Bevern et al. '10] gave a direct algorithm (iterative compression).
- [Villanger (IPEC'10, Algorithmica'13 with van't Hof)] showed

- [Fomin et al. '12] polynomial kernel for unit interval vertex deletion (n^{53}) .
- [Bliznets et al. '14] An $2^{o(k)} \cdot n^{O(1)}$ -time algorithm for unit interval completion,

- [Kaplan et al. (FOCS'94, SICOMP'99)] showed unit interval completion is FPT.
- [Cai '96] gave a better analysis, $O(4^k \cdot (n+m))$.
- [Marx (WG'06, Algorithmica'10)] showed Chordal Deletion Is FPT, implying.
- [van Bevern et al. '10] gave a direct algorithm (iterative compression).
- [Villanger (IPEC'10, Algorithmica'13 with van't Hof)] showed

- [Fomin et al. '12] polynomial kernel for unit interval vertex deletion (n^{53}) .
- [Bliznets et al. '14] An $2^{o(k)} \cdot n^{O(1)}$ -time algorithm for unit interval completion,

- [Kaplan et al. (FOCS'94, SICOMP'99)] showed unit interval completion is FPT.
- [Cai '96] gave a better analysis, $O(4^k \cdot (n+m))$.
- [Marx (WG'06, Algorithmica'10)] showed Chordal Deletion Is FPT, implying.
- [van Bevern et al. '10] gave a direct algorithm (iterative compression).
- [Villanger (IPEC'10, Algorithmica'13 with van't Hof)] showed

- [Fomin et al. '12] polynomial kernel for unit interval vertex deletion (n^{53}) .
- [Bliznets et al. '14] An $2^{o(k)} \cdot n^{O(1)}$ -time algorithm for unit interval completion,

- [Kaplan et al. (FOCS'94, SICOMP'99)] showed unit interval completion is FPT.
- [Cai '96] gave a better analysis, $O(4^k \cdot (n+m))$.
- [Marx (WG'06, Algorithmica'10)] showed Chordal Deletion Is FPT, implying.
- [van Bevern et al. '10] gave a direct algorithm (iterative compression).
- [Villanger (IPEC'10, Algorithmica'13 with van't Hof)] showed

- [Fomin et al. '12] polynomial kernel for unit interval vertex deletion (n^{53}) .
- [Bliznets et al. '14] An $2^{o(k)} \cdot n^{O(1)}$ -time algorithm for unit interval completion,

- [Kaplan et al. (FOCS'94, SICOMP'99)] showed unit interval completion is FPT.
- [Cai '96] gave a better analysis, $O(4^k \cdot (n+m))$.
- [Marx (WG'06, Algorithmica'10)] showed Chordal Deletion Is FPT, implying.
- [van Bevern et al. '10] gave a direct algorithm (iterative compression).
- [Villanger (IPEC'10, Algorithmica'13 with van't Hof)] showed

- [Fomin et al. '12] polynomial kernel for unit interval vertex deletion (n^{53}) .
- [Bliznets et al. '14] An $2^{o(k)} \cdot n^{O(1)}$ -time algorithm for unit interval completion,

- [Kaplan et al. (FOCS'94, SICOMP'99)] showed unit interval completion is FPT.
- [Cai '96] gave a better analysis, $O(4^k \cdot (n+m))$.
- [Marx (WG'06, Algorithmica'10)] showed Chordal Deletion Is FPT, implying.
- [van Bevern et al. '10] gave a direct algorithm (iterative compression).
- [Villanger (IPEC'10, Algorithmica'13 with van't Hof)] showed

- [Fomin et al. '12] polynomial kernel for unit interval vertex deletion (n^{53}) .
- [Bliznets et al. '14] An $2^{o(k)} \cdot n^{O(1)}$ -time algorithm for unit interval completion,

- [Kaplan et al. (FOCS'94, SICOMP'99)] showed unit interval completion is FPT.
- [Cai '96] gave a better analysis, $O(4^k \cdot (n+m))$.
- [Marx (WG'06, Algorithmica'10)] showed Chordal Deletion Is FPT, implying.
- [van Bevern et al. '10] gave a direct algorithm (iterative compression).
- [Villanger (IPEC'10, Algorithmica'13 with van't Hof)] showed

- [Fomin et al. '12] polynomial kernel for unit interval vertex deletion (n^{53}) .
- [Bliznets et al. '14] An $2^{o(k)} \cdot n^{O(1)}$ -time algorithm for unit interval completion,

Standard technique

A small subgraph F can be found in $n^{|F|}$ time and dealt with an |F|-way branching.

- **completion**: the approach of chordal completion works here The number of ways a ℓ -hole can be triangulated is exactly the $(\ell-2)$ nd Catalan number $C_{\ell-2}$, which is at most $4^{\ell-3}$. [Kaplan et al. '94; Cai 96].
- **vertex deletion**: to break all claws/nets/suns, and then to solve it using chordal vertex deletion [Marx '06].
- edge deletion: the approach above doesn't work (in a straightforward way)!

Standard technique

A small subgraph F can be found in $n^{|F|}$ time and dealt with an |F|-way branching.

- **completion**: the approach of chordal completion works here The number of ways a ℓ -hole can be triangulated is exactly the $(\ell-2)$ nd Catalan number $C_{\ell-2}$, which is at most $4^{\ell-3}$. [Kaplan et al. '94; Cai 96].
- **vertex deletion**: to break all claws/nets/suns, and then to solve it using chordal vertex deletion [Marx '06].
- edge deletion: the approach above doesn't work (in a straightforward way)!

Standard technique

A small subgraph F can be found in $n^{|F|}$ time and dealt with an |F|-way branching.

- **completion**: the approach of chordal completion works here The number of ways a ℓ -hole can be triangulated is exactly the $(\ell-2)$ nd Catalan number $C_{\ell-2}$, which is at most $4^{\ell-3}$. [Kaplan et al. '94; Cai 96].
- **vertex deletion**: to break all claws/nets/suns, and then to solve it using chordal vertex deletion [Marx '06].
- edge deletion: the approach above doesn't work (in a straightforward way)!

Theorem (van Bevern et al. '10)

The disjoint version of unit interval vertex deletion can be solved in $O^*((14k)^k)$ time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (Villanger '13)

Unit interval vertex deletion can be solved in linear time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (van Bevern et al. '10)

Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs.

Question (Villanger '13)

Theorem (van Bevern et al. '10)

The disjoint version of unit interval vertex deletion can be solved in $O^*((14k)^k)$ time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (Villanger '13)

Unit interval vertex deletion can be solved in linear time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (van Bevern et al. '10)

Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs.

Question (Villanger '13)

Theorem (van Bevern et al. '10)

The disjoint version of unit interval vertex deletion can be solved in $O^*((14k)^k)$ time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (Villanger '13)

Unit interval vertex deletion can be solved in linear time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (van Bevern et al. '10)

Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs.

Question (Villanger '13

Theorem (van Bevern et al. '10)

The disjoint version of unit interval vertex deletion can be solved in $O^*((14k)^k)$ time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (Villanger '13)

Unit interval vertex deletion can be solved in linear time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (van Bevern et al. '10)

Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs.

Question (Villanger '13)

Theorem (van Bevern et al. '10)

The disjoint version of unit interval vertex deletion can be solved in $O^*((14k)^k)$ time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

Theorem (Villanger '13)

Unit interval vertex deletion can be solved in linear time on $\{claw, net, tent, C_4, C_5, C_6\}$ -free graphs.

the brute-force used in dealing with small subgraphs induces a large polynomial factor (n^6) in the running time.

Theorem (van Bevern et al. '10)

Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs.

Question (Villanger '13)

(Proper) circular-arc graphs

Theorem (Villanger '13)

A {claw, net, tent, C_4 , C_5 , C_6 }-free graph is a proper circular-arc graph.

Definition (Circular-arc graphs)

A graph is a circular-arc graph if there are a set \mathscr{A} of arcs on a circle and $\phi: V \to \mathscr{A}$ such that $uv \in E(G)$ iff $\phi(u)$ intersects $\phi(v)$.

proper: no arc properly contains the other.

A proper circular-arc graph by David Eppstein

(Proper) circular-arc graphs

Theorem (Villanger '13)

A {claw, net, tent, C_4 , C_5 , C_6 }-free graph is a proper circular-arc graph.

Definition (Circular-arc graphs)

A graph is a circular-arc graph if there are a set \mathscr{A} of arcs on a circle and $\phi: V \to \mathscr{A}$ such that $uv \in E(G)$ iff $\phi(u)$ intersects $\phi(v)$.

proper: no arc properly contains the other.

A proper circular-arc graph by David Eppstein

Proper Helly circular-arc graphs

Helly: Any set of pairwise intersecting arcs has a common point.

Definition (Proper Helly circular-arc graphs)

A graph having an arc model that is both proper and Helly.

Proper Helly circular-arc graphs

Helly: Any set of pairwise intersecting arcs has a common point.

Definition (Proper Helly circular-arc graphs)

A graph having an arc model that is both proper and Helly.

Proper Helly circular-arc graphs

Helly: Any set of pairwise intersecting arcs has a common point.

Definition (Proper Helly circular-arc graphs)

A graph having an arc model that is both proper and Helly.

Theorem (Tucker '74; Lin et al. 13)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W_4 , W_5 , $\overline{C_6}$, or C_ℓ^* for $\ell \ge 4$ (a hole C_ℓ and another isolated vertex).

A trivial corollary

If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

Theorem (Tucker '74; Lin et al. 13)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W_4 , W_5 , $\overline{C_6}$, or C_ℓ^* for $\ell \ge 4$ (a hole C_ℓ and another isolated vertex).

A trivial corollary

If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

Theorem (Tucker '74; Lin et al. 13)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W_4 , W_5 , $\overline{C_6}$, or C_ℓ^* for $\ell \ge 4$ (a hole C_ℓ and another isolated vertex).

A nontrivial corollary

A connected $\{claw, net, tent, C_4, C_5\}$ -free graph is a proper Helly circular-arc graph.

Theorem (Tucker '74; Lin et al. 13)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W_4 , W_5 , $\overline{C_6}$, or C_ℓ^* for $\ell \ge 4$ (a hole C_ℓ and another isolated vertex).

A nontrivial corollary

A connected {claw, net, tent, C_4 , C_5 }-free graph is a proper Helly circular-arc graph.

{Claw, net, tent, C_4 }-free graphs

Main structual theorem

Let G be a connected graph.

- If G is {claw, net, tent, C_4 }-free, then it is either a fat W_5 or a proper Helly circular-arc graph.
- ② In O(m) time we can
 - detect an induced claw, net, tent, C₄ of G,
 - partition V(G) into six cliques constituting a fat W_5 , or
 - build a proper and Helly arc model for *G*.

{Claw, net, tent, C_4 }-free graphs

Main structual theorem

Let G be a connected graph.

- If G is {claw, net, tent, C_4 }-free, then it is either a fat W_5 or a proper Helly circular-arc graph.
- ② In O(m) time we can
 - detect an induced claw, net, tent, C₄ of G
 - partition V(G) into six cliques constituting a fat W_5 , or
 - build a proper and Helly arc model for G.

{Claw, net, tent, C_4 }-free graphs

Main structual theorem

Let G be a connected graph.

- If G is {claw, net, tent, C_4 }-free, then it is either a fat W_5 or a proper Helly circular-arc graph.
- 2 In O(m) time we can
 - detect an induced claw, net, tent, C_4 of G,
 - partition V(G) into six cliques constituting a fat W_5 , or
 - build a proper and Helly arc model for G.

Big picture

Big picture

Big picture

How about unit Helly circular-arc graphs?

This is actually the $Cl(\ell, 1)$ graph defined by [Tucker '74]; see also [Lin et al. '13].

Remark

Therefore, proper Helly circular-arc graphs are the best we can expect in this sense.

How about unit Helly circular-arc graphs?

This is actually the $Cl(\ell, 1)$ graph defined by [Tucker '74]; see also [Lin et al. '13].

Remark

Therefore, proper Helly circular-arc graphs are the best we can expect in this sense.

How about unit Helly circular-arc graphs?

This is actually the $Cl(\ell,1)$ graph defined by [Tucker '74]; see also [Lin et al. '13].

Remark

Therefore, proper Helly circular-arc graphs are the best we can expect in this sense.

Vertex deletion: the appetizer

easy for proper Helly circular-arc graphs.

trivial for fat W_5 's

Results

an $O(6^k \cdot m)$ -time parameterized algorithm; and an O(nm)-time approximation algorithm of ratio

Vertex deletion: the appetizer

easy for proper Helly circular-arc graphs.

trivial for fat W_5 's.

Results

an $O(6^k \cdot m)$ -time parameterized algorithm; and an O(nm)-time approximation algorithm of ratio

Vertex deletion: the appetizer

easy for proper Helly circular-arc graphs.

trivial for fat W_5 's.

Results

an $O(6^k \cdot m)$ -time parameterized algorithm; and an O(nm)-time approximation algorithm of ratio 6.

Conjecture

a minimal solution of edge deletion is "local" to some point in an arc model for G.

Conjecture

a minimal solution of edge deletion is "local" to some point in an arc model for G.

no!

Conjecture

a minimal solution of edge deletion is "local" to some point in an arc model for G.

 u_1

 v_1

no! v_4 u_4 u_5 u_5 u_6

Conjecture

a minimal solution of edge deletion is "local" to some point in an arc model for G.

Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \alpha \not\in A_u, v \to u\},\$$

where $v \rightarrow u$ means that arc A_v intersects arc A_u from the left.

A trivial corollary

For any point α , the subgraph $G - \overrightarrow{E}(\alpha)$ is a unit interval graph.

Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \alpha \not\in A_u, v \to u\},$$

where $v \rightarrow u$ means that arc A_v intersects arc A_u from the left.

A trivial corollary

For any point α , the subgraph $G - \overrightarrow{E}(\alpha)$ is a unit interval graph.

Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \alpha \not\in A_u, v \to u\},$$

where $v \rightarrow u$ means that arc A_v intersects arc A_u from the left.

A trivial corollary

For any point α , the subgraph $G - \overrightarrow{E}(\alpha)$ is a unit interval graph.

Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \alpha \not\in A_u, v \to u\},$$

where $v \rightarrow u$ means that arc A_v intersects arc A_u from the left.

A nontrivial corollary

Any minimum solution is $\vec{E}(\alpha)$ for some point α .

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually)
- ullet finding an arbitrary point ho and calculate $\overline{E}(
 ho)$
- scan clockwise, until an endpoint met
- if it is a clockwise endpoint, then $\vec{E}(\rho') = \vec{E}(\alpha)$
- ullet otherwise, the difference between $\overrightarrow{E}(
 ho)$ and $\overrightarrow{E}(lpha)$
- is the set of edges incident to v

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- ullet it suffices to try 2n different points (n actually)
- ullet finding an arbitrary point ho and calculate $\dot{E}(
 ho)$
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- ullet otherwise, the difference between $\overrightarrow{E}(
 ho)$ and $\overrightarrow{E}(lpha)$
 - is the set of edges incident to ι

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

lacksquare it suffices to try 2n different points (n actually)

ullet finding an arbitrary point ho and calculate $\overrightarrow{E}(
ho)$

scan clockwise, until an endpoint met;

• if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$

ullet otherwise, the difference between $\overrightarrow{E}(
ho)$ and $\overrightarrow{E}(lpha)$

is the set of edges incident to

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to ν .

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to ν .

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to ν .

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to ν .

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to ν .

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to ν .

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\vec{E}(\rho)$ and $\vec{E}(\alpha)$ is the set of edges incident to ν .

Theorem

Again, trivial for fat W_5 's.

Result

Again, trivial for fat W_5 's.

Result

Again, trivial for fat W_5 's.

Result

Again, trivial for fat W_5 's.

Result

The editing problem

Definition

 (V_-, E_-, E_+) is an <u>editing set</u> of G if the deletion of E_- from and the addition of E_+ to $G-V_-$ create a unit interval graph.

The unit interval editing problem: Is there an editing set such that $|V_-| \le k_1$ and $|E_-| \le k_2$ and $|E_+| \le k_3$.

We use $k := k_1 + k_2 + k_3$ as the parameter.

Remark

This is different to ask for "at most k modifications" to make G a unit interval graph:

If asked that way, it is computationally equivalent to unit interval vertex deletion.

The editing problem

Definition

 (V_-, E_-, E_+) is an <u>editing set</u> of G if the deletion of E_- from and the addition of E_+ to $G-V_-$ create a unit interval graph.

The unit interval editing problem: Is there an editing set such that $|V_-| \le k_1$ and $|E_-| \le k_2$ and $|E_+| \le k_3$.

We use $k := k_1 + k_2 + k_3$ as the parameter.

Remark

This is different to ask for "at most k modifications" to make G a unit interval graph: If asked that way, it is computationally equivalent to unit interval vertex deletion.

Phase I: reduction

A graph is called <u>reduced</u> if it contains no claw, net, tent, C_4 , C_5 , or C_ℓ with $\ell \le k_3 + 3$.

- find a claw, net, tent, C_4 , C_5 if there is one.
- \bigcirc find a shortest hole H from the remaining proper Helly circular-arc graph.

After that all forbidden subgraphs are long holes (of length at least $k_3 + 4$).

Phase II

Now all the holes are longer than $k_3 + 4$, only breakable by deletions.

Phase II

If there is Achilles' heel, we solve it. e.g., if $k_1 \ge 2$, we take α ; if $k_2 \ge 6$, we take β ;

Phase II

Otherwise, we need to delete both vertices and edges.

Main observation: after the deletion of V_- , it reduces to the edge deletion problem .

We are looking for a weakest point in $G-V_-$, but we don't know where V_- is.

 E_{-} must be local to some point, and V_{-} has to be local to the same point as well!

 V_{-} should be chosen to be those incident to the most number of crossing edges.

With the similar idea, by scanning the model once, we can find a combined weakest point in linear time. \Rightarrow an $O((k_3+1)^k \cdot m)$ -time algorithm.

