A Polynomial Kernel for Diamond-Free Editing

CAO Yixin (操宜新)

Department of Computing, Hong Kong Polytechnic University 香港理工大學 電子計算學系

Workshop on Kernelization D-Day, 2019

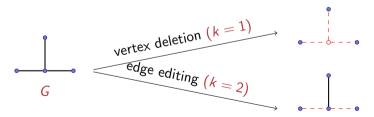
Joint work with Ashutosh Rai, R. B. Sandeep, Junjie Ye

Graph modification problems

Graph modification problem for property P

Input: A graph G and an integer k.

Task: Can we apply $\leq k$ modifications to G to make it satisfy P?



P: being a cluster graph.

Three questions

- Is it NP-complete?
- ② Can it be solved in time $f(k) \cdot n^{O(1)}$; if yes, what is the (asymptotically) best f?
- Ooes it have a polynomial kernel?

Theorem (Lewis and Yannakakis 80).

For a hereditary property, the vertex deletion problem is either NP-complete or trivial.

Such a general result for edge modification problems is unknown, and very unlikely.

(Complexity Status of Edge Modification Problems@FPT WIKI)

Three questions

- Is it NP-complete?
- ② Can it be solved in time $f(k) \cdot n^{O(1)}$; if yes, what is the (asymptotically) best f?
- Ooes it have a polynomial kernel?

Theorem (Lewis and Yannakakis 80).

For a hereditary property, the vertex deletion problem is either NP-complete or trivial.

Such a general result for edge modification problems is unknown, and very unlikely.

(Complexity Status of Edge Modification Problems@FPT WIKI)

Three questions

- Is it NP-complete?
- ② Can it be solved in time $f(k) \cdot n^{O(1)}$; if yes, what is the (asymptotically) best f?
- Ooes it have a polynomial kernel?

Theorem (Lewis and Yannakakis 80).

For a hereditary property, the vertex deletion problem is either NP-complete or trivial.

Such a general result for edge modification problems is unknown, and very unlikely.

(Complexity Status of Edge Modification Problems@FPT WIKI)

Kernelization

An algorithm maps (I, k) into (I', k') in time polynomial in |I| + k such that

- (I, k) is a yes-instance iff (I', k') is a yes-instance, and
- $|I'| + k' \le g(k)$ for some computable function g.

The function g is the size of the kernel, and it is a polynomial kernel if g is polynomial.

H-free modification problems

 $|V(H)| \ge 2$

The "simplest" property is H-free—not containing H as an induced subgraph. (For example, H is P_3 for cluster graphs.)

	vertex deletion	edge modification
NPC	Yes [Lewis & Yannakakis 81]	Dichotomy [Sandeep 16]
FPT	Yes [Cai 96]	Yes [Cai 96]
Poly kernel	Yes [Abu-Khzam 10]	?

no for someone

no for a lot

most no...

which has?

Drange & Mi. Pilipczuk:

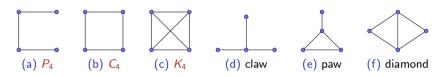
"the existence of a polynomial kernel for any of *H*-Free Editing, *H*-Free Edge Deletion, or *H*-Free Completion problems is in fact a very rare phenomenon, and basically happens only for specific, constant-size graphs *H*."

What are known

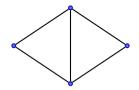
Н	completion	deletion	editing
$P_{\leq 4}$	yes	yes	yes
$P_{>4}$	no	no	no
$P_{\leq 4} \\ P_{> 4} \\ C_{\geq 4}$	no	no	no
$K_{\ell} \ K_{\geq 5} - e$	trivial	yes	yes
$K_{\geq 5} - e$	trivial	no	no
3-connected (≥ 2 non-edges)	no	no	no

all yes when |V(H)| = 2 or 3.

Four-vertex graphs



Н	completion	deletion	editing	
P_4	$O(k^3)$ [Guillemot et al. 13]			
K_4	trivial			
diamond	trivial	$O(k^3)$ [Sandeep & Sivadasan 15]	$O(k^8)$ [C et al. 2018]	
claw	unknown			
paw		unknown		
C ₄	no [Guillemot et al. 13]			



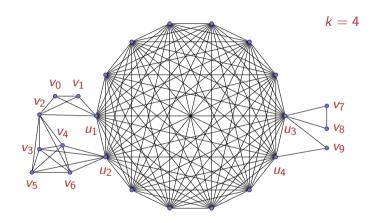
Diamond-free edge editing

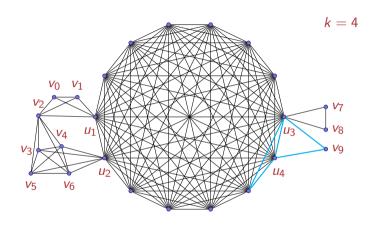
Input: A graph *G* and an integer *k*.

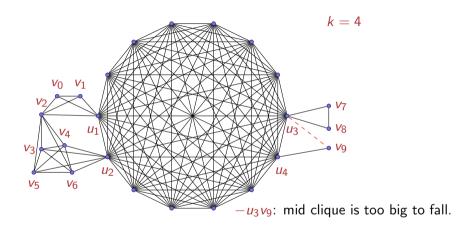
Task: Can we edit $(add/delete) \le k$ edges to make G diamond-free?

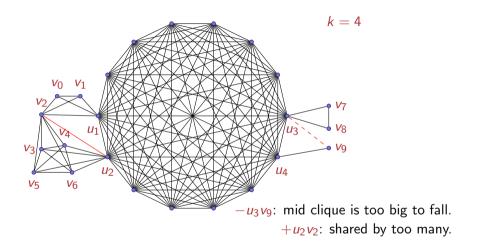
Main result: an $O(k^8)$ -vertex kernel.

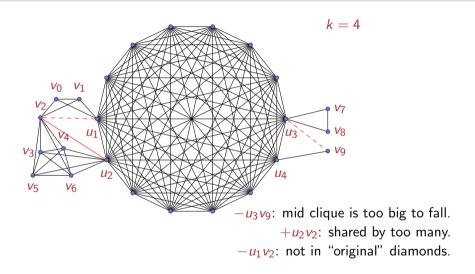
Maximal Cliques

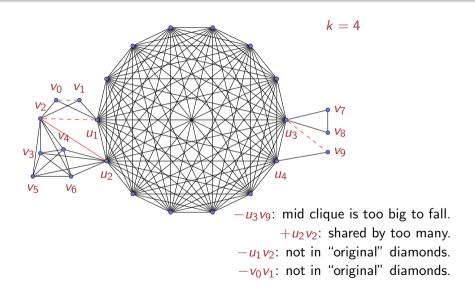












Maximal cliques

We are concerned with maximal cliques.

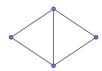
```
A maximal clique is of type I if it shares \geq 2 vertices with another maximal clique, type II otherwise.
```

Maximal cliques

We are concerned with maximal cliques.

```
A maximal clique is of type \ \text{I} if it shares \geq 2 vertices with another maximal clique, type \ \text{II} otherwise.
```

(simple) observation: diamond-free ⇔ no type-I cliques.

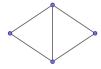


Maximal cliques

We are concerned with maximal cliques.

A maximal clique is of $type \ {\tt I} \ \ if \ it \ shares \ge 2 \ vertices \ with \ another \ maximal \ clique,$ $type \ {\tt II} \ \ otherwise.$

(simple) observation: diamond-free ⇔ no type-I cliques.

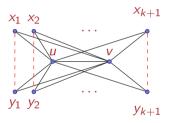


A maximal clique K is big if $|K| \ge 3k + 2$, and small otherwise.

Basic rules

Rule 1(2).

If an edge (resp. non-edge) uv is the only edge (resp. non-edge) shared by k+1 diamonds, then delete (resp. add) uv, and decrease k by one.



We may assume throughout that Rules 1–2 have been exhaustively applied.

 E_{\pm} ($E_{+} \cup E_{-}$): a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

Big max cliques of G remain max cliques in G^* .

 E_{\pm} ($E_{+} \cup E_{-}$): a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

Big max cliques of G remain max cliques in G^* .

Lemma. Ends of E_+ are in small type-I cliques.

 E_{\pm} $(E_{+} \cup E_{-})$: a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

Big max cliques of G remain max cliques in G^* .

Lemma. Ends of E_+ are in small type-I cliques.

Proof. Let $vu \in E_+$.

 E_{\pm} $(E_{+} \cup E_{-})$: a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

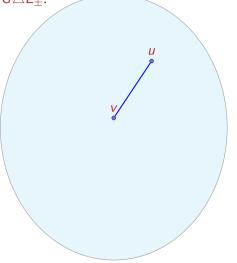
Proposition.

Big max cliques of G remain max cliques in G^* .

Lemma. Ends of E_+ are in small type-I cliques.

Proof. Let $vu \in E_+$.

Find a maximal clique U of G^* containing u, v.



 E_{\pm} ($E_{+} \cup E_{-}$): a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

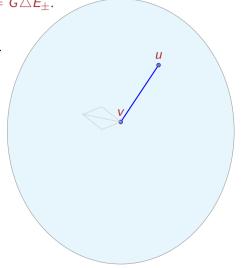
Big max cliques of G remain max cliques in G^* .

Lemma. Ends of E_+ are in small type-I cliques.

Proof. Let $vu \in E_+$.

Find a maximal clique U of G^* containing u, v.

Claim: v is in a diamond in G[U].



 E_{\pm} $(E_{+} \cup E_{-})$: a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

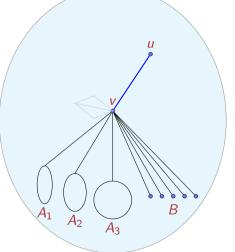
Big max cliques of G remain max cliques in G^* .

Lemma. Ends of E_+ are in small type-I cliques. Proof. Let $vu \in E_+$.

Find a maximal clique U of G^* containing u, v.

Claim: v is in a diamond in G[U].

Otherwise, $N(v) \cup U$ induces a cluster graph.



 E_{\pm} $(E_{+} \cup E_{-})$: a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

Big max cliques of G remain max cliques in G^* .

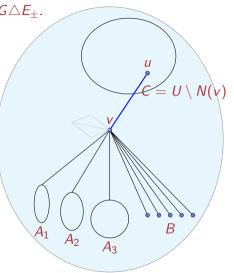
Lemma. Ends of E_+ are in small type-I cliques. Proof. Let $vu \in E_+$.

Find a maximal clique U of G^* containing u, v.

Claim: v is in a diamond in G[U].

Otherwise, $N(v) \cup U$ induces a cluster graph.

We can find a smaller solution.



 E_{\pm} $(E_{+} \cup E_{-})$: a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

Big max cliques of G remain max cliques in G^* .

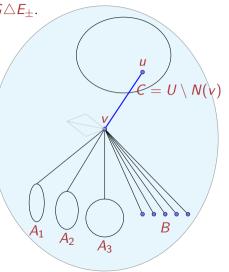
Lemma. Ends of E_+ are in small type-I cliques. Proof. Let $vu \in E_+$.

Find a maximal clique U of G^* containing u, v.

Claim: v is in a diamond in G[U]. Otherwise, $N(v) \cup U$ induces a cluster graph.

We can find a smaller solution.

A max type-I clique K of G containing v, x, y.



 E_{\pm} $(E_{+} \cup E_{-})$: a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

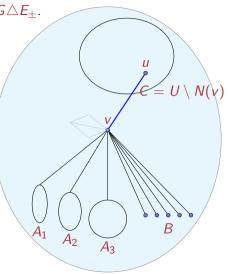
Big max cliques of G remain max cliques in G^* .

Lemma. Ends of E_+ are in small type-I cliques. Proof. Let $vu \in E_+$.

Find a maximal clique U of G^* containing u, v.

Claim: v is in a diamond in G[U]. Otherwise, $N(v) \cup U$ induces a cluster graph. We can find a smaller solution.

A max type-I clique K of G containing v, x, y. $|K \cap U| > 2$, hence not a max clique of G^* .



 E_{\pm} $(E_{+} \cup E_{-})$: a minimum solution to G; $G^{*} = G \triangle E_{\pm}$.

Proposition.

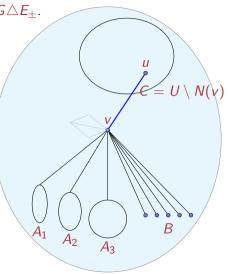
Big max cliques of G remain max cliques in G^* .

Lemma. Ends of E_+ are in small type-I cliques. Proof. Let $vu \in E_+$.

Find a maximal clique U of G^* containing u, v.

Claim: v is in a diamond in G[U]. Otherwise, $N(v) \cup U$ induces a cluster graph. We can find a smaller solution.

A max type-I clique K of G containing v, x, y. $|K \cap U| > 2$, hence not a max clique of G^* . By the proposition above, K is not big.



Properties: deleted edges

Lemma.

Let $uv \in E_-$. If a max clique K contains u, v, then K is small. Moreover, if K is of type II, then K intersects some small type-I clique.

Vulnerable vertices

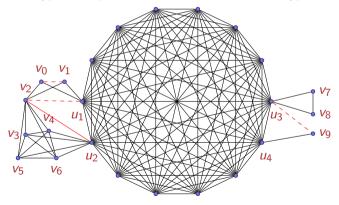
A vertex v is vulnerable if v is in

- some small type-I clique; or
- a type-II clique that intersects some small type-I clique.

Vulnerable vertices

A vertex v is vulnerable if v is in

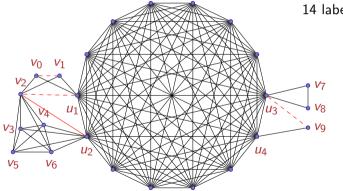
- some small type-I clique; or
- a type-II clique that intersects some small type-I clique.



Vulnerable vertices

A vertex \mathbf{v} is vulnerable if \mathbf{v} is in

- some small type-I clique; or
- a type-II clique that intersects some small type-I clique.



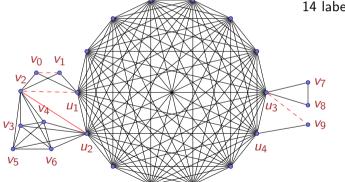
14 labeled vertices are vulnerable.

Others are protected.

Vulnerable vertices

A vertex \mathbf{v} is vulnerable if \mathbf{v} is in

- some small type-I clique; or
- a type-II clique that intersects some small type-I clique.



14 labeled vertices are vulnerable.

Others are protected.

Lemma. A minimum solution touches only vulnerable vertices.

Main rules

Small type-I cliques

Lemma.

In a yes-instance, at most $18k^3 + 2k$ vertices are in small type-I cliques.

Big type-I cliques

Lemma.

A yes-instance has at most $6k^2$ big type-I cliques.

Rule 3

If a big type-I clique contains a "private" protected vertex, delete it

Lemma

In a yes-instance, each big type-I clique has $O(k^3)$ vertices if Rule 3 is not applicable.

vertices in all type-I cliques: $\mathit{O}(\mathit{k}^3+\mathit{k}^5)=\mathit{O}(\mathit{k}^5)$

Big type-I cliques

Lemma.

A yes-instance has at most $6k^2$ big type-I cliques.

Rule 3.

If a big type-I clique contains a "private" protected vertex, delete it.

Lemma.

In a yes-instance, each big type-I clique has $O(k^3)$ vertices if Rule 3 is not applicable.

vertices in all type-I cliques: $O(k^3 + k^5) = O(k^5)$.

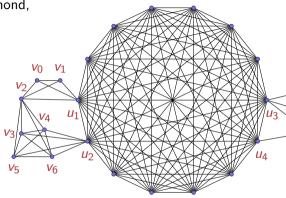
Type-II cliques

Let T(G) denote the vertices that occur *only* in cliques of type II.

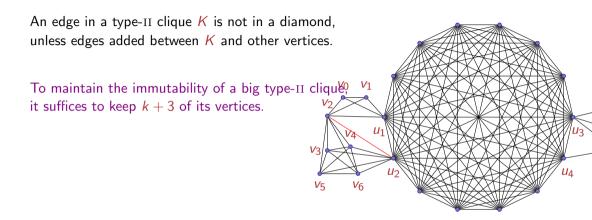
Rule 4.

If there is a protected vertex x contained in *only* in type-II cliques, delete it.

An edge in a type-II clique K is not in a diamond,



An edge in a type-II clique K is not in a diamond, unless edges added between K and other vertices.



An edge in a type-II clique K is not in a diamond, unless edges added between K and other vertices.

To maintain the immutability of a big type-II clique

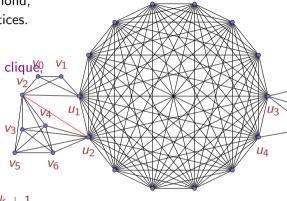
it suffices to keep k + 3 of its vertices.

Rule 5. (Informal)

For each pair u, v in small type-I cliques

- \bullet mark k+1 common neighbors of u, v;
- for each marked neighbor w of u, mark k+1 common neighbors of u, w.

Delete all unmarked vertices x in T(G).



An edge in a type-II clique K is not in a diamond. unless edges added between K and other vertices.

To maintain the immutability of a big type-II clique it suffices to keep k + 3 of its vertices.

Rule 5. (Informal)

For each pair u, v in small type-I cliques

- mark k+1 common neighbors of u, v;
- for each marked neighbor w of u, mark k+1common neighbors of u, w.

Delete all unmarked vertices x in T(G).

In total, $O(k^8)$ vertices marked.

Putting together

$$O(k^3) + O(k^5) + O(k^8) = O(k^8).$$

The implementation

We do not need to enumerate the maximal cliques (exponential number of them).

It is sufficient to find

- all vertices in a small type-I clique,
- all vertices in a type-I clique, and
- all vulnerable vertices.

Key observation: we can enumerate cross edges of all diamonds, from which we can identify all vertices and edges in type-I cliques

The implementation

We do not need to enumerate the maximal cliques (exponential number of them).

It is sufficient to find

- all vertices in a small type-I clique,
- all vertices in a type-I clique, and
- all vulnerable vertices.

Key observation: we can enumerate cross edges of all diamonds, from which we can identify all vertices and edges in type-I cliques.

Diamond-free edge deletion

Diamond-free edge deletion

Input: A graph *G* and an integer *k*.

Task: Can we delete $\leq k$ edges to make G diamond-free?

Rule 2. If there is a vertex not in any small maximal clique, delete it.

Rule 3. Delete all edges and vertices not in any type-I clique.

Lemma.

The diamond-free edge deletion problem has a kernel of $O(k^3)$ vertices.

Michał: claw is difficult.

Thanks!

yixin.cao@polyu.edu.hk