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Graph modification problems

Input: A graph G and an integer k .
Task: Can we apply ≤ k modifications to G to make it satisfy P?

Graph modification problem for property P

vertex deletion (k = 1)

edge editing (k = 2)G

P: being a cluster graph.
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Three questions

1 Is it NP-complete?

2 Can it be solved in time f (k) · nO(1); if yes, what is the (asymptotically) best f ?

3 Does it have a polynomial kernel?

Theorem (Lewis and Yannakakis 80).
For a hereditary property, the vertex deletion problem is either NP-complete or trivial.

Such a general result for edge modification problems is unknown, and very unlikely.
(Complexity Status of Edge Modification Problems@FPT WIKI)
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Kernelization

An algorithm maps (I , k) into (I ′, k ′) in time polynomial in |I |+ k such that

(I , k) is a yes-instance iff (I ′, k ′) is a yes-instance, and

|I ′|+ k ′ ≤ g(k) for some computable function g .

The function g is the size of the kernel, and it is a polynomial kernel if g is polynomial.
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H-free modification problems

|V (H)| ≥ 2
The “simplest” property is H-free—not containing H as an induced subgraph.
(For example, H is P3 for cluster graphs.)

vertex deletion edge modification

NPC Yes [Lewis & Yannakakis 81] Dichotomy [Sandeep 16]
FPT Yes [Cai 96] Yes [Cai 96]
Poly kernel Yes [Abu-Khzam 10] ?
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Yufei

no for someone no for a lot most no... which has?

Drange & Mi. Pilipczuk:
“the existence of a polynomial kernel for any of H-Free Editing, H-Free
Edge Deletion, or H-Free Completion problems is in fact a very rare phe-
nomenon, and basically happens only for specific, constant-size graphs H.”
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What are known

H completion deletion editing

P≤4 yes yes yes
P>4 no no no
C≥4 no no no

K` trivial yes yes
K≥5 − e trivial no no

3-connected
(≥ 2 non-edges)

no no no

all yes when |V (H)| = 2 or 3.
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Four-vertex graphs

(a) P4 (b) C4 (c) K4 (d) claw (e) paw (f) diamond

H completion deletion editing

P4 O(k3) [Guillemot et al. 13]
K4 trivial O(k4) [Cai 12]
diamond trivial O(k3) [Sandeep & Sivadasan 15] O(k8) [C et al. 2018]

claw unknown
paw unknown

C4 no [Guillemot et al. 13]
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Input: A graph G and an integer k .
Task: Can we edit (add/delete) ≤ k edges to make G diamond-free?

Diamond-free edge editing

Main result: an O(k8)-vertex kernel.
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Maximal Cliques

13 / 55



An example

v7

v8
v9

v1v0
v2

v3
v4

v6v5

u1

u2

u3

u4

k = 4

−u3v9: mid clique is too big to fall.

+u2v2: shared by too many.

−u1v2: not in “original” diamonds.

−v0v1: not in “original” diamonds.
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Maximal cliques

We are concerned with maximal cliques.

A maximal clique is of

type i if it shares ≥ 2 vertices with another maximal clique,

type ii otherwise.

(simple) observation: diamond-free ⇔ no type-i cliques.

A maximal clique K is big if |K | ≥ 3k + 2, and small otherwise.
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Basic rules

Rule 1(2).
If an edge (resp. non-edge) uv is the only edge (resp. non-edge) shared by k + 1
diamonds, then delete (resp. add) uv , and decrease k by one.

u v

x1

y1

x2

y2

xk+1

yk+1

· · ·

· · ·

We may assume throughout that Rules 1–2 have been exhaustively applied.
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Properties: added edges

v

u

A1 A2 A3

B

C = U \ N(v)

E± (E+ ∪ E−): a minimum solution to G ; G ∗ = G4E±.

Proposition.
Big max cliques of G remain max cliques in G ∗.

Lemma. Ends of E+ are in small type-i cliques.

Proof. Let vu ∈ E+.
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Properties: added edges

v

u

A1 A2 A3

B

C = U \ N(v)

E± (E+ ∪ E−): a minimum solution to G ; G ∗ = G4E±.

Proposition.
Big max cliques of G remain max cliques in G ∗.

Lemma. Ends of E+ are in small type-i cliques.

Proof. Let vu ∈ E+.
Find a maximal clique U of G ∗ containing u, v .

Claim: v is in a diamond in G [U].
Otherwise, N(v) ∪ U induces a cluster graph.
We can find a smaller solution.

A max type-i clique K of G containing v , x , y .
|K ∩ U| > 2, hence not a max clique of G ∗.
By the proposition above, K is not big.
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Properties: deleted edges

Lemma.
Let uv ∈ E−. If a max clique K contains u, v , then K is small.
Moreover, if K is of type ii, then K intersects some small type-i clique.
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Vulnerable vertices

A vertex v is vulnerable if v is in

some small type-i clique; or

a type-ii clique that intersects some small type-i clique.

v7

v8
v9

v1v0
v2

v3
v4

v6v5

u1

u2

u3

u4

14 labeled vertices are vulnerable.
Others are protected.

Lemma. A minimum solution touches only vulnerable vertices.
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Main rules
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Small type-i cliques

Lemma.
In a yes-instance, at most 18k3 + 2k vertices are in small type-i cliques.
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Big type-i cliques

Lemma.
A yes-instance has at most 6k2 big type-i cliques.

Rule 3.
If a big type-i clique contains a “private” protected vertex, delete it.
Lemma.
In a yes-instance, each big type-i clique has O(k3) vertices if Rule 3 is not applicable.

vertices in all type-i cliques: O(k3 + k5) = O(k5).
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Type-ii cliques

Let T (G ) denote the vertices that occur only in cliques of type ii.

Rule 4.
If there is a protected vertex x contained in only in type-ii cliques, delete it.
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The last reduction rule

v7

v8
v9

v1v0
v2

v3
v4

v6v5

u1

u2

u3

u4

An edge in a type-ii clique K is not in a diamond,

unless edges added between K and other vertices.

To maintain the immutability of a big type-ii clique,
it suffices to keep k + 3 of its vertices.

Rule 5. (Informal)
For each pair u, v in small type-i cliques

i. mark k + 1 common neighbors of u, v ;

ii. for each marked neighbor w of u, mark k + 1
common neighbors of u,w .

Delete all unmarked vertices x in T (G ). In total, O(k8) vertices marked.
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Putting together

O(k3) + O(k5) + O(k8) = O(k8).
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The implementation

We do not need to enumerate the maximal cliques (exponential number of them).

It is sufficient to find

all vertices in a small type-i clique,

all vertices in a type-i clique, and

all vulnerable vertices.

Key observation: we can enumerate cross edges of all diamonds,
from which we can identify all vertices and edges in type-i cliques.
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Diamond-free edge deletion

Input: A graph G and an integer k .
Task: Can we delete ≤ k edges to make G diamond-free?

Diamond-free edge deletion

Rule 2. If there is a vertex not in any small maximal clique, delete it.
Rule 3. Delete all edges and vertices not in any type-i clique.

Lemma.
The diamond-free edge deletion problem has a kernel of O(k3) vertices.
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©DreamWorks Animation
Micha l: claw is difficult.

53 / 55



©DreamWorks AnimationCan we take paw first (apparently attackable)?
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Thanks!

yixin.cao@polyu.edu.hk
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