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Abstract

Given an objectq, modeled by a multidimensional point, a reverse nearest neighbors (RNN)
query returns the set of objects in the database that haveq as their nearest neighbor. In this
paper, we study an interesting generalization of the RNN query, where not all dimensions
are considered, but only an ad-hoc subset thereof. The rationale is that (i) the dimensionality
might be too high for the result of a regular RNN query to be useful, (ii) missing values may
implicitly define a meaningful subspace for RNN retrieval, and (iii) analysts may be interested
in the query results only for a set of (ad-hoc) problem dimensions (i.e., object attributes).
We consider a suitable storage scheme and develop appropriate algorithms for projected RNN
queries, without relying on multidimensional indexes. Given the significant cost difference
between random and sequential data accesses, our algorithms are based on applying sequential
accesses only on the projected atomic values of the data at each dimension, to progressively
derive a set of RNN candidates. Whether these candidates are actual RNN results is then
validated via an optimized refinement step. In addition, we study variants of the projected
RNN problem, including RkNN search, bichromatic RNN, and RNN retrieval for the case
where sequential accesses are not possible. Our methods are experimentally evaluated with
real and synthetic data.
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1 Introduction

Consider a setD of objects that are modeled as points in a multidimensional space, defined by

the domains of their various features. Given a query objectq, a reverse nearest neighbor(RNN)

query [19, 25, 29, 26, 5, 20, 24, 28, 31] retrieves all objects inD that haveq closer to them than

any other object inD (according to a distance measure). RNN queries are used in a wide range of

applications such as decision support, resource allocation, and profile-based marketing.

Assume, for example, thatD is a set of films in a database (owned by a video rental shop) and that

each dimension is the rating of the film based on its relevance to a different category (e.g., action,

comedy, detective, horror, political, historical, etc.). The rating of a film at a particular dimension

is determined by averaging the opinions of customers who have watched the film. Figure 1 shows

a few films as points in a multidimensional space, considering only two dimensions; action and

comedy. In this space,a ande are the reverse nearest neighbors ofq (based on Euclidean distance);

these two points haveq as their nearest neighbor (NN). The query result could be used to recom-

mendq to customers who have watcheda or e, since they could be interested inq, as well. Note

that the NN ofq (i.e.,b) is not necessarily the RNN ofq (sincec is closer tob), thus NN and RNN

queries are essentially two different problems. In addition, RNN queries can have multiple results,

as opposed to NN queries which have exactly one result.
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Figure 1: Films rating database

We have illustrated RNN queries based on only two dimensions, however, there may be a large

number of dimensions, in general. According to [6], NN search (and RNN search, by extension)

could be meaningless in high dimensional spaces, due to the well-known curse of dimensionality.
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This fact motivated database researchers to study range queries [23], clustering [3], and similarity

search [17] in dimensional subspaces where they could be meaningful. The searched subspace is

ad-hoc and may vary between different similarity (and RNN) queries. For instance, assume that

a new film is registered in the database and watched by some customer. The customer rates the

film only based on three dimensions (e.g., action, detective, political), while leaving the rest of the

ratings blank. In this case, there is no other meaningful way to search for the RNN of the film,

but using only these three dimensions. [14, 23] stress the need for queries in attribute subspaces,

due to the existence of missing values. SuchprojectedRNN queries could also be applied if

some attributes of the query tuple are not relevant for search [14]. A data analyst could explicitly

select an ad-hoc dimensional subspace to search, which he thinks interesting. This scenario is very

common in business analysis tasks, which aggregate data based on ad-hoc dimensional subspaces

in on-line analytical processing (OLAP) applications. Thus, we argue that projected NN and RNN

queries in ad-hoc dimensional subspaces are as important as their counterparts that consider the

full dimensional space, especially in very high dimensional data collections.

Surprisingly, in spite of the huge bibliography in OLAP [1], to our knowledge, there is no prior

work on NN and RNN search in ad-hoc dimensional subspaces. Regarding NN queries, we can

attribute this lack of research to the fact that they can be straightforwardly converted to (and solved

as) top-k queries [11, 16], as we will discuss later (Section 3.2). However, RNN retrieval is more

complex and there is no straightforward adaptation of existing work [19, 25, 29, 28] for the pro-

jected version of this problem.

In this paper, we fill this gap by proposing appropriate projected RNN evaluation techniques. Our

solution is based on thedecomposition storage model(DSM) [10]. A commercial product [2] and

two prototype DBMS ([7] and [27]) have been developed based on DSM. These systems are most

appropriate for business analysis operations (e.g., OLAP) in large, relatively static collections,

where only a small number of attributes are relevant to each query. In DSM, a binary table is

created for each attribute, storing for each original tuple, the ID of the tuple and the value of the

attribute in that tuple. The binary table can be sorted on attribute value and/or could be indexed
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by a B+–tree to facilitate search. As a result, only relevant tables need to be accessed for a query

that relates to an ad-hoc set of attributes/dimensions. Vertically fragmented data can be either

centralized or distributed. In the distributed model, the binary tables are located at separate servers

and remotely accessed by users operating client machines. The queried data are transferred in a

form of a stream that stops when the whole result is transmitted or the server receives a termination

message from user. A popular example of querying decomposed distributed data is combining

object rankings from different sources [11, 16].

The main objective of our DSM-based RNN algorithms is to minimize the number of accessed tu-

ples from the binary tables, since they reflect I/O cost in the centralized model and communication

cost in the distributed model. The minor objectives are to reduce computational time and memory

usage. To our knowledge, ours is the only work that studies projected RNN queries, by gracefully

applying search on vertically decomposed data.

In addition to the more generic problem settings, we also study some interesting variants of RNN

search. The first is the RkNN query, which retrieves the set of objects having the queryq in their

kNN set. The second is thebichromaticRNN query [26], which takes as input a pointq from a

datasetT (e.g., hotels) and finds the points in another datasetP , which are closer toq than any

other point inT . Third, we study the case where the data are vertically decomposed and distributed

to different servers that allow only random accesses. In such a case, for each object, it is essential

to access at least one atomic value from a server before we can decide whether the object can be

pruned from the set of RNN candidates. We develop methods that minimize the required number

of accesses, for deriving the RNN result.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 defines the

problem and outlines the RNN algorithmic framework. Sections 4 and 5 present our methodology.

Section 6 discusses interesting RNN variants. Experimental results are presented in Section 7.

Finally, Section 8 concludes the paper.
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2 Related Work

2.1 Euclidean RNN Search

The basic idea of early RNN algorithms [19, 29] is to pre-compute the NN distance for each data

pointp. An index is built on the points with their NN distances so that RNN results can be retrieved

fast. This approach has expensive update cost for dynamic datasets. In addition, since we want to

support RNN search in ad-hoc sets of dimensions, it is infeasible to materialize the RNN for all

points, in all possible subspaces.

Thus, research shifted towards methods that do not rely on pre-computation. These algorithms

follow a filter-refinement framework. In thefilter step, a set of candidate RNN points (i.e., a

superset of the actual result) are retrieved. During therefinement(verification) step, a range query

is applied around each candidatep to verify whether the query pointq is closer top than any other

point in the database. If so,p is reported as an RNN ofq. The algorithms of [25, 28] apply on

R–trees and rely on geometric properties of the Euclidean distance. [25] divides the (2D) data

space aroundq into 6 regions. It can be proved for each region that, either (i) the region does not

have any RNN, or (ii) the RNN ofq in the region is exactly the NN ofq, when only the points in

the region are considered. Thus, in the filter step, 6constrainedNN queries [13] are issued to find

the nearest neighbor ofq at each region.

[28] proposes a more efficient geometric solution (TPL) for the filter step. An incremental NN

(INN) algorithm is employed to retrieve candidate points continuously from the R–tree that indexes

the data points. The original INN algorithm [18] first inserts all root entries of the tree into a priority

queue based on their distance fromq. The nearest entry toq is retrieved from the queue; if it is a

leaf entry, the corresponding object is reported as the next nearest neighbor. If it is a directory entry,

the corresponding node is visited and its entries are inserted into the queue. TPL when visiting a

node, before inserting its entries into the priority queue,trims their minimum bounding rectangles

(MBRs) using the already computed RNN candidates to smaller rectangles, by pruning the areas of

them which may not contain RNN results. Figure 2 shows an example after two candidate points
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a andb are discovered. Assume that pointa is retrieved first and letM be the MBR of a node

not accessed yet. The perpendicular bisector⊥(a, q) of pointsa andq partitions the data space

into two regions: halfplane⊥q(a, q) containing points closer toq thana, and halfplane⊥a(a, q)

containing points closer toa thanq. Note that⊥a(a, q) cannot contain any RNN results, thus, we

only need to considerM ∩ ⊥q(a, q) in subsequent search.

Since the exactM ∩ ⊥q(a, q) may have complex representation (the MBR could be trimmed by

multiple bisectors and could be of high dimensionality), [28] suggested to approximate the trimmed

region by its MBR. Consecutive clipping of an MBR is applied if there are multiple candidate

RNNs intersecting it. For instance,M is clipped first toM ′ and then toM ′′, after considering

⊥(a, q) and⊥(b, q) in this order. Although this clipping technique has low computational cost, it

may not result in the smallest possible MBR. Observe that the best MBR enclosing the non-pruned

region inM is M∗ instead ofM ′′. 

q

M

M*

M''
a M'

b
Figure 2: Example of TPL

RNN search is a popular problem, many variants of which have been proposed. [24] propose

an approximate algorithm, which cannot guarantee the discovery of all results. [26] focus on

bichromaticRNN queries. [5] investigate RNN queries on spatiotemporal data. [20] examine

aggregate RNN queries, which return an aggregate of the RNN set, on 1D data streams. Finally,

[31] study RNN queries on graphs where the distance between two objects is determined by their

shortest path.

The main defect of existing RNN methods is that they rely either on materialization of results or on

multi-dimensional indexes (e.g., R–trees), thus they are not effective in solving theprojectedRNN

problem stated in the Introduction. The dataset may have a large number of dimensions and the
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user could select only an arbitrary, small,interestingsubset of them, which is different from query

to query. Construction and maintenance of numerous (i.e.,2d − 1 for d dimensions) specialized

indexes for all attribute subsets is too expensive (or infeasible for vertically fragmented distributed

data). Besides, existing techniques [25, 28] rely on geometric properties specific for the Euclidean

distance, and they cannot be applied for other distance measures (e.g., Manhattan distance).

2.2 Top-k Queries

Our problem is closely related to top-k queries. Given a set of objects and a number of rankings for

these objects according to different criteria, a top-k query retrieves thek objects with the highest

combined score. Assume for example that we wish to retrieve the restaurants in a city in decreasing

order of their aggregate scores with respect to how cheap they are, their quality, and their closeness

to our hotel. If three separate services can incrementally provide ranked lists of the restaurants

based on their scores in each of the query components, the problem is to identify thek restaurants

with the best combined (e.g., average) score.

There are two types of primitive operations used by top-k algorithms: random accesses and sorted

accesses. A random access retrieves the value of a particular object (given its ID) for a particular

dimension (i.e., attribute). The alternative (sorted accesses) is to retrieve objects from each ranking

sequentially, in decreasing order of their scores.

The two main top-k retrieval paradigms [11] are: the Threshold Algorithm (TA), which applies

both sequential and random accesses and No Random Accesses (NRA), which applies only sorted

accesses. They share the following common points. Objects are retrieved from different sources by

sorted accesses. A thresholdT is defined by aggregating the latest values seen by sorted accesses

in all dimensions. The algorithm terminates when thek-th best score is higher thanT , in the worst

case.

Whenever TA sees an object by a sorted access, the values of the object in other dimensions are

retrieved by using random accesses and its overall score is computed. The top-k score is updated, if

necessary. The advantage of TA is that it requires minimal memory for maintaining top-k objects.
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NRA only applies sorted accesses. Objects which have been seen in some ranking list are organized

based on their overall score in the worst case (assuming minimal values for dimensions where the

object has not been seen). Since information for all objects seen in some ranking are stored in

memory, NRA has large memory requirements.

When we are looking for the NN of a pointq, whose dimensional values have been decomposed

to binary tables based on the DSM, we can apply a top-k algorithm after retrieving the tuples

from each binary tableAi (corresponding thei-th dimension) in increasing order of their absolute

difference fromqi (the value ofq in dimensioni). In Section 3.2 we elaborate more about the

relationship between top-k queries and projected NN (and RNN) search.

3 A Framework for RNN Search

In this section, we set up the problem studied in this paper by proposing a storage model based on

DSM and a framework for processing projected NN and RNN queries on this model.

3.1 Problem Setting

We consider a setD of d-dimensional points.D is stored ind binary tables, one for each dimension.

TableAi stores the IDs of all points inD and their values in thei-th dimension. The tables may be

stored centrally or distributed to different servers. Letpi be the value of the pointp at dimensioni.

Given a valueqi, for all pointsp satisfyingpi ≥ qi (pi < qi), their values in thei-th dimension can

be retrieved in ascending (descending) order, by searchingAi for qi and accessing the remainder

of the table forward (backward)sequentially. Search can be facilitated by sparse B+–trees, built

on top of the binary tables. We denote byA+
i (A−

i ) a (virtual) table containing the values inAi

greater (smaller) thanqi in ascending (descending) order. Conceptually, we open two streams for

each dimension involved in the query, that return the smaller and greater values thanqi in order, by

performing only sequential accesses.

We emphasize that only the set ofquerydimensions (instead of all dimensions) are considered dur-

ing query processing. In the rest of the paper, we used to denote the number of query dimensions
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(not the data dimensionality). Our goal is to solve RNN queries based on the above data model.

Definition 1 states the result set of a RNN query. Unless otherwise stated, we consider Euclidean

distance as the dissimilarity functiondist(). We shall discuss other distance functions in Section

4.2.

Definition 1 Given a query pointq and a datasetD, a RNN query retrieves the setRNN(q) =

{p ∈ D|dist(p, q) < NNdist(p,D)} whereNNdist(p,D) denotes the NN distance ofp in D.

3.2 Incremental Nearest Neighbor Search

In this section we show how to adapt the NRA top-k algorithm [11] for incremental retrieval of

projected NN from our storage scheme. The proposed projected NN algorithm is extended to solve

projected RNN queries in Section 3.3.

For each dimensioni, tuples greater (smaller) thanqi are retrieved from tableA+
i (A−

i ), sequen-

tially. We usev(A+
i ) andv(A−

i ) to denote last values seen fromA+
i andA−

i respectively. The

valuepi for a particular pointp is either inA+
i or in A−

i . Points which have been seen in some

(but not all) dimensions are indexed in memory using a hash table. LetΛ(p) be the set of dimen-

sions where pointp has been seen. Considering Euclidean distance, we can compute the minimum

possible distance ofp from q as follows:

mindist(q, p) =

√ ∑
i∈Λ(p)

|pi − qi|2 +
∑

i/∈Λ(p)

(min{v(A+
i )− qi, qi − v(A−

i )})2, (1)

since, in the best case,pi is equal to the closest ofv(A+
i ) andv(A−

i ) to qi in all dimensionsi where

pi has not been seen yet.1

Points which have been seen in all dimensions are removed from the hash table and inserted into

a min-heap. Letptop be the top object in this heap. Ifdist(q, ptop) is smaller thanmindist(q, p)

for all other points (including completely unseen points)p 6= ptop , thenptop is output as the next

NN. In this way, all NNs are (incrementally) output, or the user may opt to terminate search after

1If for some dimensioni, A+
i is exhausted then termv(A+

i ) − qi is removed. Similarly, ifA−
i is exhausted, term

qi − v(A−
i ) is removed.
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a satisfactory set of NN has been output.

3.3 A Framework for RNN Search

As discussed in Section 2.1, RNN algorithms operate in two steps; (i) thefilter stepretrieves a

candidate set which contains all the actual results, and (ii) theverification stepeliminates false hits

and reports the actual RNNs. This framework allows us to consider filter algorithms and verifica-

tion algorithms independently. In this section, we focus on the filter step, because it dominates the

overall cost (as verified in our experiments). Verification algorithms will be discussed in detail in

Section 5.

Figure 3 shows a high-level pseudocode, describing the framework of RNN algorithms that operate

on decomposed data. In simple words, the RNN algorithms expand the space aroundq, discovering

RNN candidates and at the same time constraining the additional space that needs to be searched

by exploiting the locations of discovered points.S denotes the MBR of the space that potentially

contains RNNs of the query pointq, not found yet. Initially, it is set to MBR of the universeU ,

since there is no information about the location of RNNs before search.

Let v(A+
i ) andv(A−

i ) be last values seen on filesA+
i andA−

i , respectively, by sorted accesses.

The accessed spaceA = ([v(A−
1 ), v(A+

1 )], [v(A−
2 ), v(A+

2 )], · · · , [v(A−
d ), v(A+

d )]), is defined by

the minimum bounding rectangle (MBR) of the values seen at all binary tables. First, we assign

the MBR ofq to A, indicating that sorted accesses along thei-th dimension start bi-directionally

from the valueqi. Let C be the candidate set andF be the set of points (false hits) that have been

seen in all dimensions, but are not RNNs. Pruned points are maintained inF in order to assist early

identification of whether some candidates are false hits (see Line 6 of the algorithm). Initially, both

C andF are set to empty. We will illustrate the semantics ofC andF shortly.

The filter algorithm has two core operations;GetNext andReduce. Here, we only state their spec-

ifications. Their concrete implementations will be studied in Section 4. The functionGetNext(A)

probes the set of binary tablesA (e.g., in a round-robin fashion) and then returns acomplete point

p whose values in all dimensions have been seen. The functionReduce(S, p) usesp to reduce the

9



Algorithm Filter (Pointq, SourcesA)
1. S:=U ; A:=MBR(q);
2. C:=∅; F :=∅;
3. while (S * A)
4. p:=GetNext(A);
5. Reduce(S, p);
6. if (∃p′ ∈ C ∪ F, dist(p, p′) ≤ dist(p, q))
7. F :=F ∪ {p};
8. else
9. C:=C ∪ {p};
10. return C;

Figure 3: The Filter Algorithm

search spaceS.

By Definition 1, if a pointp is nearer to some other pointp′ thanq, thenp cannot be a RNN of

q. In this case,p is said to beprunedby p′. At Line 6 of the algorithm, we check whetherp can

be pruned by some other points inC or F . If so, p is pruned and then added toF . Otherwise,

p is added to the candidate setC because it is a potential result. The filter step terminates, as

soon as the space to be searchedS is completely covered by the accessed spaceA (i.e., no more

candidates can be discovered). Note that ifS is covered byA in some dimensions and directions,

the corresponding tables are pruned from search. Formally, for each dimensioni, let [S−
i , S+

i ] be

the projection ofS in i. If v(A−
i ) < S−

i , then streamA−
i is pruned. Similarly, ifv(A+

i ) > S+
i , then

streamA+
i is pruned.

4 Filter Algorithms

In this section, we propose filter algorithms for RNN search. Section 4.1 discusses an adaptation

of the TPL algorithm [28] on our data model. Section 4.2 proposes a carefully designed and

efficient RNN algorithm. Section 4.3 presents a on-the-fly progress indicator for the filter step. The

algorithms follow the framework of Figure 3, thus we confine our discussion on the implementation

of GetNext andReduce operations.
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4.1 The TPL Filter

The TPL filter algorithm adapts the access pattern and pruning techniques of the TPL algorithm

[28], however, without relying on R–trees. TheGetNext function of TPL returns the next NN of

q, by applying the incremental algorithm described in Section 3.2. TheReduce function shrinks

the search spaceS by applying the clipping method of [28] directly onS. Let p be the next NN of

q. Formally,Reduce(S, p) returns the MBR enclosingS ∩ ⊥q(p, q).

The main disadvantage of the TPL filter is that MBR clipping introduces more dead space than

necessary (as discussed in Section 2.1). Thus, it does not prune the search space effectively, in-

creasing the number of accesses. A minor disadvantage is that it employs incremental NN search.

In Section 4.2, we show that we can take advantage of points seen in all dimensions, as soon as

they are identified, no matter whether they are the next NN ofq or not.

4.2 The Greedy Filter

The Greedy filter algorithm is a carefully designed RNN algorithm on our data model, which does

not share the drawbacks of the TPL filter algorithm. TheGetNext function of our algorithm is not

based on incremental NN search. Instead, we modify the process of Section 3.2 to immediately

return a point, as soon as it has been seen in all dimensions. The rationale is thatcompletepoints

seen earlier than the next NN may shrink the search space fast, allowing earlier termination of the

filter step.

The Greedy filter algorithm also applies an improved method for reducing the search spaceS. The

idea is based on the progressive computation of theVoronoicell V (q) of q. The Voronoi diagram

[22] of a datasetD partitions the space into a number of cells (polygons), one for each point inD,

such that for everyp ∈ D, every point inside the Voronoi cellV (p) (of p) is closer top than any

other point inD. Since the Voronoi cell of a pointp must be adjacent to that of its NN, the RNN

set ofq is a subset of the pointsp for whichV (q) andV (p) are adjacent.

Computation and maintenance of Voronoi diagrams for each combination of dimensions and any

distance measure is infeasible. In addition, past work for dynamic Voronoi cell computation of an
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arbitrary point exactly [32] or approximately [26] is based on intersections of bisectors, which is

computationally expensive especially for high dimensionality and arbitrary (i.e., non-Euclidean)

distance measures. Besides, [4] proposes an off-line method for computing an approximation of

V (q) with asymptotic bounds on approximation quality and space complexity. Such a method

requires examining many points in the dataset and it cannot be adapted to solve our problem where

the points are discovered on-line.

The Greedy filter algorithm computes a progressively more refined approximation ofV (q) (and

the corresponding neighboring points ofq that are candidate RNN results), while retrieving points.

It can be easily shown that the MBR ofV (q) is the minimal possible spaceS to be searched during

the filter step. LetW be a set of known (i.e., retrieved) points aroundq. Based onW , we can com-

pute an approximationVW (q) of V (q), by taking the intersection of all halfplanes
⋂

p∈W ⊥q(p, q).

Halfplane intersection (forL2 norm) is both computationally expensive and space consuming. Ac-

cording to [22], each incremental computation requiresO(|W |dd/2e) time andO(d|W |dd/2e) space

(vertices of the resulting Voronoi cell). In addition, computation of halfplanes is far more complex

for distance metrics other thanL2. Finally, halfplane intersection cannot be directly applied for

RkNN search, which will be discussed in Section 6. We observe that, setting the search spaceS to

any superset ofVW (q) guarantees that no results outside the accessed spaceA will be missed, thus

exact computation ofVW (q) may not be necessary for RNN retrieval. Next, we discuss two meth-

ods that compute conservative approximations ofVW (q) that do not rely on halfplane intersection

and can be computed for arbitraryLp distance norms.

4.2.1 Approximation using intercepts

Our first method approximatesVW (q), dynamically and efficiently, as new points are retrieved. In

addition, the approximated cell requires only bounded space, which is much smaller than the space

required for representing the exactV (q) in the worst case. Initially, we show how this method

works with the Euclidean distance and then extend it for anyLp distance norm.

First, we partition the search space aroundq into 2d quadrants, as shown in Figure 4a. Consider the
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upper right quadrant in this example. Figure 4b illustrates how to derive the (local) search space

for this quadrant. Suppose we have discovered 5 pointsa, b, c, e, f there. For each pointp found

(p ∈ {a, b, c, e, f}), we compute the intercepts of⊥(p, q) with the axes of the quadrant. It turns out

that it suffices to compute and maintain the intercept closest toq for each dimension. LetM be the

MBR containingq and these intercepts. Lemma 2 (using Lemma 1) guarantees thatM contains all

potential RNNs in the quadrant. AfterM has been computed for all quadrants, the (global) search

spaceS is taken as their MBR, as shown graphically in Figure 4a.

 

q

y

x

 

q

a b
c

e

f

(a) Global search space (b) Local search space

Figure 4: Voronoi cell approximation

Lemma 1 Consider the quadrantQ with coordinates no smaller thanq in all dimensions. Letp be

a point inQ and lete be the intercept of⊥(p, q) with some axisr, i.e.,e = (q1, . . . , qi−1, cr, qi+1, . . . , qd).

For any pointp′, for which∀i ∈ [1, d] : p′i ≥ ei, we havedist(p′, q) ≥ dist(p′, p).

Proof. We first comparedist(e, q) anddist(e, p) with the corresponding distancesdist(p′, q) and

dist(p′, p) for every dimension individually. For any dimensioni, let diffq = |p′i − qi| − |ei − qi|

(diffq ≥ 0, sinceei ≥ qi andp′i ≥ ei). Similarly, letdiffp = |p′i − pi| − |ei − pi|. If p′i ≤ pi, then

diffp ≤ 0. If p′i ≥ pi, thendiffp ≤ diffq, sinceqi ≤ pi ≤ p′i. Thus, in any case,diffp ≤ diffq.

Since, inall dimensionsp′ can only be closer top thane is andp′ can only be further fromq

thane is, and due to the monotonicity of the Euclidean distance (based on the atomic dimensional

distances), we havedist(p′, q) ≥ dist(p′, p).

Lemma 2 Consider a quadrantQ defined byq. LetI be the set of the intercepts that are closest to

q for each dimension. LetM be the MBR defined byq and these intercepts.M encloses all RNNs

of q in Q that are located outside the accessed spaceA.
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Figure 5 shows graphically the area pruned by the intercept of⊥(p, q) with the vertical quadrant

axis. The intercept on the horizontal quadrant axis can similarly prune all points greater than or

equal to it in all dimensions. Symmetrically, we can generalize the lemma for all quadrants of the

search space. When multiple points exist in a quadrant, the nearest intercepts toq dominate in

pruning. Thus, Lemma 2 can be trivially proved.

 

q

p

e

p'

pruned area 
due to e
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Figure 5: Using intercepts to prune

We can prove versions of Lemmas 1 and 2 for anyLp metric, since the basic proof (of Lemma

1) is based on the monotonicity property of Euclidean distance. An intercept coordinatee =

(q1, . . . , qi−1, cr, qi+1, . . . , qd) for some axisr, of the halfplane betweenq and a seen pointx, can

be easily computed from the equationdist(e, q) = dist(e, x). Thus, our technique can be applied

for anyLp norm.

We stress that our Voronoi cell approximation technique is functionally different from the one in

[26]. We use intercepts (based on anyLp norm) to compute a rectangle that enclosesV (q), whereas

[26] compute a more complex 2D approximation of the cell. Thus, our method is applicable

for any dimensionality (with significantly lower space requirements) and distance metric. Our

approximation method is expected to outperform the TPL filter discussed in Section 4.1, since it

optimally clips the quadrants containing points using information about these points. On the other

hand, the TPL filter operates on the MBR of the whole search spaceS, which is harder to prune.

The only drawback of our technique is that each retrieved point is not utilized in pruning other

quadrants except the one it resides in. For instance, in Figure 5, pointp is used to prune the space

only in the upper-right quadrant, whereas⊥(p, q) could be used in combination with⊥(p′′, q) to
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pruneS also in the upper-left quadrant (note thatp′′ alone defines a greaterM there). In the

next section, we propose another pruning technique that utilizes the effect of discovered points in

neighboring quadrants.

4.2.2 Approximation using a hierarchical grid

In this section, we propose a method that approximates the MBR that coversVW (p) with the help

of a multi-dimensional grid. This approach has several advantages. First, it provides a guarantee

on the quality of the approximation. Second, no memory is needed for storing the cells. Third, this

technique can directly be used for other distance metrics. Initially, we assume that the Euclidean

distance is used; later we discuss other distance metrics.

Figure 6a shows an exemplary8×8 grid that partitions the search spaceS. Whenever a new point is

retrieved byGetNext, we check (by the use of bisectors) whether a cell can be pruned by the points

which have been seen in all dimensions. If not, the cell (shown in gray) is included in the revised

search spaceS ′ for the next round (to be used for the next retrieved point). Instead of explicitly

including all non-pruned cells inS ′, we consider the MBR of them (since the decomposed tables

are essentially accessed until the MBR ofV (q) anyway). Thus, we need not explicitly maintain in

memory any grid information. When the algorithm is invoked for the next point, the search space

S is smaller than before, thus the cells become smaller and the approximation quality improves

incrementally.
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(a) a simple grid (b) a hierarchical grid

Figure 6: Reducing search space using a grid

Yet, the drawback of the above technique is that it requires high computational cost, especially
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in high dimensional space, since a large number of cells must be checked. In order to reduce the

CPU cost we introduce a hierarchical grid, as shown in Figure 6b and employ branch-and-bound

techniques to speed up computation. We first attempt to prune a high level cell. If pruning fails,

then we partition it into smaller ones and apply the above procedure recursively. In Figure 6b,

the maximum recursion level is set to 3. This parameter is a trade-off between the approximation

quality and the computational cost.

Figure 7 shows this hierarchical grid based traversal algorithm for search space reduction. First,

the newly discovered pointp is added to the set of pointsW , used for pruning (i.e.,W = C ∪ F ).

Then, we dynamically impose a hierarchical grid to the current search spaceS and prune its cells

hierarchically. S ′ denotes the output search space (MBR of cells that are not pruned). In the

Traverse function, a celle is examined when (i) it is not covered byS ′, and (ii) it cannot be

pruned by any points inW . At recursion level 0, pruning terminates andS ′ is enlarged to cover

e. Note that the outputS ′ of this algorithm is guaranteed to be no larger than2e than the exact

MBR of VW (q), in each dimension, wheree is the length of a cell at the finest grid resolution. As

a result, the proposed technique provides a good approximation guarantee.

Algorithm Grid-Reduce(MBR S,Pointp)
1. Global SetW ; // reuse content in previous run
2. W :=W ∪ {p};
3. S ′:=∅;
4. Traverse(S ′, S,MAX LEVEL, q,W );
5. S:=S ′;

Algorithm Traverse(MBR S ′,Cell e,Int level,Pointq,SetW )
1. if (e * S ′) // e not covered byS ′

2. if (∀p ∈ W, e cannot be pruned byp)
3. if (level = 0)
4. enlargeS ′ to covere;
5. else
6. partitione into 2d sub-cells;
7. for eachcell e′ ⊆ e
8. Traverse(S ′, e′, level − 1, q,W );

Figure 7: Traversal Algorithm for Hierarchical Grid

The grid-based Greedy filter algorithm can be applied for other distance metrics by using alterna-
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tive pruning methods for cells (i.e., not based on perpendicular bisectors), described by Lemma 3

(straightforwardly proved). In Figure 8 the rectangle (i.e., cell) can be pruned since the maximum

possible distance from a point inM to p (maxdist(p, M)) is smaller than the minimum distance

from M to q (mindist(q, M)).

Lemma 3 Let M be a rectangle. For any distance metric, ifmaxdist(p, M) ≤ mindist(q, M)

then∀p′ ∈ M, dist(p, p′) ≤ dist(q, p′).
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q
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Figure 8: Pruning for other distance metrics

4.3 Progress Indicator

In the scenario where data are distributed over a slow network, communication cost is very expen-

sive and it might be desirable for the user to have aprogress indicator[21] for a long-running RNN

query. During the execution of an RNN query, the expected remaining access cost in the filter step

can be estimated as follows:

Ψ(q, S,A) = |D| ·
∑

i∈[1,d]

Γi(x ∈ D, (S−
i ≤ xi ≤ A−

i ) ∨ (A+
i ≤ xi ≤ S+

i )) (2)

whereΓi captures the selectivity2 of query predicates on thei-th attribute.

Intuitively, the above formula expresses the number of accesses required to reach the search space

S from the accessed spaceA (i.e., values within ranges[S−
i , A−

i ] and[A+
i , S+

i ] are expected to be

accessed). However, the cost may be over-estimated because future data accesses may shrink the

search spaceS and also reduce the remaining cost. To alleviate this problem, we now discuss how

to derive a tighter search space. Recall that only completely seen points have been used to compute

2The selectivity can be accurately computed if 1D histograms for each attribute are available. In case no histograms
can be used, data distribution along each dimension can be estimated by maintaining moving averages of the values
accessed.
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the search spaceS. In fact, we can guess the unseen values of partially seen points and then apply

a RNN filter algorithm with those points for deriving a tighter search spaceS∗ from the existingS.

For this, the (unseen)i-th attribute value of a point can be randomly generated (outside the range

[A−
i , A+

i ]) following the distribution ofΓi. Finally, the estimated cost is averaged over multiple

(e.g., 10) instances ofS∗ in order to stabilize the randomness effect.

5 Verification of Candidates

In this section, we discuss whether the candidates obtained in the filter step are actual RNNs. In

addition, we discuss early (progressive) computations of RNNs before the verification step. Finally,

we show a method that minimizesF , i.e., the set of points that are not candidates, but they are used

to pruneC.

5.1 Concurrent Verification

The filter step terminates with a setC of candidate points and a setF of false hits; points that

have been seen in all dimensions, but they are found not to be RNNs. Normally, each candidate

p ∈ C is verified by issuing a range search aroundp with radiusdist(q, p). If another point is

found within this range thenp is not an RNN ofq, otherwise it is returned. In order to reduce the

number of range queries, we perform verification in two steps. First, we check eachp ∈ C whether

they are closer to some other seen point inC ∪ F than toq. These candidates can be immediately

eliminated.

The second step is to check the remaining candidates by range queries. Instead of issuing individual

queries for each candidate, we perform aconcurrent verification, which continues traversing the

binary tables from the point where the filter algorithm has stopped, until all candidates have been

verified. The overall verification algorithm is shown in Figure 9. The main idea of the second

step is to compute a rectangleM for each candidatep (based ondist(q, p)), where its potential

neighbors closer thanq may be contained. While accessing the binary tables in search for these

points, each complete pointw is checked on whether it can prune any of the remaining candidates

in C (not onlyp). If p cannot be pruned, then it is reported as a result.
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Algorithm Concurrent-Verification (SourcesA,Candidate SetC,False Hit SetF )
1. C:=C − {p ∈ C|∃p′ ∈ (F ∪ C − {p}), dist(p, p′) ≤ dist(p, q)};
2. for eachp ∈ C
3. δ:=dist(p, q);
4. M :=([p1 − δ, p1 + δ], [p2 − δ, p2 + δ], · · · , [pd − δ, pd + δ]);
5. while (p ∈ C ∧M * A) // p not removed andM not completely accessed
6. w:=GetNext(A);
7. C:=C − {p′ ∈ C|dist(p′, w) ≤ dist(p′, q)};
8. if (p ∈ C)
9. reportp as a result;C:=C − {p};

Figure 9: Concurrent Verification Algorithm

5.2 Progressive RNN Computation

Our algorithmic framework allows early report of points that are definitely in the RNN set, before

the verification phase. Progressive report of results is very useful in practice, since the user can

examine early results, while waiting for the complete response set.

Given a candidate pointp, letM(p) be the MBR enclosing the region withp as center and the range

asdist(p, q). Formally, we haveM(p) = ([p1 − δ, p1 + δ], [p2 − δ, p2 + δ], · · · , [pd − δ, pd + δ]),

whereδ = dist(p, q). During the filter step, if a candidatep satisfies (i)M(p) ⊆ A, and (ii)

∀p′ ∈ (C ∪ F − {p}), dist(p, p′) > dist(p, q), thenp can be immediately reported as a result.

Figure 10a shows an example, whereM(p) is enclosed inA and does not contain any other point

but p. Note that this is the first work to address progressive RNN computation without using

materialized results.
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(a) progressive verification (b) reducing the refinement set

Figure 10: Optimizing the filter step
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5.3 Reducing the Set of False Hits

During the filter step, we maintain a potentially large setF of points that are false hits, but may

be used for candidate pruning. We can reduce this set, by eliminating points that may not be used

to prune any candidate. A pointp ∈ F can be discarded if (i)p does not fall in the verification

range of any existing candidate, and (ii)⊥p(q, p) ∩ S ⊆ A. ⊥p(q, p) is the part of the data space

containing points closer top than q. Only the points in this region can be pruned byp. If its

intersection with the search spaceS is already covered by the accessed spaceA, then any complete

points found later cannot be pruned by the pointp. Note that this condition can be generalized for

arbitrary distance metrics, by replacing⊥p(q, p) by the region closer top than toq. Figure 10b

illustrates an example, where a (non-candidate) pointp can be pruned fromF .

6 Variants of RNN Search

In this section, we discuss how our framework can be adapted for two common variants of basic

RNN search; RkNN queries and bichromatic RNN queries. We also investigate how RNN search

can be deployed for the scenario where only random accesses (i.e., no sorted accesses) to data

sources are allowed.

6.1 RkNN Search

The filter and verification steps of RNN search in our framework can be easily adapted for the

generalized problem of RkNN search: find all pointsp such thatq belongs to thek-NN set ofp.

The TPL filter can be generalized for RkNN search, if we select ak-subset{θ1, θ2, · · · , θk} of the

points inC ∪ F . Let clip(S, q, θi) be the MBR (inS) that may contain some points closer to the

query pointq than the pointθi. Let S ′ be the MBR that enclosesclip(S, q, θi)∀i ∈ [1, k]. Observe

that other RNN results cannot be outsideS ′ because all such points are nearer to allθ1, θ2, · · · , θk

than toq. Therefore,S ′ becomes the new search space after a new point has been retrieved.

Appropriatek-subsets ofC ∪F to be used for pruning can be selected using the heuristics of [28].

The Greedy filter can be adapted for RkNN search, by considering thek-th closest intercept for
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each axis adjacent to each quadrant. Due to space constraints, the proof for the correctness of this

approach is omitted. We stress that this technique is deterministic, as opposed to the probabilistic

nature of selectingk-subsets in the TPL filter. In addition, it is applicable to anyLp distance norms.

The grid-based Greedy filter can also be easily extended for RkNN search; a cell in this case is

pruned if it falls outside⊥q(q, p) for at leastk pointsp ∈ C ∪ F .

For the verification step of RkNN search, for each candidate pointp, we keep a counter of the

points inC ∪ F , which are closer top than toq, during the filter step. Every time a new point is

accessed, these counters are updated. Eventually, verification is required only for candidates for

which the counter is smaller thank.

6.2 Bichromatic RNN Search

Bichromatic reverse nearest neighbor (BRNN) queries are a popular variant of RNN search. Given

apointdatasetP , asitedatasetT , and a pointq, the output of a BRNN query is{p ∈ P |dist(p, q) <

NNdist(p, T )}, whereNNdist(p, T ) is the distance fromp to its NN in T . [26] first identified

this problem and proposed an R–tree based algorithm for it. An approximate Voronoi cell ofq

with respect to a subset of points in the site dataset is first computed. Then, a range query on the

point dataset is performed to retrieve some candidate points. Finally, candidate points are checked

against the site dataset to verify whether they are actual results.

Algorithm BRNN-Filter (SourcesAP , AT )
1. SP :=U ; AP :=MBR(q); AT :=MBR(q);
2. C:=∅; F :=∅;
3. while (SP * AP )
4. if (SP * AT )
5. xT :=GetNext(AT );
6. Reduce(SP , xT );
7. F :=F ∪ {xT};
8. xP :=GetNext(AP );
9. if (∀x′

T ∈ F, dist(xP , x′
T ) > dist(xP , q))

10. C:=C ∪ {xP};
11. return C;

Figure 11: Bichromatic RNN Filter Algorithm

Our BRNN algorithm also follows the filter-refinement framework. We first discuss about the filter
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algorithm, which is shown in Figure 11.q is the query point,P is the point dataset andT is the

site dataset.AP andAT denote the accessed space ofP andT respectively.SP represents the

search space ofP . A point worth noticing is that the candidate setC only maintains the points in

P and the false-hits setF only maintains the points inT . The algorithm synchronously accesses

both datasetsP andT . This is a main difference from the algorithm in [26]. First, we retrieve a

point fromT , then reduce the search spaceSP and add the point toF . Second, we retrieve a point

from P . It is added to the candidate setC if it is nearer toq than all the points inF . The algorithm

terminates whenAP containsSP , meaning that all the candidates have been found.

Like the monochromatic RNN filter algorithm in Section 3.3, the above filter algorithm for the

bichromatic case provides a generic framework for different filter methods. For theGetNext

function (on eitherAT or AP ), we can use its implementations discussed in Section4. In the

context of BRNN query, the objective of theReduce function is to shrink the search spaceSP (for

the point setP ) by using a pointxT from the site setT . Thus, all the three concrete filter methods

discussed before can be applied for theReduce function.

In the refinement step, for each candidate, we first determine its verification range and then issue

a range search on the site datasetT in order to verify the candidate. As for simple RNN queries,

concurrent verification is employed to improve performance (see Section 5.1).

6.3 Searching Without Sorted Accesses

Consider a set of vertically partitioned data, distributed at different servers, accessible only by ran-

dom accesses. For example, consider the same set of objects (e.g., restaurants) for which different

information (e.g., ranking) is accessible at different web servers (e.g., using the restaurant name

as search key). In this section, we extend our RNN search techniques for the case where all data

sources allow only random accesses. Notice that, even for the apparently simpler top-k search

problem, we are not aware of any existing work for the above scenario. For instance, although

top-k algorithms in [8, 9, 12] perform random accesses to data sources, they still require sorted

accesses to be supported by at least one source.
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Lemma 4 provides a lower bound for the required number of accesses to derive the RNN set. Its

proof is straightforward, since we cannot prune an object unless we have verified that it is outside

the search space by checking whether there exists some dimensioni such thatpi lies outside the

range[S−
i , S+

i ]. Therefore, we need to access at least one attribute of the object.

Lemma 4 Given that only random accesses to data sources are available. For an objectp, at least

one of its attribute must be accessed in order to decide whetherp lies outside the search spaceS.

Our proposed RNN algorithm relies on the formulation of the accessed spaceA (see Section 3.1).

However, the accessed spaceA becomes undefined when sorted accesses are not allowed. Thus,

we need to develop an alternative method that performs only random accesses to the data sources.

Figure 12 illustrates the pseudo-codes of the filter and verification algorithms.

The filter algorithm consists of two phases. In the first phase (Lines 1–2), we perform one random

access (of an attribute value) for each object in the dataset. This is the essential cost of our RNN

search (according to Lemma 4). Since we have no guidance on which dimensions to access first

for each point, we perform these accesses in a round-robin fashion (i.e., pointpi is accessed at

dimensioni modulod). In this way, different attributes (of different objects) can be accessed in

parallel. Another advantage of this approach is that the maximum load of all servers is minimized.

In the second phase (Lines 3–16), we perform additional random accesses to the objects in order

to compute the search spaceS and store candidate objects inC. We first set the search space

S to the universeU and the candidate setC to empty (Line 3). At Line 4, objects are sorted in

ascending order of their accessed values. This heuristic tends to tighten the search space earlier

(in subsequent search); its effectiveness will be verified in our experiments. Then, for each point

pi in the dataset, we check whether it is definitely outside the search spaceS (Line 7). If so, we

skip processingpi. Otherwise, we perform additional random accesses forpi (Lines 9–12) as long

asp has the potential to be located inS. If the point is found to be insideS, we can apply any

filter technique in Section 4 for shrinkingS. The point is added toC if it is nearer toq than to any

of the points inC. It is worth noticing that, the response time of the filter step can be reduced by

parallelizing accesses for multiple candidates. In other words, while accessing the value ofpi at
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Algorithm NSA-Filter (Pointq, DatasetD)
1. for eachpi ∈ D // pi is thei-th object inD
2. access atomic value ofpi at dimension (i modulod);
3. S:=U ; C:=∅;
4. order objects inD in ascending order of accessed values;
5. for eachpi ∈ D
6. letx be the dimension where we know the valuepi

x for pi;
7. if (pi

x /∈ [S−
x , S+

x ])
8. skippi and mark it as pruned;
9. for each (non-accessed attributey of pi)
10. perform a random access forpi at dimensiony;
11. if (pi

y /∈ [S−
y , S+

y ])
12. skippi and mark it as pruned;

// pi lies inS
13. Reduce(S, pi);
14. if (∀p ∈ C, dist(pi, p) > dist(pi, q))
15. C:=C ∪ {pi};
16. return C;

Algorithm NSA-Verification(Candidate SetC, DatasetD)
1. F :={p ∈ D | p is completely seen∧ p /∈ C};
2. V:= D − (F ∪ C);
3. C:=C − {p ∈ C | ∃p′ ∈ (F ∪ C − {p}), dist(p, p′) ≤ dist(p, q)};
4. for eachp ∈ C
5. δ:=dist(p, q);
6. S:=([p1 − δ, p1 + δ], [p2 − δ, p2 + δ], · · · , [pd − δ, pd + δ]);
7. for eachpointw in V
8. if (p ∈ C)
9. execute Lines 6–12 of the filter algorithm above forpi = w;
10. if (w is seen at all dimensions)
11. C:=C − {p′ ∈ C|dist(p′, w) ≤ dist(p′, q)};
12. V:=V − {w};
13. if (p ∈ C)
14. reportp as a result;C:=C − {p};

Figure 12: RNN filter and verification algorithms using only random accesses

dimensiony (Line 9) at the same time we can access the values of (at most)d− 1 other candidates

at thed− 1 dimensions different toy (by picking candidates not seen in these dimensions).

The verification algorithm (NSA-Verification) operates in a similar way as the concurrent verifi-

cation algorithm. For each candidate pointp, we check whether it can be pruned by other points

which have been seen in all dimensions. Ifp remains to be a candidate, we check whether it can

be pruned by any point inV; the set of points not yet seen in all dimensions. For each objectw in

V, we perform accesses to its unknown values as long as it is possible forp to be nearer tow than
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q. If an objectw is seen at all dimensions, we check whether we can use it to prune any point in

the candidate set (Line 11) and removew from V (Line 12). Finally,p is reported as a result if it

cannot be pruned by other points (Line 14). The same parallelization technique applied in the filter

step can also be used during the verification, to minimize the response time.

7 Experimental Evaluation

In this section, we evaluate the proposed RNN algorithms using synthetic and real datasets. All

algorithms (TPL, G-IA for Greedy with intercept approximation, and G-HG for Greedy with hier-

archical grid) were implemented in C++. All experiments were performed on a Pentium 4 2.3GHz

PC with 512MB memory. The maximum recursion level of the search space reduction algorithm

in G-HG is fixed to 5 (i.e., a grid of32d finest cells). For each experimental instance, the query

cost is averaged over 100 queries with the same properties. We considered Euclidean distance in

all experiments, since TPL is inapplicable for other distance metrics.

7.1 Experimental Settings

We generated uniform synthetic datasets (UI) by assigning random numbers to attribute values of

objects independently. The default number of objects in a synthetic dataset isN = 100K. We also

used a real dataset (JESTER [15]), which contains a total of 4.1M ratings of 100 jokes from 73K

users. A joke may not be rated by all users. We extracted the attributes (i.e., jokes) having value

for at least 60K objects (i.e., users) and then constructed binary tables for them (22 attributes).

Query objects are users randomly chosen from the dataset. For a particular query objectq we use

only the attributes for whichq has ratings to issue a projected RNN query. In this way, we are able

to extract query workloads with a specified number of query dimensions. The query result can be

used to recommendq to his/her RNNs as a potential “buddy”, sinceq has similar taste in jokes as

them.

Attribute values of both UI and JESTER datasets are normalized to the range[0, 1]. We tried

different access patterns for sequential accesses to the binary tables during RNN evaluation (i.e.,

round-robin, equi-depth, etc.). We found no practical difference between these schemes, thus we
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use a round-robin accessing scheme in all experiments reported here.

7.2 Experimental Results

Monochromatic RNN queries We study the performance of RNN search with respect to various

factors. Figure 13a shows the filter and verification costs (in terms of accesses) of the algorithms on

the UI and JESTER datasets for queries withd = 3 dimensions. The filter costs of the algorithms

are proportional to their search space. The MBR clipping technique in TPL prunes the space

too loosely. G-IA is more effective in space reduction than TPL. Finally, G-HG has the lowest

filter cost as it utilizes the pruning power of discovered points in all quadrants. The concurrent

verification algorithm is very efficient; verification costs less than 10% of the total cost. Since

TPL and G-IA search more space than G-HG, they eventually discover more points than G-HG,

which can be used to prune more candidates. This explains the higher verification cost of G-HG

compared to the other methods. As Figure 13b shows, the CPU cost of the algorithms follows the

same trend as the number of accesses. Unless otherwise stated, we consider JESTER as the default

dataset in subsequent experiments.
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Figure 13: Cost on different datasets,d = 3

The next experiment justifies why we use only sorted accesses to the binary tables, whereas one

could develop RNN algorithms that extend TA [11]. We implemented versions of TPL, G-IA, and

G-HG that perform random accesses; whenever an object is seen from a binary table,d−1 random

accesses to all other tables are applied to retrieve the values of the object in all other dimensions.

Thus, there are nopartially seen objects. Figure 14 compares the original filter algorithms with
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their versions that employ random accesses (for queries withd = 3). Observe that the total access

cost when using random accesses is much higher than when not. In practice, their access cost

difference is even higher, provided that random accesses are more expensive than sorted ones in

real applications.
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Figure 14: Cost vs data access type,d = 3, JESTER

Figure 15 shows the access and CPU cost of the algorithms as a function of query dimensionality

d. G-HG outperforms the other algorithms in terms of accesses and the performance gap widens

asd increases. The pruning effectiveness of TPL and G-IA decreases with dimensionality. A

bisector is less likely to prune all dimensions and reduce the global MBR, thus TPL is not very

effective. Besides, for a discovered pointp, the number of neighbor quadrants increase withd

and G-IA fails to utilizep in pruning them. The CPU cost has a slightly different trend. G-HG

becomes very expensive atd = 5 (and higher values) because it needs to examine a large number

of hierarchical cells. We recommend G-IA for high query dimensionality, because it achieves good

balance between accesses and CPU cost.

Figure 16 shows the cost of the algorithms as a function of the data sizeN , on 3D UI datasets.

All the algorithms are scalable as their costs increase sub-linearly asN increases. Again, G-HG

outperforms the other methods and the performance gap widens asN increases.

We also compared the algorithms for RkNN search. Figure 17 shows the performance of the algo-

rithms with respect tok. Access costs of the algorithms increase sub-linearly ask increases. The

cost of TPL increases at the fastest rate because it applies a heuristic, which only considers subsets

of discovered points in reducing the search space. On the other hand, G-IA and G-HG employ
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Figure 15: Cost vs dimensionalityd, JESTER
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Figure 16: Cost vs data sizeN , d = 3, UI

deterministic and systematic approaches for reducing the search space effectively. Regarding CPU

cost, TPL is the most expensive as it needs to examine several subsets of points. Also, G-HG be-

comes more expensive than G-IA at high values ofk because some high level (hierarchical) cells

cannot be immediately pruned and more low level cells need to be visited.

Advanced RNN queries Figure 18 shows the performance of the algorithms for bichromatic

RNN queries with respect to the ratio of sitesT to pointsP . T andP are both 3D UI datasets and

they have 200K points in total. The result is similar to monochromatic queries; G-HG outperforms

the other algorithms. When there are fewer sites and more points, the search space becomes larger

and the density of the point dataset increases. As a result, more verifications are needed.

Figure 19a shows the progressiveness of the algorithms for a typical R4NN query on a 3D UI

dataset. All the algorithms generate the first few results early because all of them follow the same
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Figure 17: Cost vsk, d = 3, JESTER
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Figure 18: Bichromatic RNN, Cost vs site-to-point ratio,|T |+ |P | = 200K, d = 3, UI

filter framework algorithm. Their effectiveness of reducing the search space only affects their total

cost. The arrows indicate that G-HG terminated first, followed by G-IA and TPL. Figure 19b shows

the remaining access cost of G-HG estimated by the progress indicator on-the-fly for queries with

different values ofk. The initial cost estimate is around 2-3 times of the remaining cost. The

estimated cost drops down fast to reasonable values after accessing a fraction of data values. At

the end, the remaining access cost converges to 0.

Querying without sorted accesses The last set of experiments investigate the performance of

RNN algorithms for the scenario where only random accesses to data sources (e.g., distributed

web servers) are allowed. Theresponse time3 of performing a random access to a data source is

3By response time here, we do not mean the CPU time, but we model the time required to stay connected and send
requests to the servers in order to find the RNN set. We assume that all servers have the same access time, however,
our methods can be adapted for the case where the assumption does not hold.
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Figure 19: Advanced RNN queries,N = 100K, d = 3, UI

taken as 1 time unit. We assume that multiple servers can be accessed in parallel and count the total

response time of each assessed method. In our comparison, we also include: (i) LB, which reflects

the theoretical lower bound cost of retrieving RNN (see Lemma 4), and (ii) UB, a brute-force

approach that performs parallel accesses to all attribute values for each object. Figure 20 shows

the cost of the algorithms as a function of query dimensionalityd. Observe that the access cost of

LB is very close to that of our algorithms. Again, G-HG outperforms its competitors. Unlike the

experiment of Figure 15, the algorithms are not much affected by the dimensionality curse. The is

attributed to the fact that, after 1–2 attributes of an object have been accessed, the object is often

found to be outside the search space and further accesses for the object can be saved. On the other

hand, the response time of the algorithms follows a different trend, due to two conflicting effects.

First, whend increases, accesses to more data sources can be parallelized and the response time is

reduced. Second, pruning effectiveness of the algorithms decreases with dimensionality and may

lead to longer response time.

Figure 21 shows the cost of the algorithms with respect tok. All our algorithms have much lower

access costs than UB. Ask increases, the access costs of G-IA and G-HG grow slowly. The

response time of the algorithms follows the same trend as the access cost.

Finally, we study the effect of ordering the points in the second phase of the filter algorithm (Line

4 in Figure 12). Figure 22 plots the access costs of the algorithms for three different orders: (i) no

order, (ii) ascending order of the points by their accessed values (i.e., the default ordering), and (iii)
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descending order of the points by their accessed values. The cost of LB (shown in a dotted line)

also reflects the access cost in the first phase of the filter algorithm. Observe that the ascending

order (i.e., the default order) minimizes the access cost. In particular, for all three methods, the

access cost in the second phase of the filter step (i.e., the part above LB) is nearly halved from the

worst order to the best order.

8 Conclusion

We proposed the first algorithms for projected RNN queries (and their variants) on the decom-

posed storage model and evaluated their performance on both synthetic and real datasets. We also

proposed the first techniques for retrieving RNN results in a progressive way. Our techniques

can efficiently process RNN queries in arbitrary dimensional subspaces, at vertically-partitioned
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distributed databases, and based on arbitrary distance measures.

Like most previous RNN methods, our proposal is based on a filter-refinement paradigm. We

studied three alternatives for the filter step. Algorithm G-HG, which uses a grid to reduce the

RNN search space, has been proved the most efficient in terms of data accesses, while G-IA,

which approximates the space to be searched with the help of intercepts of perpendicular bisectors

on the dimensional axes, has more balanced cost between accesses and computations. Finally,

TPL, which is a direct extension of the best-known algorithm for indexedL2 spaces, has the worst

performance in all cases. In terms of flexibility, G-HG is applicable to any distance metric, G-IA is

applicable to anyLp distance norm, and TPL is only applicable toL2 norm. Finally, we optimized

the verification step, with the introduction of a concurrent verification technique.

We also developed techniques for several variants of projected RNN search. We studied bichro-

matic and RkNN queries and showed how our methods can be adapted in this case. In addition, we

solved the interesting problem of RNN retrieval, when only random accesses to dimensional values

of each object are allowed. We showed that our adapted RNN algorithms for this case require only

marginally more accesses than the theoretical lower bound cost required to solve the problem.

In the future, we plan to extend our methods for the case of vertically distributed data at different

servers, where the access cost / response time between servers varies. In this case, we can adapt the

access patterns, such that servers with faster response time are accessed more frequently. Finally,
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we will study the case, where some sources allow sorted access and others allow only random ones.
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