
Noname manuscript No.
(will be inserted by the editor)

On Discovering Motifs and Frequent Patterns in Spatial
Trajectories with Discrete Fréchet Distance

Bo Tang · Man Lung Yiu · Kyriakos
Mouratidis · Jiahao Zhang · Kai Wang

Received: date / Accepted: date

Abstract The discrete Fréchet distance (DFD) captures perceptual and geographical
similarity between two trajectories. It has been successfully adopted in a multitude of
applications, such as signature and handwriting recognition, computer graphics, as well
as geographic applications. Spatial applications, e.g., sports analysis, traffic analysis,
etc. require discovering similar subtrajectories within a single trajectory or across mul-
tiple trajectories. In this paper, we adopt DFD as the similarity measure, and study two
representative trajectory analysis problems, namely, motif discovery and frequent pat-
tern discovery. Due to the time complexity of DFD, these tasks are computationally
challenging. We address that challenge with a suite of novel lower bound functions and
a grouping-based solution. Our techniques apply directly when the analysis tasks are
defined within the same or across multiple trajectories. An extensive empirical study on
real trajectory datasets reveals that our approaches are 3 orders of magnitude faster than
baseline solutions.

Keywords Spatial trajectory · Discrete Fréchet distance · Trajectory analysis

Bo Tang
Department of Computer Science and Engineering, Southern University of Science and Technology
E-mail: tangb3@sustech.edu.cn

Man Lung Yiu and Jiahao Zhang
Department of Computing, The Hong Kong Polytechnic University
E-mail: {csmlyiu,csjhzhang}@comp.polyu.edu.hk

Kyriakos Mouratidis
School of Information Systems, Singapore Management University
E-mail: kyriakos@smu.edu.sg

Kai Wang
School of Computer Science and Engineering, University of New South Wales
E-mail: kai.wang@unsw.edu.au

1 Introduction

With the advancement of location positioning and tracking technologies, the amount of
trajectory data generated daily is increasing rapidly. Thus, spatial trajectory analysis is
becoming more important and relevant than ever, being prevalent in many applications,
e.g., moving object analysis [21,25], traffic estimation/prediction systems [26,43,22,
44], etc.

Intuitively, it is important to choose a suitable similarity measure for the above spa-
tial trajectory analysis problems. The continuous Fréchet metric is amongst the most
popular such measures [32,20]. The continuous Fréchet distance between two spatial
trajectories, Sa and Sb, is the length of the shortest leash needed to walk a dog when
the person walks along Sa and the dog walks along Sb, where both are allowed to con-
trol their speed but they are not allowed to go backwards. In the geographic information
handbook [20], the authors conclude that “The most successful fundamental distance
measure to this date is probably the Fréchet metric, which is one of the most natural
measures to calculate the similarity between two trajectories”. The Fréchet distance has
been used successfully in a number of application domains, such as handwriting recog-
nition [30], bioinformatics [38], measuring similarity between curves [14], as well as
geographic applications [6]. As Fréchet distance is computationally expensive to calcu-
late, many recent studies [6,20,10,22,33,39] have adopted the discrete Fréchet distance
(DFD), which provides an upper bound on the continuous Fréchet distance, with a de-
viation no greater than the distance of the trajectory’s longest edge. In addition, as we
will elaborate in Section 2, DFD is particularly suitable for real-world spatial trajecto-
ries which are sufficiently sampled by GPS devices but bear the following properties: (i)
varying sampling rate, and (ii) missing samples at some time points. For example, the
GeoLife dataset [44], a real spatial trajectory dataset collected by Microsoft, exhibits
both the above properties.

latitude

timestamp

longitude

(a) A pedestrian’s trajectory (b) Discovered motif
April 10-12, 2009 red: 07:33-7:48, April 10, 2009

blue: 07:33-7:50, April 12, 2009

Fig. 1 Motif in a trajectory (from GeoLife)

Detecting similar subtrajectories has been used in many applications, such as team
sports analysis [21] and traffic analysis [25], as well as a building block for other trajec-
tory mining and analysis tasks [26,43,22]. Using real trajectories, Figure 1(a) visualizes
a pedestrian’s GPS trajectory (from the GeoLife dataset [44]), by a 3D plot with time
as the horizontal axis. The motif corresponds to the most similar pair of subtrajectories,
shown in red and blue in Figure 1(b), and can be used, among others, as a building block

2

Table 1 Input and output of the studied problems

Motif discovery Frequent pattern discovery

Input trajectory S, trajectory S, length ξ, distance threshold dthres,
minimum motif length ξ frequency threshold tthres

Output a subtrajectory pair (Si,ie ,Sj,je) all (Si,ie , Γi) where |Γi| ≥ tthres
where dF (i, ie, j, je) is minimal and ∀Sj,je ∈ ΓidF (i, ie, j, je) ≤ dthres

Fig. 2 Frequent pattern in a one-day taxi trajectory (from T-Drive)

in subtrajectory clustering. A frequent pattern, as its name suggests, represents a fre-
quently occurring subtrajectory in a given trajectory. For instance, Figure 2 illustrates a
frequent pattern (shown in red) in a one-day taxi trajectory from the T-Drive dataset [42].
It indicates a recurrent travel pattern, which can be used in intelligent transportation sys-
tems. Specifically, motif is the most similar subtrajectory pair in the given trajectory,
while a frequent pattern is a set of subtrajectories that includes at least a specified
number of similar subtrajectories, concentrating around the representative subtrajectory
of the set. We summarize the input and output of both studied problems in Table 1; used
notation and specific definitions are elaborated in Sections 3 and 4, respectively.

Although the above two examples consider a single trajectory, those problems can
also be extended to multiple trajectories too (e.g., a trajectory database). For example, a
motif discovered in multiple player trajectories can be used in a sports analysis applica-
tion [21], and the frequent pattern in multiple trajectories could be applied to intelligent
transportation systems [25]. In addition, those problems serve as building blocks in a
wide range of trajectory mining tasks (e.g., trajectory clustering, trajectory classifica-
tion, trajectory prediction, trajectory outlier detection). For instance, they enable us to
discover the habits of moving objects (e.g., buses, animals, sports players).

Technical Challenges: We consider spatial trajectory analysis problems with DFD as
the similarity measure. Specifically, we study how to compute motifs and frequent pat-
terns. These problems are computationally challenging for two reasons:

1. Expensive DFD computation. The computation of DFD between two subtrajectories
takes O(`2) time [17,7], where ` denotes the subtrajectory length. There have been at-
tempts to speed up DFD computation by using GPUs [22] or a faster algorithm (with
O(`2 · log log `

log `) time complexity) [1]. In contrast, we take an orthogonal research direc-
tion to reduce the number of DFD computations via various types of pruning techniques.
2. Huge search space. The search space of both addressed problems is huge. E.g., motif
discovery on a trajectory involves O(n4) pairs of subtrajectories, where n is the input

3

trajectory length. Furthermore, DFD exhibits non-monotonicity (see Section 3.1.1), i.e.,
appending additional vertices to trajectory S can result in the non-monotonicity of the
DFD measures between two (sub)trajectories S and P . Thus, it prevents us from apply-
ing efficient algorithmic paradigms (like binary search) to reduce the search space.

Our Contributions: To overcome the above challenges, we exploit the properties of
DFD and devise efficient lower bound functions to reduce the search space and guide
the search. Furthermore, we propose a grouping-based approach and optimize it with
multi-level pruning techniques. All our proposed techniques and algorithms are exact,
i.e., they produce exact results for both studied problems.

Our preliminary work [31] focuses on motif discovery on a single trajectory. In this
extension paper, we also consider the frequent pattern problem, and design efficient tech-
niques to solve it. The idea is to transform the expensive DFD computation to a cheaper
test on Boolean values. This transformation allows us to save memory and also utilize
fast operations on Boolean values. Furthermore, we adapt the lower bound functions for
motif discovery to solve the frequent pattern discovery problem. Finally, we also extend
our solutions to a multiple-trajectory database.

The rest of the paper is organized as follows. Section 2 reviews related work and pro-
vides preliminary information. Sections 3 and 4 study the motif discovery problem and
the frequent pattern discovery problem, respectively. Section 5 extends both problems
to a trajectory database. Section 6 demonstrates empirically the efficiency of our solu-
tions on real trajectory datasets. Finally, Section 7 concludes the paper with directions
for future work.

2 Related Work & Preliminaries

In this section, we first present alternative similarity measures and pinpoint the advan-
tages offered by the (discrete) Fréchet metric that render it an appropriate choice for
(sub)trajectory similarity [20]. We then overview the most relevant research in the spa-
tial trajectory analysis area. We discuss existing techniques in trajectory motif discovery
and frequent pattern discovery problems, and juxtapose them to ours. In addition, we
provide an outlook of other practically relevant trajectory analysis techniques.

Trajectory Similarity Measures: The literature includes a wealth of spatial-temporal
similarity measures for trajectories, e.g., Euclidean Distance (ED) [24], Dynamic Time
Warping (DTW) [40], Longest Common Subsequence (LCSS) [34], Edit Distance on
Real Sequence (EDR) [15], Fréchet Distance (FD) [3] and its discrete variant (DFD) [17,
1]. Sequence measures consider the number of edit operations required to transform one
trajectory into the other (e.g., EDR, LCSS). Other measures (e.g., FD) consider both
shape and temporal aspects. For a taxonomy of available measures, we refer the reader
to surveys [20,32].

Real-world trajectories (e.g., GeoLife dataset) exhibit two key characteristics,
namely, varying sampling rate and missing samples for some time points. A desirable
similarity measure would account for these characteristics. ED is the fastest metric to
compute but it is not robust to missing samples for some time points. More robust mea-
sures, such as DTW [40], LCSS [34], EDR [15], are defined as the sum of point-to-point

4

distances, which makes them sensitive to the sampling rate. In contrast, FD and its dis-
crete variant DFD, also known as the “dog-man” distance, can tolerate varying sampling
rates [10,32,22] if the GPS points are sampled sufficiently in real-world trajectories. In
this work we use the discrete version (DFD) as (i) DFD provides a good approximation
of FD [10] for real-world trajectories sampled with sufficient GPS points, and (ii) in real
life, a GPS-recorded trajectory is a series of discrete locations.

The parallel computing and computational geometry communities have proposed
some techniques to speed up DFD computation [22,1,4,7], In contrast, we take an or-
thogonal research direction to accelerate the analysis tasks (i.e., motif discovery, fre-
quent pattern discovery) via novel pruning techniques.

Trajectory Analysis Techniques: Several studies [12,13,19,29,35] have considered
how to extract motif or frequently occurring patterns from trajectories. They adopt the
transformation approach. First, they transform each trajectory into a string of sym-
bols with timestamps, by methods like line segmentation [12], clustering of points [19],
map matching [29]. This step may incur information loss. Then, they apply existing se-
quential pattern mining techniques (e.g., LCSS, Suffix Tree, PrefixSpan [23]) on those
strings. These techniques differ from our approach in two aspects. First, they operate on
the strings obtained from transformation, whereas our approach runs on raw trajectories.
Second, they do not apply to the scenario where DFD is used as the similarity measure.

Besides motif discovery and frequent pattern discovery, there are many other spatial
trajectory analysis problems, e.g., convoy discovery [24], outlier detection [41,27], tra-
jectory clustering [26,21,22], etc. We refer the interested reader to a recent survey [43].

Range Query with Fréchet Distance: This paper is an extension of our conference
piece [31], published in EDBT (March 2017). Since then, there has been work on a
related problem, namely, range query with Fréchet Distance [11,5,16,36,37,8]. These
subsequent studies address a different problem (range query vs. motif/frequent pattern
discovery) and distance measure (Fréchet Distance vs. Discrete Fréchet Distance). They
all apply a similar technique to our “cell-based” bound, but we stress that this is by far
the simplest of our bounds, which was anyway present in our preliminary publication
that precedes them. Clearly, also, the “delta” in this extension paper over the base ver-
sion [31], i.e., the frequent pattern discovery problem, is an even more distinct problem
from these works.

2.1 Preliminaries

We introduce several basic definitions for our problems in the rest of the paper.

Definition 1 (Spatial Trajectory & Subtrajectory) A spatial trajectory S =
〈s0, · · · , si, · · · , sn−1〉 is a sequence of points. We denote its trajectory length, i.e.,
the number of points along the trajectory, by n = |S|.

Given a trajectory S, we denote a subtrajectory of S as Si,ie = S[i · · · ie] , where
0 ≤ i < ie ≤ n− 1. Let T (S) = 〈t0, · · · , ti, · · · , tn−1〉 be a sequence of timestamps,
where ti is the timestamp of location si in S. The timestamps may or may not be spaced
uniformly.

We assume each point si is a latitude-longitude (ϕi, λi) pair. We measure the ground
distance between two trajectory points si = (ϕi, λi), sj = (ϕj , λj) as the great circle

5

distance on earth [28]:

dG(i, j) = 2R arcsin

√
sin2 (ϕj − ϕi

2

)
+ cosϕi cosϕj sin

2 (λj − λi
2

)
where R is the radius of the earth. Nevertheless, our methods are directly applicable
to higher dimensions (e.g., 3-d data points) and other types of ground distance (e.g.,
Euclidean).

As discussed in Section 2, we adopt the discrete Fréchet distance (DFD) to measure
the distance between two subtrajectories Si,ie and Sj,je . Eiter et al. [17] define the DFD
as the alignment of vertices minimizing the maximum distance. It is equivalent to the
following recursive equation:

dF (i, ie, j, je) =max


dG(ie, je)

min


dF (i, ie − 1, j, je),

dF (i, ie, j, je − 1),

dF (i, ie − 1, j, je − 1)

When ie = i and je = j, the recursion terminates and we get dF (i, i, j, j) = dG(i, j).

3 Motif Discovery

In this section, we study the motif discovery problem on a trajectory. To produce a
meaningful trajectory motif (Si,ie ,Sj,je), we require that: (i) subtrajectories Si,ie and
Sj,je are sufficiently long (e.g., each has length at least ξ), and (ii) their timestamp
intervals do not overlap.

Problem 1 (Trajectory Motif Discovery) Given a trajectory S and a minimum motif
length ξ (i.e., the minimum number of vertices in a subtrajectory), return the pair of
subtrajectories Si,ie and Sj,je with the smallest DFD distance dF (i, ie, j, je) among all
pairs of non-overlapping subtrajectories (that is, i < ie < j < je) with length at least ξ
(that is, ie ≥ i+ ξ − 1, je ≥ j + ξ − 1).

Inspired by [3], a straightforward solution for Problem 1 is to enumerate all pairs
of subtrajectories (Si,ie ,Sj,je) and then compute the DFD value for each pair. Its
time complexity is O(n6), as there are O(n4) pairs of subtrajectories and each call
to DFD takes O(`2) = O(n2) time. Even if we implement each call to DFD by [1],
the time complexity is still O(n6 · log logn

logn). We observe that, for all subtrajectory pairs
(Si,ie ,Sj,je) with the same start point (i, j), their DFD computation can be shared via
dynamic programming. By incorporating this idea into the above solution, we obtain
BruteDP (Algorithm 1) – a brute force algorithm that uses dynamic programming.

Algorithm 1 can be adapted to motif discovery between different trajectories easily,
i.e., with Sj,je playing the role of a subtrajectory in the second input trajectory, and by
incrementing i until n − ξ + 1 (instead of n − 2ξ + 1) at Line 2, and j starting from
0 (instead of i + ξ) at Line 3 (as this variant considers separate trajectories, thus not
imposing the constraint i < ie < j < je).

Analysis: The time complexity of Algorithm 1 is O(n4), which is attributed to the
nested for-loops for variables i, j (at Lines 2-3) and variables ie, je (at Lines 8-9). The

6

Algorithm 1 BruteDP (S, ξ)
Input: trajectory S, length n, minimum motif length ξ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je)
compute the ground distance matrix dG

1: bsf ← +∞; bpair ← ∅
2: for i← 0 to n− 2ξ + 1 do
3: for j ← i+ ξ to n− ξ + 1 do
4: dF [i][j]← dG(i, j) . initialization
5: for t← i+ 1 to n do
6: dF [i][t]← max(dG(i, t), dF [i][t-1])
7: dF [t][j]← max(dG(t, j), dF [t-1][j])
8: for ie ← i+ 1 to j − 1 do . share DFD computation
9: for je ← j + 1 to n do

10: tmp← min(dF [ie-1][je-1], dF [ie][je-1], dF [ie-1][je])
11: dF [ie][je]← max(dG(ie, je), tmp)
12: if ie ≥ i+ ξ − 1, je ≥ j + ξ − 1 and dF [ie][je] < bsf then
13: bsf ← dF [ie][je]; bpair ← (Si,ie ,Sj,je)
14: return bpair

space complexity of the algorithm is O(n2), as it employs two 2-dimensional matrices:
(i) dF [·][·] for implementing dynamic programming, and (ii) dG[·][·] for holding all-pair
ground distances.

3.1 Advanced Solution

We first analyze the properties of DFD (in Section 3.1.1). We devise novel lower bound
functions for DFD (in Section 3.1.2). Our lower bounds can be computed in amortized
O(1) time, and guarantee no false negatives (in Section 3.1.3). Finally, we propose a
bounding-based solution that applies our lower bound functions to prune unpromising
pairs of trajectories and reduce the number of DFD computations (in Section 3.1.4).

3.1.1 Properties of DFD

Non-monotonicity: Typical sequence/string mining algorithms exploit the monotone
property to develop efficient Apriori-style algorithms. An example of the monotone
property would be: “given a string S, if qα is a substring of qβ , then the frequency
of qα in S cannot be smaller than the frequency of qβ in S.” It would be tempting to
adapt such an idea to solve our problem efficiently. Unfortunately, the DFD metric does
not satisfy the monotone property. Formally:

Definition 2 (Containment⊆) Si,ie is said to contain Si′,i′e , denoted as Si′,i′e ⊆ Si,ie ,
if and only if i′ ≥ i and i′e ≤ ie.

Lemma 1 (Non-monotonicity) Let (Si,ie , Sj,je) be a subtrajectory pair of S. Let
Si′,i′e ,Sj′,j′e be subtrajectories that satisfy Si′,i′e ⊆ Si,ie ,Sj′,j′e ⊆ Sj,je . It holds that,
dF (i, ie, j, je) is neither monotone increasing nor monotone decreasing with respect to
dF (i

′, i′e, j
′, j′e).

7

8 7 6 5 9 7 7 3 3 2 9

5 6 7 6 8 6 6 6 8 1

2 2 4 1 7 6 8 7 7

3 1 1 2 5 7 3 4

1 3 2 3 6 5 6

1 2 3 2 5 9

3 4 5 6 4

3 5 3 2

2 1 5

2 3

1

F/E 0 1 2 3 4 5 6 7 8 9 10 11

 0

1

 2

3

4

 5

 6

7

 8

 9

1

0

 1
1

Fig. 3 Example of dG matrix

For the proof, we refer the interested reader to [3]. However, here we provide a
counter-example to demonstrate the non-monotonicity as follows.

Example: Consider a trajectory S with length n = 12. Figure 3 shows the ground dis-
tance for each pair (S[i], S[j]). Consider three subtrajectories S0,2 ⊆ S0,3 ⊆ S0,4 and
their DFD distances from S6,9. Using Algorithm 1, we can compute these DFD values:
dF (0, 2, 6, 9) = 4, dF (0, 3, 6, 9) = 1, dF (0, 4, 6, 9) = 7. When comparing S0,2 and
S0,3, the DFD value (from S6,9) decreases from 4 to 1. However, when comparing S0,3
and S0,4, the DFD value (from S6,9) increases from 1 to 7. Thus, DFD does not satisfy
the monotone property.

Non-monotonicity aside, a crucial observation mentioned in [2,6] is quintessential
to our approach. Specifically, the computation of DFD by recurrence is equivalent to a
path finding problem in the dG matrix as follows.

Observation 1 The DFD between Si,ie and Sj,je must be contributed by a path from
(i, j) to (ie, je) such that: (i) the path travels along non-decreasing positions, and (ii)
the maximum possible ground distance along the path is minimized.

We illustrate using two subtrajectories S0,3 and S6,9. Figure 4(a) shows the ground
distance dG for each pair of points from S0,3 and S6,9 (note that only the relevant part
of the dG matrix from Figure 3 is shown). We compute the dF value for each pair of
points, as illustrated in Figure 4(b). The DFD distance is dF (0, 3, 6, 9) = 1, which is
contributed by the path of gray cells from (0, 6) to (3, 9), that minimizes the maximum
ground distance among the cells it visits.

3.1.2 Pattern-based Lower Bounds

From Observation 1, we devise novel lower bound functions for DFD by traversing the
dG matrix according to different patterns (e.g., a single cell, cells in a cross, cells in a
band). Specifically, assuming that matrix dG is precomputed and that bsf is the DFD
of the best subtrajectory pair encountered so far in the search process, we propose a set
of lower bound functions that apply to candidate subtrajectory pairs, or entire groups
of candidate pairs, such that if the bound is greater than bsf , the candidates are safe to

8

 2 2 4 1

 3 1 1 2

1 3 2 3

1 2 3 2

 0 1 2 3

 6

7

 8

9

F/E

3 2 4 1

3 1 1 2

1 3 2 3

1 2 3 3

 0 1 2 3

 6

7

 8

9

F/E

(a) Relevant part of dG (b) dF computation as a path in dG

Fig. 4 DFD computation for S0,3 and S6,9

prune, i.e., to disqualify without further consideration, because they are guaranteed not
to be the motif.

Cell-based Lower Bound: We refer to a subtrajectory pair (Si,ie ,Sj,je) as candidate
(i, ie, j, je). We define a candidate subset CSi,j to represent all candidates with the
same start positions i and j. This compact notation, using a pair (i, j), allows us to
represent O(n2) candidates.

Definition 3 (Candidate Subset) Given two start positions i and j, the candidate subset
is defined as CSi,j = {(i, ie, j, je) : ie > i ∧ je > j}.

The following holds for any CSi,j .

Observation 2 For every (i, ie, j, je) ∈ CSi,j , the path leading to dF (i, ie, j, je) must
start from cell (i, j).

For example, in Figure 4(a), for each candidate in CSi,j , the path leading to DFD must
start at cell (0, 6). We thus derive our first bound, which applies to any candidate in
CSi,j :

LBcell(i, j) = dG(i, j) (1)

For every (i, ie, j, je) ∈ CSi,j , LBcell(i, j) ≤ dF (i, ie, j, je).
Example. In Figure 3, for candidate subset CS5,9 (i.e., for all candidate pairs that start
at the red cell), we obtain LBcell(5, 9) = dG(5, 9) = 6. This is a lower bound for
the DFD of any candidate pair in CS5,9. E.g., for pair (S5,6,S9,11), the exact DFD is
dF (5, 6, 9, 11) = 7.

Cross-based Lower Bound: If a candidate subset is not pruned using LBcell, we at-
tempt to prune it with tighter bounds.

Observation 3 For every (i, ie, j, je) ∈ CSi,j , the path leading to dF (i, ie, j, je) must
pass through the (i+ 1)-th column and (j + 1)-th row.

We thus define the following row-based and column-based lower bounds.

LBrow(i, j) = min
i′∈[i,j−1]

{dG(i′, j + 1)} (2)

LBcol(i, j) = min
j′∈[j,n−1]

{dG(i+ 1, j′)} (3)

9

8 7 6 5 9 7 7 3 3 2 9

5 6 7 6 8 6 6 6 8 1

2 2 4 1 7 6 8 7 7

3 1 1 2 5 7 3 4

1 3 2 3 6 5 6

1 2 3 2 5 9

3 4 5 6 4

3 5 3 2

2 1 5

2 3

1

𝑗/𝑖 0 1 2 3 4 5 6 7 8 9 10 11

0

1

 2

3

4

 5

 6

7

 8

 9

1

0

 1
1

𝐿𝐵𝑟𝑜𝑤 4,8 = 6

𝐿𝐵𝑐𝑜𝑙 4,8 = 6

(a) LBstartcross(4, 8) (b) LBendcross(3, 9)

Fig. 5 Examples of cross-based bounds

For every (i, ie, j, je) ∈ CSi,j , it holds that LBrow(i, j) ≤ dF (i, ie, j, je) and that
LBcol(i, j) ≤ dF (i, ie, j, je). Thus, we combine the two into the cross-based lower
bound below:

LBstartcross(i, j) = max (LBrow(i, j), LBcol(i, j)) (4)

For every (i, ic, j, jc) ∈ CSi,j , LBstartcross(i, j) ≤ dF (i, ic, j, jc).
Example. Consider cell (4,8) in Figure 5(a), and assume that n = 12. LBstartcross(4, 8) is
computed over the gray cells as follows:

LBstartcross(4, 8) = max(LBrow(4, 8), LBcol(4, 8))

= max
(

min
i′∈[4,7]

{dG(i′, 9)}, min
j′∈[8,11]

{dG(5, j′)}
)

= max(6, 6) = 6

Band-based Lower Bound: Our problem definition considers only subtrajectories with
length at least ξ. Based on that, we extend Observation 3 to:

Observation 4 For every (i, ie, j, je) ∈ CSi,j that satisfies the constraint ie > i + ξ
and je > j + ξ, the path leading to dF (i, ie, j, je) must pass through columns i+ 1 to
i+ ξ and through rows j + 1 to j + ξ.

Hence, we define the following band-based lower bounds:

LBrowband(i, j) = max
j′∈[j,j+ξ−1]

{LBrow(i, j′)} (5)

LBcolband(i, j) = max
i′∈[i,i+ξ−1]

{LBcol(i′, j)} (6)

For every (i, ie, j, je)∈ CSi,j where ie > i+ ξ and je > j + ξ, it holds that:

max{LBrowband(i, j), LB
col
band(i, j)} ≤ dF (i, ie, j, je) (7)

10

(a) LBrowband(1, 6) (b) LBcolband(1, 8)

Fig. 6 Example of band-based bound

If LBrowband(i, j) ≥ bsf or LBcolband(i, j) ≥ bsf we can safely prune CSi,j .

Example. Consider candidate subset CS1,6 in Figure 6(a). Suppose the minimum mo-
tif length is ξ = 4 and n = 12. By the definition of LBrow(i, j), the minimum
values in the 7-th, 8-th, 9-th and 10-th row are 2, 1, 1 and 6, respectively. Hence,
LBrowband(1, 6) = max(2, 1, 1, 6) = 6. Similarly, consider candidate subset CS1,8 in
Figure 6(b). By the definition of LBcol(i, j), the minimum value of the 2-nd, 3-rd,
4-th and 5-th column are 1, 1, 5 and 6, respectively, as shown in Figure 6(b). Hence,
LBcolband(1, 8) = max(1, 1, 5, 6) = 6.

Pruning within Candidate Subset: The bounds presented so far prune entire candi-
date subsets. If a candidate subset CSi,j survives these bounds, we need to consider
candidate pairs in it. To avoid considering all candidate pairs in CSi,j , we introduce a
cross-based bound that applies to candidate pairs.

As described in Algorithm 1, for all candidate pairs (i.e., Si,ie ,Sj,je) in candidate set
CSi,j , their DFD computation can be shared via dynamic programming. Assume that
at some point, the dynamic programming reaches end-cell (ie, je), where ie − i > ξ,
je−j > ξ and bsf = dF (i, ie, j, je). We define the following cross-based lower bound
for the end-cell:

LBendcross(ie, je) = max (LBrow(ie, je), LBcol(ie, je)) (8)

If (i, ic, j, jc) is a candidate in CSi,j where ic > ie and jc > je, it holds that
LBendcross(ie, je) ≤ dF (i, ic, j, jc). Hence, if LBendcross(ie, je) ≥ bsf , we can safely
avoid expanding cell (ie, je), i.e., eliminate paths withinCSi,j that pass via cell (ie, je).

Example. In Figure 5(b), suppose ξ = 2, i = 0, j = 6, ie = 3 and je = 9.
LBendcross(ie, je) is computed over the gray cells:

LBendcross(3, 9) = max(LBrow(3, 9), LBcol(3, 9))

= max
(

min
i′e∈[3,8]

{dG(i′e, 10)}, min
j′e∈[9,11]

{dG(4, j′e)}
)

= max(6, 7) = 7

If LBendcross(3, 9) ≥ bsf , we prune the candidates (i.e., subtrajectory pairs) in CS0,6

whose end-cells fall in the red dotted box.

11

3.1.3 Relaxed Lower Bounds

If we follow the aforementioned equations directly, a cross-based bound takes O(n)
time to compute and a band-based bound takes O(ξn) time. Although both of them are
more efficient than raw DFD computation (i.e., O(n2)), in this section, we drop their
amortized time complexity to O(1) by relaxing them slightly. These relaxed bounds
incur no false negatives, i.e., they are guaranteed not to miss the motif. For brevity, we
illustrate our relaxation approach for band-based bounds only. The relaxation of cross-
based bounds follows the same lines.

The key idea is to employ one parameter per bound, and keep them in matrices for
rapid access. First, we compute the minimum value for each column i and each row j:

Cmin[i] = min
j′∈[0,j−1]

(dG(i+ 1, j′)) (9)

Rmin[j] = min
i′∈[i,n−1]

(dG(i
′, j + 1)) (10)

This step takesO(2·n·n) = O(n2) time as it computes every pairwise ground distance
in two subtrajectories.

We define the relaxed version of cross-based bounds as:

rLBstartcross(i, j) = max{Cmin[i], Rmin[j]} (11)

rLBendcross(ie, je) = max{Cmin[ie], Rmin[je]} (12)

In turn, the relaxed band-based bounds are defined as:

rLBrowband(j) = max
j′∈[j,j+ξ−1]

{Rmin[j′]} (13)

rLBcolband(i) = max
i′∈[i,i+ξ−1]

{Cmin[i′]} (14)

Lemma 2 shows that the relaxed cross-base bounds also satisfy the lower bound
property.

Lemma 2 It holds that:

rLBstartcross(i, j) ≤ LBstartcross(i, j)

rLBendcross(ie, je) ≤ LBendcross(ie, je)

We compute the relaxed version of cross-based bounds by calculating Cmin[i] and
Rmin[j] for each column i and each row j. This step takes O(n) time per column/row.
Similarly, we compute relaxed band-based bounds for each column i and each row j.
This step takes O(ξn) time per row/column. Thus, the total computation time of cross-
based and band-based lower bounds is O(n · n) = O(n2) and O(ξn · n) = O(ξn2),
respectively. By amortizing the computation time over all candidate subsets CSi,j (i.e.,
O(n2) of them), the computation time perCSi,j for cross-based and band-based relaxed
bounds is only O(n2/n2) = O(1) and O(ξn2/n2) = O(ξ), respectively.

The following lemma proves the correctness of the relaxed band-based bounds.

12

Table 2 Summary of lower bounds

Lower bound Time Relaxed bound Amortized time Prunes

LBcell(i, j) O(1) entire candidate subset
LBstartcross(i, j) O(n) rLBstartcross(i, j) O(1) entire candidate subset
LBendcross(ie, je) O(n) rLBendcross(ie, je) O(1) within candidate subset
LBrowband(i, j) O(ξn) rLBrowband(j) O(ξ) entire candidate subset
LBcolband(i, j) O(ξn) rLBcolband(i) O(ξ) entire candidate subset

Lemma 3 It holds that:

rLBrowband(j) ≤ LBrowband(i, j) and rLBcolband(i) ≤ LBcolband(i, j)

Proof

min
i′∈[0,j−1]

(dG(i
′, j + 1)) ≤ min

i′∈[i,j−1]
(dG(i

′, j + 1))

⇒ Rmin[j] ≤ LBrow(i, j)
⇒ max

j′∈[j,j+ξ−1]
{Rmin[j′]} ≤ max

j′∈[j,j+ξ−1]
{LBrow(i, j′)}

⇒ rLBrowband(j) = LBrowband(i, j)

Similarly, rLBcolband(i) ≤ LBcolband(i, j).

In the experiments, we compare the effectiveness of the original bounds with the
relaxed ones. We summarize the time requirements of all lower bounds in Table 2.

3.1.4 Optimized Solution

Combining All Bounds: Given a candidate subset CSi,j , we compute a tighter lower
bound for CSi,j , denoted by CSi,j .LB, using:

max{LBcell(i, j), rLBstartcross(i, j), rLB
row
band(j), rLB

col
band(i)}.

This lower bound takes O(1) time because each term can be obtained in O(1) time,
as shown in Table 2. The minimum motif length ξ affects the tightness of CSi,j .LB as
rLBrowband(j) and rLBcolband(i) take ξ into account.

Prioritizing Search Order: To support effective pruning of CSi,j by lower bounds, it
is desirable to obtain a small bsf (i.e., a good temporary motif) as early as possible.
Intuitively, a candidate subset with small CSi,j .LB tends to contain a candidate with
small DFD value. Thus, we propose to process CSi,j in ascending order of CSi,j .LB.

Putting It All Together: Algorithm 2 presents the pseudocode for bounding-based tra-
jectory motif (BTM), which incorporates all above ideas for the trajectory motif discov-
ery problem.

At Line 2, we first compute all lower bounds (and store them in matrices). Then,
we insert each candidate subset CSi,j with its bound CSi,j .LB into a list (at Line 3),
and sort that list (at Line 4). Next, we process the elements of the list in the sorted
order. For each candidate subset, we examine its candidates via nested loops (at Lines

13

Algorithm 2 BTM (S, ξ)
Input: trajectory S, length n, minimum motif length ξ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je)
compute the ground distance matrix dG

1: bsf ← +∞; bpair ← ∅; jend ← n
2: Compute { LBcell, rLBstartcross, rLB

end
cross, rLB

row
band, rLB

col
band }

3: Construct a list A with one element a per candidate subset
4: Sort A in ascending order of a.LB
5: for each a in A with bsf > a.LB do
6: for ie ← a.i+ 1 to a.j do
7: for je ← a.j + 1 to jend do
8: tmp← min(dF [ie-1][je-1], dF [ie][je-1], dF [ie-1][je])
9: dF [ie][je]← max(dG(ie, je), tmp)

10: if ie ≥ a.i+ ξ − 1, je ≥ a.j + ξ − 1 and dF [ie][je] < bsf then
11: bsf ← dF [ie][je]; bpair ← (Si,ie ,Sj,je)
12: if bsf ≤ rLBendcross(bpair.ie, bpair.je) then
13: jend ← bpair.je . Pruning by LBendcross(ie, je) from Equation 8
14: return bpair

6-7), and compute the DFD of each candidate (at Line 8-9). Finally, we update bsf and
the temporary motif pair (at Lines 10-11). Note that Lines 12-13 implement pruning by
LBendcross(ie, je), as defined in Equation 8; this essentially performs pruning within the
candidate subset currently considered, by disqualifying some of the candidate pairs it
contains.

Analysis: The time complexity of Algorithm 2 is O(n4) in the worst case, which is
attributed to the nested for-loops for variables a [that is, O(n2) iterations], ie [that is,
O(n) iterations] and je [that is, O(n) iterations] at Lines 5-7. The space complexity of
Algorithm 2 is O(n2).

Algorithm 2 follows the best-first search paradigm with several effective lower
bounds. As we show in the experiments, it outperforms Algorithm 1 by two orders of
magnitude.

3.2 Grouping-based Solution

In this section, we enhance the scalability of our techniques for long trajectories. Our
idea is to organize trajectory points into groups, then attempt pruning unpromising pairs
of groups, before applying our solution from Section 3.1. To enable pruning, we design
novel bounding functions for DFD on groups.

We outline our grouping-based computation framework in Figure 7. First, we divide
a trajectory into groups with group size τ (where τ is a tunable parameter), and compute
a ground distance bound for each group pair (Steps 1 and 2, in Section 3.2.1). Next, we
apply O(1)-time lower bounds (Step 3, in Section 3.2.2) to prune group pairs, before
using tighter bounds for pruning (Step 4, in Section 3.2.3). For the surviving group
pairs, we repeat the above steps by halving the group size, until τ reaches 1. Finally, we
compute the exact DFD of candidates in the surviving groups (Step 5).

By combining the advantages of all techniques in Section 3.1 and in the current
one, our grouping-based computation framework outperforms the baseline solution by

14

2) Compute 𝒅𝑮 Bounds

1) Group trajectory

𝜏
𝜏

3) Prune groups by 𝑶(𝟏)
Bounds, Section 3.2.2

4) Process surviving groups

𝜏 = 1

Iterate for surviving groups with 𝜏/2

𝑫𝑭𝑫

5) Compute DFD

…

…

……

…

𝐺𝐿𝐵𝑏𝑎𝑛𝑑

𝐺𝐿𝐵𝑐𝑟𝑜𝑠𝑠

𝐺𝐿𝐵𝑐𝑒𝑙𝑙

Fig. 7 Grouping-based computation framework

over 3 orders of magnitude. Importantly, all our techniques (lower bounds and grouping
framework) produce exact answers (motifs).

3.2.1 Grouping Trajectory Points

We employ a group size parameter τ in order to partition a long trajectory into small
groups. We proceed to define a group and the ground distances between groups.

Definition 4 (τ -grouping) Given the group size τ , we define the u-th group as the
interval gu = [uτ, (u + 1)τ − 1]. For two groups gu and gv , we define the minimum
and the maximum ground distance between them as:

dminG (gu, gv) = min
i∈gu,j∈gv

dG(i, j) (15)

dmaxG (gu, gv) = max
i∈gu,j∈gv

dG(i, j) (16)

By Definition 4, the ground distances between two groups satisfy the following prop-
erty:

Corollary 1 For every i ∈ gu, j ∈ gv , it holds that:

dminG (gu, gv) ≤ dG(i, j) ≤ dmaxG (gu, gv)

Example. Consider a trajectory S with n = 12 points. Given τ = 2, we ob-
tain six groups: g0, g1, g2, g3, g4, g5, as illustrated in Figure 8(a). For example, for
groups g2 = [4, 5] and g5 = [10, 11], we compute the minimum ground distance as
dminG (g2, g5) = min(dG(4, 10), dG(4, 11), dG(5, 10), dG(5, 11)) = 6, and the maxi-
mum ground distance as dmaxG (g2, g5) = max(8, 9, 6, 7) = 9. In Figure 8(b), we show

15

5 5 6

4 1 5

1 4 5

F/E 0 1 2 3 4 5

6

 7

8

 9

 1

0

 1

1

4
so�ÙáÝäxn

(1,9)

(1,4) 4
so�ÚáÜäxn

R/Q 0 1 2

3

4

5

(a) Step 1

(b) Step 3:)%5èáéä .$ (c) Step 4: ().$½¿½á)7$½¿½)

54á9 5:á55

3

4

5

0 1 2 �/�

9 7

8 6

 1
0

1
1

 4 5

C4 C5 C6 C7 C8
C9

(6, 9)

Step 2

Fig. 8 Example of 2-grouped trajectory

the minimum and maximum ground distances for group pair g2, g5 (i.e., values (6, 9))
on top of the “Step 2” arrow.

We utilize Corollary 1 to devise lower bound functions in Sections 3.2.2 and 3.2.3.

3.2.2 Pattern-based Bounds for Groups

To enable pruning on unpromising pairs of groups, we adapt our lower bounds
from Section 3.1 to groups. We denote the corresponding lower bounds with pre-
fix G, i.e., GLBcell(u, v), GLBstartcross(u, v), GLBendcross(ue, ve), GLBrowband(u, v), and
GLBcolband(u, v). We first define the cell-based lower bound for groups, denoted by
GLBcell, as:

GLBcell(u, v) = dminG (gu, gv) (17)

In Figure 8(b), GLBcell(2, 5) = dminG (2, 5) = 6. For any i ∈ u and j ∈ v, it holds
that GLBcell(u, v) ≤ dF (i, ie, j, je).

Similarly, the cross-based lower bounds and band-based lower bounds can be ex-
pressed in terms of GLBcell(u, v). The concept of relaxed bounds, introduced in Sec-
tion 3.1.3, can be adapted directly to the above pattern-based bounds for groups. This
allows us to obtain relaxed lower bounds for groups in O(1) time. We omit them and
refer the reader to our preliminary paper [31].

3.2.3 Bounding by DFD Computation

By exploiting the recurrence of DFD, we devise a tighter lower bound and a tighter upper
bound for pairs of groups. While the lower bound is used to prune unpromising pairs of
groups, the upper bound can be used to tighten bsf and thus improve the effectiveness
of pruning.

Below we define a subtrajectory group, together with group-based DFD bounds.

16

Definition 5 (Group-based DFD) Let subtrajectory group Gt,te correspond to the inter-
val [tτ, (te+1)τ −1], i.e., it covers group t to group te. Given two subtrajectory groups
Gu,ue and Gv,ve , we define the group-based DFD lower bound dFmin(u, ue, v, ve) as:

dFmin(u, ue,v, ve) = max


dminG (gue , gve)

min


dFmin(u, ue − 1, v, ve)

dFmin(u, ue − 1, v, ve − 1)

dFmin(u, ue, v, ve − 1)

The definition of group-based DFD upper bound dFmax(u, ue, v, ve) is similar to the
above lower bound, i.e., it replaces dminG () with dmaxG () and dFmin() with dFmax(),
respectively. The following lemma proves the bounding property of dFmin(u, ue, v, ve)
and dFmax(u, ue, v, ve).

Lemma 4 Let Gu,ue and Gv,ve be two subtrajectory groups. If a pair of subtrajectories
Si,ie ,Sj,je satisfies i ∈ gu, j ∈ gv, ie ∈ gue and je ∈ gve , it holds that:

dFmin(u, ue, v, ve) ≤ dF (i, ie, j, je) ≤ dFmax(u, ue, v, ve)

Recall that our problem definition enforces a minimum motif length ξ. To comply
with it, we define the following lower and upper bounds between two groups gu and gv:

GLBDFD(u, v) = min
ue,ve
{dFmin(u, ue, v, ve) : (18)

ue − u >
ξ

τ
∧ ve − v >

ξ

τ
}

GUBDFD(u, v) = min
ue,ve
{dFmax(u, ue, v, ve) : (19)

ue − 1− u > ξ

τ
∧ ve − 1− v > ξ

τ
}

The following lemma shows their correctness. It is derived by applying the minue,ve

function to both sides of Lemma 4.

Lemma 5 ∀ i ∈ gu, ∀ j ∈ gv , and ie > i+ ξ, je > j + ξ it holds that:

GLBDFD(u, v) ≤ dF (i, ie, j, je) ≤ GUBDFD(u, v)

GUBDFD(u, v) allows us to tighten bsf , which in turn boosts the effectiveness of
pruning. Both GLBDFD(u, v) and GUBDFD(u, v) can be computed in O((nτ)

2).
We can reduce their computation cost by early termination. Specifically, if at some
point during the computation of GLBDFD(u, v), it holds that GLBendcross(ue, ve) ≥
GLBDFD(u, v) with ue − u > ξ

τ ∧ ve − v >
ξ
τ , we may safely terminate the com-

putation because ∀ue′ > ue and ∀ve′ > ve it must be that dFmin(u, ue′ , v, ve′) >
dFmin(u, ue, v, ve) (i.e., it cannot further tighten the bound). Similarly, early termina-
tion is possible in the calculation of GUBDFD(u, v) too.

17

3.2.4 GTM Algorithm

Algorithm 3 presents the pseudocode for grouping-based trajectory motif (GTM),
which implements the computation framework depicted in Figure 7. We first
construct groups at Line 3, then we compute the pattern-based lower bounds
of group pairs at Lines 4-5. Next, we insert each grouping-based candi-
date subset GCSu,v with its bound GCSu,v.LB = max(GLBcell(u, v),
rGLBstartcross(u, v), rGLBrowband(u, v), rGLBcolband(u, v)) into a list. Then, we process the
list in ascending order of GCSu,v.LB, and apply DFD bounds for pruning (Lines 10-
11) or for tightening the bsf (Lines 12-13). After that, we halve the group size and repeat
the above procedure on the set of surviving groups Ssurvive until the group size drops
to 1. When this happens (i.e., τ = 1), each element in Ssurvive is a candidate subset
CSi,j . We invoke Algorithm 2 on Ssurvive to obtain the final result.

Algorithm 3 GTM (S, ξ, τ)
Input: trajectory S, length n, minimum motif length ξ, group size τ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je)
compute the ground distance matrix dG

1: bsf ← +∞; bpair ← ∅
2: while τ > 1 do
3: Group trajectory S to G . Section 3.2.1
4: Compute GLBcell, rGLBstartcross, rGLBendcross
5: and rGLBrowband, rGLB

col
band . Section 3.2.2

6: Construct a list GA of grouping-based candidate subsets
7: Sort GA in ascending order of Ga.LB
8: Ssurvive ← ∅ . set of surviving grouping-based candidate subsets
9: for each Ga in GA with bsf > Ga.LB do . Section 3.2.3

10: if bsf > GLBDFD(Ga.u,Ga.v) then
11: Ssurvive ← Ssurvive ∪ Ga
12: if bsf > GUBDFD(Ga.u,Ga.v) then
13: bsf ← GUBDFD(Ga.u,Ga.v)
14: τ ← τ/2, S ← Ssurvive
15: Invoke Lines 5-13 in Alg. 2 on Ssurvive to compute the result bpair

Example. We demonstrate the grouping-based computation framework in Figure 8,
considering that the motif is sought between subtrajectories S0,5 and S6,11, and that
the minimum motif length is ξ = 2. We first map S0,5 and S6,11 onto groups (with
τ = 2), e.g., S0,5 is mapped onto g0, g1 and g2 (see Figure 8(a)). We next compute
pattern-based bounds to prune group pairs. For example, referring to Figure 8(b), the
grouping-based cell bound GLBcell(2, 5) is 6, as derived by Equation (17). If at the
current point of execution bsf = 5, the respective pair of groups (i.e., g2, g5) can be
pruned, because GLBcell(2, 5) = 6 ≥ bsf = 5. The same applies for all group pairs
shown in gray in Figure 8(b). Next, we apply Equations (18) and (19) to compute the
GLBDFD,GUBDFD bounds for the remaining (i.e., un-pruned) group pairs. For in-
stance, as illustrated in Figure 8(c), the GLBDFD and GUBDFD bounds for group
pair (0, 3) are 1 and 4, respectively. This fact tightens bsf (from 5, previously) down
to GUBDFD(0, 3) = 4. The tightened bsf can be used to prune grouping-based cells;
in our example, it prunes the grouping-based cells (0, 4) and (1, 3), since the grouping-

18

based lower bound for both of them is 4, i.e., no smaller than the current bsf . This means
that only subtrajectory pairs starting at cell (g0, g3) or at cell (g1, g4) could produce the
motif. We half τ , which becomes 1. That splits each group to its resulting points, e.g.,
cell (g0, g3) is split to candidate subsets CS0,6, CS0,7, CS1,6, CS1,7, and a similar
splitting is applied for cell (g1, g4). Since now τ = 1, the eight produced candidate
subsets are fed to Algorithm 2, comprising list A in its Line 5.

Lemma 6 Algorithm 3 solves Problem 1 exactly, i.e., it returns the correct motif.

Proof The first point that Algorithm 3 performs pruning is at Line 9, where it utilizes
grouping-based lower bounds to eliminate candidate subsets with DFD larger than bsf .
The correctness of this step is guaranteed by the validity of these bounds (specifically,
GLBcell(u, v), rGLBstartcross(u, v), rGLBrowband(u, v), rGLBcolband(u, v)) as described in
Section 3.2.2. The next pruning point is at Lines 10-11, where candidate subsets are
filtered according to the lower bound in Lemma 5, whose validity has been substantiated
in Section 3.2.3. The last pruning point is at Lines 12-13 that indirectly help eliminate
candidate subsets by decreasing (i.e., tightening) bsf , again according to Lemma 5,
utilizing its upper bound this time. In other words, none of the three pruning points in
Algorithm 3 may eliminate the actual motif, which is bound to be discovered by the rest
of processing (Line 15) that draws directly from Algorithm 2.

Analysis: The computation cost of the while-loop (Lines 2–14) is O(
∑log(τ)
i=1 (ciτ)

4),
where c1 = n and ci is the number of surviving groups in iteration i. Line 16 takes
O(cτ2n2) time, where c is the number of surviving groups after the while-loop. In
summary, the time complexity of Algorithm 3 is O(

∑log(τ)
i=1 (ciτ)

4 + cτ2n2). In the
worst case, Algorithm 3 degenerates to Algorithm 2, with time complexity O(n4).

The space complexity of the algorithm is O(n2) as it employs two 2-dimensional
matrices for precomputed ground distances (i.e., dG[·][·]) and DFD values (i.e., dF [·][·]).
In addition, it takes O((nτ)

2) space for precomputed grouping-based lower bounds in
GA at Line 6.

4 Frequent Pattern Discovery

In this section, we study the frequent pattern discovery problem on a trajectory. We first
define a pattern as follows.

Definition 6 (Pattern) A pattern is expressed as (Si,ie , Γi), where (i) Si,ie is a repre-
sentative subtrajectory, and (ii) Γi is the set of subtrajectories that are similar to Si,ie .

Given a subtrajectory length ξ, similarity threshold dthres, and frequency threshold
tthres, we are set to compute all frequent patterns (Si,ie , Γi) such that: (i) Si,ie and sub-
trajectories in Γi have length ξ, (ii) the timestamps of these subtrajectories do not over-
lap, (iii) Si,ie is similar to each subtrajectory Sj,je in Γi, i.e., dF (i, ie, j, je) ≤ dthres,
and (iv) the size of Γi is above a frequency threshold, i.e., |Γi| ≥ tthres. Formally:

Problem 2 (Frequent Pattern Discovery) Given a trajectory S and two positive
thresholds dthres and tthres, find each frequent pattern (Si,ie , Γi) such that (1)
∀ Sj,je ∈ Γi, dF (i, ie, j, je) ≤ dthres and (2) |Γi| ≥ tthres. We require that these
subtrajectories have length ξ.

19

2 2 4 1 7 6 8 7 7 4 6 2 6 5 8 7 2 6 5 6 7 8 2 1 1

3 1 1 2 5 7 3 4 7 2 3 7 7 4 7 6 1 6 2 4 6 4 1 6 6

1 3 2 3 6 5 6 4 2 2 4 8 7 1 2 1 5 8 6 8 3 2 4 2 7

1 2 3 2 5 9 4 3 1 1 3 9 6 2 2 3 4 9 9 6 1 3 9 1 3

4 7 12 15 17 20 24 27

0

1

 2

3

𝑖/𝑗

𝑑𝐹 0,3,4,7 = 1 𝑑𝐹 0,3,12,15 = 3 𝑑𝐹 0,3,17,20 = 2 𝑑𝐹 0,3,24,27 = 2

(a) Ground distance matrix dG

T T T T T T T T

T T T T T T T T T T

T T T T T T T T T T T T

T T T T T T T T T T T T T T T

4 7 12 15 17 20 24 27

0

1

 2

3

𝑖/𝑗

𝑑𝐹 0,3,4,7 ≤ 3 𝑑𝐹 0,3,12,15 ≤ 3 𝑑𝐹 0,3,17,20 ≤ 3 𝑑𝐹 0,3,24,27 ≤ 3

(b) Feasibility matrix β

Fig. 9 Frequent pattern discovery example

Example. Figure 9(a) illustrates the ground distance matrix dG for a trajectory S. Sup-
pose that the parameters of the above problem are: subtrajectory length ξ = 3, distance
threshold dthres = 3, and frequency threshold tthres = 3. In this figure, the red rect-
angles indicate that S0,3 is similar to four subtrajectories (S4,7,S12,15,S17,20,S24,27),
i.e., the DFD distances between them are below dthres. Thus, the result contains the
frequent pattern (S0,3, Γ0), where Γ0 = {S4,7,S12,15,S17,20,S24,27}.

We note that Buchin et al. [10] studied a subtrajectory clustering problem with some
similarity to Problem 2. Specifically, given a trajectory S, an integer tthres > 0 and
two positive real values ξ and dthres, a subtrajectory cluster C(tthres, ξ, dthres) is de-
fined as a set of tthres subtrajectories in T , where (1) every pair of subtrajectories in
C(tthres, ξ, dthres) is within distance dthres, and (2) at least one of the subtrajecto-
ries in C(tthres, ξ, dthres) has length ξ.

The problem in [10] differs from Problem 2 in two aspects: (i) it requires every pair
of subtrajectories to be within distance dthres from each other, whereas the distance
reference in Problem 2 is a single pivot subtrajectory Si,ie ; (ii) it allows for subtrajecto-
ries of any length, except for only one of length ξ, whereas Problem 2 requires length ξ
for all subtrajectories. Due to the NP-hardness of the problem in [10], they proposed an
approximate solution. In contrast, we devise exact solutions to Problem 2, as we elabo-
rate shortly. Even if an adaptation of the algorithms in [10] to Problem 2 were possible,
comparing that hypothetical, approximate approach to our exact solutions would not be
meaningful. In Table 3, we summarize the differences of the subtrajectory clustering
problem in [10] from our frequent pattern discovery problem. Regarding the complexity
row in the table, the following naı̈ve algorithm (is exact and) already has a polynomial
complexity.

A brute force solution to Problem 2 is to consider each subtrajectory Si,ie as a rep-
resentative. Then, for each Si,ie , compute its DFD distance to every (non-overlapping)
subtrajectory Sj,je , and count the number of subtrajectories with DFD distance below

20

Table 3 Differences between the subtrajectory clustering problem in [10] and our Problem 2

Problem Subtrajectory clustering in [10] Frequent pattern discovery

Output C(tthres, ξ, dthres) all (Si,ie , Γi) pairs
Subtrajectory length ∃Sj,je ∈ C(tthres, ξ, dthres), ∀Sj,je ∈ Γi,

|Sj,je | ≥ ξ |Sj,je | = ξ
Subtrajectory distance ∀Si,ie ,Sj,je ∈ C(tthres, ξ, dthres), ∀ Sj,je ∈ Γi,

dF (i, ie, j, je) ≤ dthres dF (i, ie, j, je) ≤ dthres
Complexity NP-hard polynomial

Solution approximate exact

dthres. When the count is at least tthres, we insert the corresponding frequent pattern
into the result set. We describe this brute force approach in Algorithm 4.

Algorithm 4 BruteFP (S, ξ, dthres, tthres)
Input: trajectory S, length n, minimum motif length ξ

distance threshold dthres, frequency threshold tthres
Output: frequent pattern set R
compute the ground distance matrix dG

1: results← ∅
2: for i← 0 to n− ξ + 1 do
3: Γi ← ∅
4: for j ← 0 to n− ξ + 1 and j /∈ [i, i+ ξ] do
5: dF [i][j]← dG(i, j) . initialization
6: for t← i+ 1 to n do
7: dF [i][t]← max(dG(i, t), dF [i][t-1])
8: dF [t][j]← max(dG(t, j), dF [t-1][j])
9: for ie ← i+ 1 to i+ ξ do

10: for je ← j + 1 to j + ξ do . share DFD computation
11: tmp← min(dF [ie-1][je-1], dF [ie][je-1], dF [ie-1][je])
12: dF [ie][je]← max(dG(ie, je), tmp)

13: if dF [ie][je] ≤ dthres then
14: Γi ← Γi ∪ Sj,je
15: j ← je + 1

16: if |Γi| ≥ tthres then
17: results← results ∪ (Si,i+ξ, Γi)
18: return results

Analysis: Algorithm 4 takes O(n3 +n2 · ξ2) time, which is attributed to initiation (i.e.,
O(n3)), the nested for-loops for variables i, j (at Lines 2 and 4) and variables ie (at Line
9) and je (at Line 10) (i.e.,O(n2 · ξ2)). The space complexity of the algorithm isO(n2)
(due to the matrices dF [·][·] and dG[·][·]).

4.1 Advanced Solution

Problem 2 relies on the distance threshold test, i.e., testing whether dF (i, ie, j, je) ≤
dthres, incurring numerous accesses to the ground distance matrix dG. To accelerate the
test, we replace the numeric matrix dG by a Boolean matrix (in Section 4.1.1). Besides

21

saving memory, this idea enables us to utilize fast operations on Boolean values. Specif-
ically, Boolean values reduce memory consumption by 4 times, and save CPU cycles
by almost 3 times compared to floating-point values 1. Then, we adapt the lower bound
functions in the previous section to support the distance threshold test (in Section 4.1.2),
and discuss their optimized implementation (in Section 4.1.3). Finally, we present the
algorithm for frequent pattern discovery (in Section 4.1.4) and propose a space-efficient
version (in Section 4.2).

4.1.1 Distance Matrix Reduction

The following observation is derived by the properties of the Free Space Diagram [9,3]:

Observation 5 We have dF (i, ie, j, je) ≤ dthres if and only if there exists a path from
(i, j) to (ie, je) in the dG matrix such that the maximum ground distance along the path
is less than or equal to dthres.

This observation suggests that if a cell (i, j) satisfies dG(i, j) > dthres, then any
path via cell (i, j) must have DFD larger than dthres (i.e., infeasible path). For example,
dG(0, 8) = 5 ≥ dthres means that the DFD of any path passing via cell (0, 8) is larger
than dthres.

Inspired by the Free Space Diagram [9,3] and utilizing Observation 5, we convert
the ground distance matrix dG into a Boolean feasibility matrix β as follows:

β(i, j) =

{
False if dG(i, j) > dthres
True otherwise

For the distance matrix dG in Figure 9(a), we show its Boolean feasibility matrix β
in Figure 9(b). For example, since dG(0, 4) = 1 ≤ dthres = 3, the cell in β is labeled
as T; otherwise, the cell is labeled as F.

This feasibility matrix β saves memory and utilizes fast operations on Boolean val-
ues. We note that the distance threshold test dF (i, ie, j, je) ≤ dthres is equivalent to
finding a path of T cells from (i, j) to (ie, je) in β. In the subsequent sections, we devise
several pruning techniques based on β.

4.1.2 Pattern-based Pruning Rules

In this section, we adapt the lower bounds from Section 3.1.2 to accelerate the distance
threshold test.

Cell-based Pruning Rule: By using Observation 2 on the feasibility matrix β, we can
prune a candidate set CSi,j if β(i, j) = False. This pruning rule takes O(1) time.

Example. In Figure 9(b), we have β(0, 8) = False. Thus, the candidate set CS0,8

cannot produce any result. Recall that the candidateCS0,8 is a set of pairs of trajectories
with start cell (0, 8) (see Definition 3).

Cross-based Pruning Rule: By applying Observation 3, we can define two Boolean
indicators for a candidate set CSi,j :

Brow(i, j) = ∨i′∈[i,i+ξ−1]β(i
′, j + 1)

Bcol(i, j) = ∨j′∈[j,j+ξ−1]β(i+ 1, j′)

1 Intel architectures optimization manual: http://intel.ly/2lgN4rc

22

T T T

T

T T T

T T T T T

T T T T

T T T T

T

T T T

T T

T T

T

𝑗/𝑖 0 1 2 3 4 5 6 7 8 9 10 11

0

1

 2

3

4

 5

 6

7

 8

 9

1
0

 1

1

𝐵𝑟𝑜𝑤 3,8 = True

𝐵𝑐𝑜𝑙 3,8 = False

T T T

T

T T T

T T T T T

T T T T

T T T T

T

T T T

T T

T T

T

𝑗/𝑖 0 1 2 3 4 5 6 7 8 9 10 11

0

1

 2

3

4

 5

 6

7

 8

 9

1

0

 1
1

𝐵𝑐𝑜𝑙(1,8) = True

𝐵𝑐𝑜𝑙(2,8) = True

𝐵𝑐𝑜𝑙(3,8) = False

𝐵𝑐𝑜𝑙(4,8) = False

(a) Bcross(3, 8) (b) Bcolband(1, 8)

Fig. 10 Example of cross/band-based pruning rule

For two subtrajectories Si,ie and Sj,je , if there exists a feasible path from (i, j) to
(ie, je), it must hold that Brow(i, j) = True and Bcol(i, j) = True. Thus, we combine
them into a single Boolean indicator:

Bcross(i, j) = Brow(i, j) ∧Bcol(i, j)

With this indicator, we can prune a candidate set CSi,j if Bcross(i, j) = False. This
pruning rule takes O(ξ) time.

Example. We illustrate the cross based pruning rule by the example in Figure 10(a).
Consider the candidate setCS3,8, for whichBcross(3, 8) = Brow(3, 8)∧Bcol(3, 8) =
True ∧ False = False. Thus, the candidate set CS3,8 will be pruned.

Band-based Pruning Rule: According to Observation 4, we define the following band-
based indicators:

Browband(i, j) = ∧j′∈[j,j+ξ−1]Brow(i, j
′)

Bcolband(i, j) = ∧i′∈[i,i+ξ−1]Bcol(i
′, j)

For two subtrajectories Si,ie and Sj,je , if there exists a feasible path from (i, j) to
(ie, je), it must hold that Browband(i, j) = True and Bcolband(i, j) = True. This idea en-
ables us to prune a candidate set CSi,j if Browband(i, j) = False or Bcolband(i, j) = False.
It takes O(ξ2) time to execute this rule.

Example. Consider the example in Figure 10(b) with ξ = 4. For the candidate set
CS1,8, we have: Bcolband(1, 8) = Bcol(1, 8) ∧ Bcol(2, 8) ∧ Bcol(3, 8) ∧ Bcol(4, 8) =
False. Thus, the candidate set CS1,8 can be safely pruned.

4.1.3 Efficient Implementation of Pruning Rules

The cross-based and the band-based pruning rules require O(ξ) time and O(ξ2) time,
respectively. We propose a technique to support these operations in O(1) amortized
time.

Consider Brow(i, j) first. We observe that the computation of Brow(i, j) is equiv-
alent to a counting problem. Let Countβrow(i, j) denote the number of terms in

23

𝛽(1, 𝑗)

𝐵𝑟𝑜𝑤(0, 𝑗)

𝑖 0 5 10

T T T T T T

T T T T T T T T T T T

4 3 2 1 0 0 0 1 1 1 2 1 1 1Countrow
𝛽

(0, 𝑗)

Fig. 11 Optimization for Brow Computation

Brow(i, j) that hold the True value in matrix β. Formally, we have: Countβrow(i, j) =∑i+ξ−1
i′=i Int(β(i′, j + 1)), where the function Int() converts a Boolean value to an in-

teger as follows:

Int(x) =

{
1 if x = True

0 otherwise

Observation 6 Brow(i, j) is equivalent to Boolean value (Countβrow(i, j) > 0).

It remains to discuss how to compute Countβrow(i, j) in O(1) time. Observe that:

Countβrow(i + 1, j) = Countβrow(i, j) − Int(β(i, j)) + Int(β(i + ξ, j)) (20)

Generally, Countβrow(i, j) will be computed before Countβrow(i+1, j). Then Equa-
tion 20 can be applied to obtain Countβrow(i + 1, j) in O(1) time. We illustrate this
idea in Figure 11. For example, Countβrow(0, 1) = Countβrow(0, 0) − Int(β(0, 0)) +
Int(β(0 + 4, 0)) = 4 − 1 + 0 = 3. We have computed Countβrow(0, 0), thus
Countβrow(0, 1) can be updated in O(1) time.

This idea can also be used to compute Bcol(i, j) in O(1) time, except we apply the
following equation to update each count.

Countβcol(i, j + 1) = Countβcol(i, j)− Int(β(i, j)) + Int(β(i, j + ξ)) (21)

A similar idea can be used for the band-based pruning rule. We use Countrowband(i, j)
and Countcolband(i, j) to represent the number of True terms in Browband(i, j) and
Bcolband(i, j), respectively.
Observation 7 Browband(i, j) is equivalent to Boolean value (Countrowband(i, j) = ξ).

By using the following equations, we can compute Countrowband(i, j) and
Countcolband(i, j) in O(1) time.

Countrowband(i, j + 1) = Countrowband(i, j)− Int(Brow(i, j)) + Int(Brow(i, j + ξ))

Countcolband(i+ 1, j) = Countcolband(i, j)− Int(Bcol(i, j)) + Int(Bcol(i+ ξ, j))

We summarize time complexities of all pruning rules in Table 4.
Regarding grouping-based techniques, we mention that our internal testing showed

that they are not useful in the frequent pattern problem. The main reason is that the fre-
quent pattern discovery has been reduced to a feasibility testing problem, for which the
group-based techniques are not effective. Specifically, each group in the motif discov-
ery problem has a lower and upper ground distance bound, which can be used in our
proposed cell-, cross-, and band-based bounds. However, for frequent pattern discovery,
each group only has True or False value. The group cannot be pruned if its value is True.

24

Table 4 Summary of pruning rules

Pruning rule Cost Optimized cost

β(i, j) O(1) O(1)
Brow(i, j) O(ξ) O(1)
Bcol(i, j) O(ξ) O(1)
Browband(i, j) O(ξ2) O(1)

Bcolband(i, j) O(ξ2) O(1)

4.1.4 Optimized Solution

Algorithm 5 presents the pseudocode for the trajectory frequent pattern discovery prob-
lem with bounding-based pruning rules (BFP).

Algorithm 5 BFP (S, ξ, dthres, tthres)
Input: trajectory S, length n, subtrajectory length ξ

DFD distance threshold dthres, frequency threshold tthres
Output: frequent pattern set results
compute the feasibility matrix β by dG matrix

1: results← ∅
2: for i← 0 to n− ξ + 1 do
3: results(Si,i+ξ)← ∅
4: for j ← 0 to n− ξ + 1 and j /∈ [i, i+ ξ] do
5: if β[i][j] ∧Bcross(i, j) ∧Bband(i, j) = True then
6: for t← i+ 1 to i+ ξ do
7: dF [i][t]← β(i, t) ∧ dF [i][t-1]
8: dF [t][j]← dG(t, j) ∧ dF [t-1][j]
9: for ie ← i+ 1 to i+ ξ do

10: for je ← j + 1 to j + ξ do
11: if β(ie, je) = True then
12: dF [ie][je]← dF [ie-1][je-1] ∨ dF [ie][je-1] ∨ dF [ie-1][je]
13: else
14: dF [ie][je]← False

15: if dF [ie][je] = True then
16: results(Si,i+ξ)← results(Si,i+ξ) ∪ Sj,je
17: j ← je + 1;
18: if |results(Si,i+ξ)| ≥ t then
19: results← results(Si,i+ξ)
20: return results

It incorporates all pruning ideas in Line 5. BothBcross(i, j) andBband(i, j) can be
obtained inO(1) time as discussed in Section 4.1.3. To support this, we storeBrow(i, j),
Bcol(i, j),Browband(i, j) andBcolband(i, j) in temporary arrays, so that we can update them
in O(1) time by using the equations in Section 4.1.3.

Analysis: The time complexity of Algorithm 5 is O(n2 · ξ2) in the worst case, which is
attributed to the nested for-loops for variables i [that is,O(n) iterations] , j [that is,O(n)
iterations], ie and je [these are, O(ξ) iterations]. The space complexity of Algorithm 5
is O(n2). It performs faster than Algorithm 4 by a constant factor, because we have
replaced expensive mathematic functions by Boolean operators.

25

4.2 Space-efficient Variant: BFP∗

We present a space-efficient variant of BFP, called BFP∗. It incorporates two ideas:
(i) it employs a rolling array for β (i.e., O(n) space cost), and (ii) it computes dG, β,
Bcross, Bband, and dF on-the-fly. Idea (i) is feasible because, in Line 12 of Algorithm
5, we examine at most two rows of β at the same time. Idea (ii) eliminates the need for
precomputed dG and β. Thus, the space complexity of BFP∗ is O(n · ξ).

The time complexity of the space-efficient solution BFP∗ is O(n2 · ξ2), the same
as BFP. Moreover, our space enhancements do not affect the pruning ability of vanilla
BFP. Thus, BFP∗ performs comparably to or, most often, slightly better than BFP, as
we show in the experiments (see Figure 21 in Section 6.3).

5 Extension to Trajectory Database

In this section, we extend our solutions for Problems 1 and 2 to multiple trajectories
(i.e., a trajectory database). We use the notation dF (Si,ie , Tj,je) to represent the DFD
distance between two subtrajectories from different trajectories (i.e., S, T).

Motif Discovery in Trajectory Database: A variant of Problem 1 is to discover a motif
among multiple trajectories. As an application example in weather prediction and ty-
phoon analysis, Figure 12 illustrates the trajectories of five typhoons in Hong Kong, in
July 2016. The motif corresponds to the pair of subtrajectories (shown in red) from the
typhoons called Nepartak and Chaba. Formally, the problem is defined as follows:

Problem 3 (Motif Discovery in Trajectory Database) Given a trajectory dataset D,
find the pair of subtrajectories Si,ie and Tj,je , where S ∈ D and T ∈ D, with the
smallest DFD distance dF (Si,ie , Tj,je) among all possible pairs of subtrajectories. We
require that Si,ie and Tj,je have length at least ξ.

Nepartak
Nida

Mirinae

Lupit

Chaba

Fig. 12 Example of motif discovery among multiple trajectories (adapted from
http://www.hko.gov.hk/informtc/tcMain.htm)

An intuitive solution is to concatenate all trajectories in trajectory dataset D into a
single trajectory Sall. For example, for the trajectories in Figure 12, we obtain the single
trajectory Sall as shown in Figure 13. Then, we can apply the algorithms in Section 3 to
compute the motif on this single trajectory Sall.

26

longitude

timestamp

latitude

Start positions of invalid
subtrajectories

Typhoon A

Typhoon B

Typhoon C

Typhoon D

Typhoon E

Fig. 13 Example of multiple trajectories concatenation

To ensure the correctness of the above solution, we must exclude invalid subtrajecto-
ries from consideration. We call a subtrajectory (of Sall) to be invalid if its start position
belongs to one of the last ξ−1 points in an original trajectory. We illustrate some invalid
subtrajectories in red color in Figure 13. In addition, for each Si,ie , we also exclude any
subtrajectories which belong to the same original trajectory.

Frequent Pattern Discovery in Trajectory Database: Similarly, a variant of Problem 2
is to discover frequent patterns among multiple trajectories. Given distance threshold
dthres and frequency threshold tthres, the frequent pattern discovery problem in a tra-
jectory database D, is to find all the frequent patterns (Si,ie , Γi) in D, where Si,ie
belongs to one of the trajectories in D, and each subtrajectory Tj,je ∈ Γi is similar to
Si,ie (i.e., dF (Si,ie , Tj,je) ≤ dthres), where T 6= S, and the number of subtrajectories
in Γi is not smaller than tthres. By applying the above concatenation idea, we can re-
duce the frequent pattern discovery in trajectory database problem to Problem 2. Then,
we can apply the algorithms in Section 4 to compute the result. Again, we need to filter
out invalid trajectories.

6 Empirical Evaluation

In this section, we evaluate the performance of our solutions on real data sets. First, we
introduce the experimental setting in Section 6.1. Then, Sections 6.2 and 6.3 evaluate
the performance of different methods on the motif discovery problem and the frequent
pattern discovery problem, respectively.

6.1 Experimental Setup

Dataset: We used four real trajectory datasets from moving people, vehicles and animals
in our experimental study. We note that these datasets have different characteristics (such
as sampling frequency and data distribution) thus helping us verify the generality of our
findings. We used all datasets in [31], i.e., GeoLife, Truck, and Wild-Baboon. For
each dataset, we concatenate raw trajectories in order to build longer trajectories. As the
Truck dataset is not long enough for frequent pattern discovery problem, we use the
Pigeons2 dataset instead, which was collected from homing pigeons [18] in Pisa, Italy.
It contains 24 trajectories of pigeons with GPS that recorded a location every second
from 2nd July to 21st July, 2010. Table 5 lists the used datasets in each problem.

2 http://chorochronos.datastories.org/

27

Table 5 Datasets in each problem

Problem Datasets

Motif discovery GeoLife, Truck, Wild-Baboon
Frequent pattern discovery GeoLife, Pigeons, Wild-Baboon

Methods and Implementation: We used C++ for the implementation and conducted
all experiments (with single thread) on a machine with an Intel Core i7-4770 3.40GHz
processor. In our experiments, we report the average measurements over 10 different
trajectories of the same length. The response times reported include the precomputation
time of distances and lower bounds.

Motif Discovery Problem: We compare the following methods: (i) the baseline solution
BruteDP (see Algorithm 1), (ii) the bounding-based solution BTM (see Algorithm 2),
(iii) the grouping-based solution GTM (see Algorithm 3). By default, we fix the motif
length threshold ξ to 100, and the trajectory length n to 5000.

Frequent Pattern Discovery Problem: We compare the following methods: (i) the
baseline solution BruteFP (see Algorithm 4), (ii) the bounding-based solution BFP (see
Algorithm 5), (iii) the space-efficient solution BFP∗ (see Section 4.2), and (iv) CUP,
adapted from the 1st place solution in SIGSPATIAL CUP 2017 [5]. CUP was proposed
to work with Fréchet distance, consequently, its adaptation to DFD is straightforward.
However, to fairly interpret the comparison with CUP, we note that, being proposed for
range queries, its adaptation to frequent pattern discovery requires performing a range
query for each possible subtrajectory of length ξ to determine whether at least tthres
subtrajectories are within distance dthres from it. Unlike our methods, it is non-trivial
(if possible at all) to enable those range queries to reuse computations in a fashion simi-
lar to the computation sharing that is organically achieved within our framework3.

Table 6 Experiment parameters, tested values, and defaults

Parameter Tested and default values

Trajectory length (n) 5K, 10K, 50K, 100K, 500K
Frequent pattern length (ξ) 100, 200, 300, 400, 500

Frequency threshold (tthres) 2, 4, 6, 8, 10
GeoLife: 50, 100, 150, 200, 250

Distance threshold (dthres) Pigeons: 1, 2, 3, 4, 5
Unit: (meters) Wild-Baboon: 0.5, 1, 1.5, 2, 2.5

Table 6 provides the value ranges for each tested parameter for frequent pattern
discovery problem, with their default values indicated in bold. In each experiment, we
vary one parameter while keeping the remaining ones to their default values.

3 We note that recently the authors of [5] have produced a more efficient approach [8], still considering
the range query.

28

80%

85%

90%

95%

100%

1K 5K 10K

%
 o

f c
an

di
da

te
s

pr
un

ed

Trajectory length

Tight Relaxed

 1

 10

 100

1K 5K 10K

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

Tight
Relaxed

(a) Pruning ratio (b) Response time

Fig. 14 BTM, effect of trajectory length n

6.2 Results on Motif Discovery

We first study the effectiveness of our pruning techniques (e.g., lower bounds and group-
ing) in Section 6.2.1. We then test the performance of methods with respect to different
parameters in Section 6.2.2.

6.2.1 Pruning Effectiveness

We first assess the effectiveness of our pruning techniques, particularly of our lower
bounds and grouping. We present results on the GeoLife dataset. Results on Truck and
Wild-Baboon are similar and are omitted for brevity.

Effectiveness of Relaxed Bounds: We first compare two variants of BTM that use: (i)
only the tight lower bounds from Section 3.1.2, and (ii) only the relaxed lower bounds
from Section 3.1.3.

In Figure 14, we compare the tight with the relaxed bounds by varying the trajectory
length n, with ξ fixed to 100. The pruning percentage in Figure 14(a) corresponds to the
ratio of candidate pairs successfully pruned to the total number of candidate pairs. Note
that because the percentage is high, and in order to show enough detail, we truncated
the y-axis of the plot to start from 80%. In Figure 14(b), we show the overall response
time to compute the motif. We observe that the relaxed bounds are only slightly weaker
in pruning power, but they are orders of magnitude faster computation-wise.

In Figure 15, we investigate the effectiveness and performance of tight and relaxed
bounds as a function of the minimum motif length ξ, with n fixed to 5000. Again, al-
though the tight bounds have slightly higher pruning ratio (in Figure 15(a)), the relaxed
bounds render motif computation 10 times faster (in Figure 15(b)). Since the relaxed
bounds perform much better, we adopt them in our framework (instead of the tight ones)
and use them in the subsequent experiments.

Effectiveness of Lower Bounds: In the next experiment, we compare the pruning ef-
fectiveness of the different lower bound functions (LBcell, rLBcross, rLBband) using
BTM. Each bar in Figure 16 corresponds to the total number of candidate pairs, bro-
ken down into the fraction pruned by each of the 3 types of bounds, and the fraction
of the surviving pairs that required exact DFD computation (labeled as DFD in the bar
charts). In Figures 16(a) and 16(b), we vary the trajectory length n and the minimum

29

80%

85%

90%

95%

100%

100 200 300

%
 o

f c
an

di
da

te
s

pr
un

ed

Minimum motif length

Tight Relaxed

 1

 10

 100

 1000

 10000

100 200 300

R
es

po
ns

e
tim

e
(s

ec
)

Minimum motif length

Tight
Relaxed

(a) Pruning ratio (b) Response time

Fig. 15 BTM, effect of minimum motif length ξ

50%

60%

70%

80%

90%

100%

1K 5K 10K

%
 o

f c
an

di
da

te
s

pr
un

ed

Trajectory length

LBcell
rLBcross

rLBband
DFD

50%

60%

70%

80%

90%

100%

100 200 300

%
 o

f c
an

di
da

te
s

pr
un

ed

Minimum motif length

LBcell
rLBcross

rLBband
DFD

(a) Effect of trajectory length n (b) Effect of minimum motif length ξ

Fig. 16 BTM, pruning ratio breakdown

motif length ξ, respectively. The bars are truncated to start at ratio 50% to retain detail,
because the percentage of LBcell hugely dominates the rest.

Over 92% of the candidates can be collectively pruned by our lower bounds. An
interesting observation is that the bounds complement each other. For instance, when ξ
increases (in Figure 16(b)), although LBcell deteriorates, rLBband becomes stronger,
thus eliminating many of the candidates that survived LBcell. This renders our method-
ology robust to different problem settings.

Next, we compare three variants of BTM that use: (i) LBcell only, (ii)
LBcell, rLBcross only, and (iii) LBcell, rLBcross, rLBband. We vary the trajectory
length n and the minimum motif length ξ in Figures 17(a) and (b), respectively. The re-
sults verify that the bounds complement each other gracefully, and that the performance
gains achieved are not due to just one or some of them.

Effect of Group Size τ : In GTM (Algorithm 3), the initial group size τ influences the
pruning effectiveness and the computation cost of the algorithm. Generally, when τ is
small, group-based pruning has a high pruning power but it requires high computation
cost. In contrast, when τ is large, group-based pruning becomes faster but it becomes
less effective. Figure 18 plots the response time of GTM for different values of τ (x-
axis) and trajectory length n (as indicated by the label of each line). We observe that the
response time is not overly sensitive to τ . In the following experiments, we set τ = 32
by default as it seems to work well in all cases.

30

 1

 10

 100

1K 5K 10K

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

LBcell
LBcell+rLBcross

LBcell+rLBcross+rLBband
 1

 10

 100

 1000

 10000

100 200 300

R
es

po
ns

e
tim

e
(s

ec
)

Minimum motif length

LBcell
LBcell+rLBcross

LBcell+rLBcross+rLBband

(a) Effect of trajectory length n (b) Effect of minimum motif length ξ

Fig. 17 BTM, response time

 0.1

 1

 10

 100

8 16 32 64 128

R
es

po
ns

e
tim

e
(s

ec
)

τ

1K 5K 10K

Fig. 18 GTM, effect of group size τ

10-2

10-1

100

101

102

103

104

0.5K 1K 5K 10K

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

GTM
BTM

BruteDP
10-2

10-1

100

101

102

103

104

0.5K 1K 5K 10K

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

GTM
BTM

BruteDP
10-1

100

101

102

103

104

0.5K 1K 5K 10K

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

GTM
BTM

BruteDP

(a) GeoLife (b) Truck (c) Wild-Baboon

Fig. 19 Response time vs. trajectory length n, motif discovery problem

6.2.2 Performance Experiments

We compare the performance of our solutions (BTM, GTM) with the baseline
(BruteDP) on the real datasets (GeoLife, Truck, and Wild-Baboon).

Figure 19 plots the average response time for different trajectory lengths nwhile fix-
ing ξ = 100. BruteDP is prohibitively slow even for small trajectories (e.g., n = 1000),
thus, we terminate it when its response time exceeds 2 hours. For the settings where it
does terminate within reasonable time, our advanced solution (i.e., GTM) outperforms
it by 3 orders of magnitude. GTM is the fastest algorithm. Due to the clear inefficiency
of BruteDP, we exclude it from the following experiments.

In Figure 20, we measure response time as we vary the minimum trajectory motif
length ξ (with n fixed to 5000). The relative performance of the methods is the same
as in the previous experiment. The response time of all solutions increases with ξ. That
is because a large ξ disqualifies short motifs with small DFDs, thus making it harder to
identify early on a small bsf to enable aggressive pruning (see also Figure 15(a)).

31

100

101

102

103

104

100 200 300 400

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory motif length

GTM
BTM

101

102

103

104

100 200 300 400

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory motif length

GTM
BTM

101

102

103

104

100 200 300 400

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory motif length

GTM
BTM

(a) GeoLife (b) Truck (c) Wild-Baboon

Fig. 20 Response time vs. minimum motif length ξ, motif discovery problem

100

101

102

103

104

105

5k 10k 50k 100k 500k

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

BFP*

BFP

BruteFP

CUP

100

101

102

103

104

105

5k 10k 50k 100k 500k

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

BFP*

BFP

BruteFP

CUP

100

101

102

103

104

105

5k 10k 50k 100k 500k

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

BFP*

BFP

BruteFP

CUP

(a) GeoLife (b) Pigeons (c) Wild-Baboon

Fig. 21 Response time vs. trajectory length n, frequent pattern discovery problem

100

101

102

103

104

105

 100 200 300 400 500

R
es

po
ns

e
tim

e
(s

ec
)

Frequent pattern length

BFP*
 BruteFP

100

101

102

103

104

105

 100 200 300 400 500

R
es

po
ns

e
tim

e
(s

ec
)

Frequent pattern length

BFP*
 BruteFP

100

101

102

103

104

105

 100 200 300 400 500

R
es

po
ns

e
tim

e
(s

ec
)

Frequent pattern length

BFP*
 BruteFP

(a) GeoLife (b) Pigeons (c) Wild-Baboon

Fig. 22 Response time vs. frequent pattern length ξ, frequent pattern discovery problem

6.3 Results on Frequent Pattern Discovery

We now turn to the frequent pattern discovery problem. We compare the performance
of our solutions (BFP and BFP∗) with the baseline solution (BruteFP) on three real
datasets (i.e., GeoLife, Pigeons, and Wild-Baboon). Recall that BFP∗ is the space-
efficient version of BFP.

Figure 21 plots the average response time for different trajectory lengths n. Our
solutions (BFP and BFP∗) outperform the baseline solution and CUP by at least one
order of magnitude. Since BruteFP is too slow, we terminate it when its response time
exceeds 6 hours. BFP and BFP∗ exhibit similar performance for small data lengths (e.g.,
n from 5k to 50k). However, when n exceeds 50k, BFP runs out of memory and thus
gets terminated. Furthermore, BFP∗ performs slightly better than BFP as we discussed
in Section 4.2. We will elaborate the memory consumption of the methods shortly.

In Figure 22, we measure the response time as a function of the frequent pattern
length ξ. BFP∗ again outperforms BruteFP. Note that the response time of BFP∗ de-
creases slightly with large ξ (i.e., ξ = 500). To investigate this issue, in Figure 23 we
plot the feasible cells (in black) of a sample trajectory from the GeoLife dataset. When ξ
is too large, it becomes more difficult to find a path of feasible cells, and thus the number
of surviving candidates drops.

32

Fig. 23 Feasible cells in one trajectory in GeoLife

100

101

102

103

104

5k 10k 50k 100k 500k

S
pa

ce
 c

on
su

m
pt

io
n

(M
B

)

Trajectory length

BFP*

BFP

BruteFP

100

101

102

103

100 200 300 400 500

S
pa

ce
 c

on
su

m
pt

io
n

(M
B

)

Motif length

BFP*

BFP

BruteFP

(a) Vary n (b) Vary ξ

Fig. 24 Space consumption

Figure 24 shows the memory consumption of the solutions on the GeoLife dataset.
We omit the experiments on the other datasets as the findings are similar. Figure 24(a)
plots the memory consumption of the solutions versus the trajectory length n. BFP∗

performs much better than the others. Both BruteFP and BFP run out of memory when
trajectory length exceeds n = 100k and 500k, respectively. BFP requires much less
memory than BruteFP because BFP employs Boolean matrices instead of floating-
point matrices. Figure 24(b) illustrates the memory consumption of these solutions by
varying the frequent pattern length ξ. BFP∗ occupies much less memory than the other
solutions.

100

101

102

103

104

105

 1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
)

Distance (meters)

BFP*
 BruteFP

100

101

102

103

104

105

 2 4 6 8 10

R
es

po
ns

e
tim

e
(s

ec
)

Frequency (times)

BFP*
 BruteFP

(a) distance threshold dthres (b) frequency threshold tthres

Fig. 25 Response time on Pigeons

33

100

101

102

103

104

105

5k 10k 50k 100k 500k

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

BFP*

BFP

BruteFP
 101

102

103

104

105

5k 10k 50k 100k 500k

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

BFP*

BFP

BruteFP

100

101

102

103

104

105

5k 10k 50k 100k 500k

R
es

po
ns

e
tim

e
(s

ec
)

Trajectory length

BFP*

BFP

BruteFP

(a) GeoLife (b) Pigeons (c) Wild-Baboon

Fig. 26 Response time vs. concatenated trajectory length n, multiple trajectories, frequent pattern dis-
covery problem

We study the effect of the distance threshold (dthres) on Pigeons in Figure 25(a).
Since BruteFP does not apply pruning rules, its response time is independent of dthres.
The response time of BFP∗ rises with the distance threshold dthres. Similarly, we study
the effect of the frequency threshold tthres on Pigeons in Figure 25(b). With the increase
of tthres, the response time of BFP∗ rises and then stabilizes. When tthres is low, we
could quickly determine a pattern as part of the result when its frequency exceeds tthres.
The experimental results on GeoLife and Wild-Baboon are similar; we omit them for
brevity.

Finally, we evaluate our algorithms for frequent pattern discovery on multiple trajec-
tories. In this experiment, we randomly select input trajectories (from the corresponding
real dataset) until the concatenated trajectory’s length exceeds n. Figure 26 reports the
average response time as a function of the concatenated trajectory length n. It demon-
strates the efficiency of our approaches. The performance trend is similar to the case of
single input trajectory (see Figure 21).

7 Conclusion

In this paper, we study spatial trajectory analysis problems using the discrete Fréchet
distance (DFD). Our contributions include: (i) a suite of novel lower bound functions
for DFD, and (ii) a space-optimized approach that is both time- and space-efficient. Our
fastest methods are over 3 orders of magnitude faster than the baseline solutions. In
addition, our solutions can be extended to motif discovery and trajectory frequent pat-
tern discovery problems on multiple trajectories (i.e., a trajectory database). Promising
directions for future work include: devising approximate solutions that trade exactness
for shorter running times; and extending our techniques to other trajectory similarity
measures.

References

1. Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete fréchet distance in
subquadratic time. SIAM Journal on Computing 43(2) (2014)

2. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. In: SODA (2003)
3. Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International

Journal of Computational Geometry & Applications 5, 75–91 (1995)
4. Astefanoaei, M., Cesaretti, P., Katsikouli, P., Goswami, M., Sarkar, R.: Multi-resolution sketches

and locality sensitive hashing for fast trajectory processing. In: SIGSPATIAL (2018)

34

5. Baldus, J., Bringmann, K.: A fast implementation of near neighbors queries for fréchet distance (gis
cup). In: SIGSPATIAL (2017)

6. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: VLDB
(2005)

7. Bringmann, K.: Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless seth fails. In: FOCS (2014)

8. Bringmann, K., Künnemann, M., Nusser, A.: Walking the Dog Fast in Practice: Algorithm Engi-
neering of the Fréchet Distance. In: SoCG, vol. 129 (2019)

9. Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a tool for trajectory
analysis. IJGIS 24(7), 1101–1125 (2010)

10. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns by
clustering subtrajectories. International Journal of Computational Geometry & Applications 21(03)
(2011)

11. Buchin, K., Diez, Y., van Diggelen, T., Meulemans, W.: Efficient trajectory queries under the fréchet
distance (gis cup). In: SIGSPATIAL (2017)

12. Cao, H., Mamoulis, N., Cheung, D.W.: Mining frequent spatio-temporal sequential patterns. In:
ICDM (2005)

13. Cao, H., Mamoulis, N., Cheung, D.W.: Discovery of periodic patterns in spatiotemporal sequences.
TKDE 19(4), 453–467 (2007)

14. Chambers, E.W., Wang, Y.: Measuring similarity between curves on 2-manifolds via homotopy area.
In: SoCG (2013)

15. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In:
SIGMOD (2005)

16. Dütsch, F., Vahrenhold, J.: A filter-and-refinement-algorithm for range queries based on the fréchet
distance (gis cup). In: SIGSPATIAL (2017)

17. Eiter, T., Mannila, H.: Computing discrete fréchet distance. Tech. rep., Information Systems De-
partment, Technical University of Vienna (1994)

18. Gagliardo, A., Ioalè, P., Filannino, C., Wikelski, M.: Homing pigeons only navigate in air with intact
environmental odours: a test of the olfactory activation hypothesis with gps data loggers. PLoS One
6(8) (2011)

19. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: SIGKDD (2007)
20. Gudmundsson, J., Laube, P., Wolle, T.: Computational movement analysis. In: Springer handbook

of geographic information (2011)
21. Gudmundsson, J., Thom, A., Vahrenhold, J.: Of motifs and goals: mining trajectory data. In:

SIGSPATIAL (2012)
22. Gudmundsson, J., Valladares, N.: A gpu approach to subtrajectory clustering using the fréchet dis-

tance. TPDS 26(4) (2015)
23. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: Mining

sequential patterns efficiently by prefix-projected pattern growth. In: ICDE (2001)
24. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory

databases. PVLDB 1(1) (2008)
25. Kwan, M.P.: Interactive geovisualization of activity-travel patterns using three-dimensional geo-

graphical information systems: a methodological exploration with a large data set. Transportation
Research Part C: Emerging Technologies 8(1) (2000)

26. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: SIG-
MOD (2007)

27. Li, X., Han, J., Kim, S., Gonzalez, H.: Roam: Rule-and motif-based anomaly detection in massive
moving object data sets. In: SDM, vol. 7 (2007)

28. Sinnott, R.W.: Virtues of the haversine. Sky and Telescope 68(2) (1984)
29. Song, R., Sun, W., Zheng, B., Zheng, Y.: Press: A novel framework of trajectory compression in

road networks. PVLDB 7(9), 661–672 (2014)
30. Sriraghavendra, R., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching

online handwritten documents. In: 9th International Conference on Document Analysis and Recog-
nition, vol. 1 (2007)

31. Tang, B., Yiu, M.L., Mouratidis, K., Wang, K.: Efficient motif discovery in spatial trajectories using
discrete fréchet distance. In: EDBT, pp. 378–389 (2017)

32. Toohey, K., Duckham, M.: Trajectory similarity measures. SIGSPATIAL Special 7(1), 43–50 (2015)
33. Trajcevski, G., Ding, H., Scheuermann, P., Tamassia, R., Vaccaro, D.: Dynamics-aware similarity of

moving objects trajectories. In: GIS (2007)

35

34. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In:
ICDE (2002)

35. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse trajectories. In: SIGKDD
(2014)

36. Wei, H., Fellegara, R., Wang, Y., De Floriani, L., Samet, H.: Multi-level filtering to retrieve similar
trajectories under the fréchet distance. In: SIGSPATIAL (2018)

37. Werner, M., Oliver, D.: Acm sigspatial gis cup 2017: range queries under fréchet distance. SIGSPA-
TIAL Special 10(1), 24–27 (2018)

38. Wylie, T., Zhu, B.: Protein chain pair simplification under the discrete fréchet distance. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 10(6) (2013)

39. Xie, D., Li, F., Phillips, J.M.: Distributed trajectory similarity search. PVLDB 10(11), 1478–1489
(2017)

40. Yi, B.K., Jagadish, H., Faloutsos, C.: Efficient retrieval of similar time sequences under time warp-
ing. In: ICDE (1998)

41. Yu, Y., Cao, L., Rundensteiner, E.A., Wang, Q.: Detecting moving object outliers in massive-scale
trajectory streams. In: SIGKDD (2014)

42. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions
based on taxi trajectories. In: SIGSPATIAL (2010)

43. Zheng, Y.: Trajectory data mining: an overview. TIST 6(3) (2015)
44. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps

trajectories. In: WWW (2009)

36

