
AlayaDB: The Data Foundation for Efficient and Effective
Long-context LLM Inference

Yangshen Deng
∗

AlayaDB AI

Shenzhen, China

yangshen.deng@alayadb.ai

Zhengxin You
∗

SUSTech

AlayaDB AI

Shenzhen, China

zhengxin.you@alayadb.ai

Long Xiang
∗

SUSTech

AlayaDB AI

Shenzhen, China

long.xiang@alayadb.ai

Qilong Li

AlayaDB AI

SUSTech

Shenzhen, China

qilong.li@alayadb.ai

Peiqi Yuan

AlayaDB AI

SUSTech

Shenzhen, China

peiqi.yuan@alayadb.ai

Zhaoyang Hong

AlayaDB AI

SUSTech

Shenzhen, China

zhaoyang.hong@alayadb.ai

Yitao Zheng

AlayaDB AI

SUSTech

Shenzhen, China

yitao.zheng@alayadb.ai

Wanting Li

AlayaDB AI

SUSTech

Shenzhen, China

wanting.li@alayadb.ai

Runzhong Li

AlayaDB AI

SUSTech

Shenzhen, China

runzhong.li@alayadb.ai

Haotian Liu

AlayaDB AI

SUSTech

Shenzhen, China

haotian.liu@alayadb.ai

Kyriakos Mouratidis

Singapore Management

University

Singapore, Singapore

kyriakos@smu.edu.sg

Man Lung Yiu

The Hong Kong

Polytechnic University

Hong Kong, China

csmlyiu@comp.polyu.edu.hk

Huan Li

Zhejiang University

Hangzhou, China

lihuan.cs@zju.edu.cn

Qiaomu Shen

Beijing Institute of

Technology, Zhuhai

Zhuhai, China

shenqm@sustech.edu.cn

Rui Mao
†

Shenzhen University

Shenzhen, China

mao@szu.edu.cn

Bo Tang
†

SUSTech

AlayaDB AI

Shenzhen, China

tangb3@sustech.edu.cn

Abstract
AlayaDB is a cutting-edge vector database system natively archi-

tected for efficient and effective long-context inference for Large

Language Models (LLMs) at AlayaDB AI. Specifically, it decouples
the KV cache and attention computation from the LLM inference

systems, and encapsulates them into a novel vector database system.

For the Model as a Service providers (MaaS), AlayaDB consumes

fewer hardware resources and offers higher generation quality for

various workloads with different kinds of Service Level Objectives

(SLOs), when compared with the existing alternative solutions (e.g.,

KV cache disaggregation, retrieval-based sparse attention). The crux

of AlayaDB is that it abstracts the attention computation and cache

management for LLM inference into a query processing procedure,

and optimizes the performance via a native query optimizer. In this

work, we demonstrate the effectiveness of AlayaDB via (i) two use

cases from our industry partners, and (ii) extensive experimental

results on LLM inference benchmarks.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1564-8/2025/06

https://doi.org/10.1145/3722212.3724428

CCS Concepts
• Information systems→ Data management systems; • Com-
puting methodologies→ Artificial intelligence.

Keywords
Vector database, Large language model, Machine learning systems

ACM Reference Format:
YangshenDeng, Zhengxin You, Long Xiang, Qilong Li, Peiqi Yuan, Zhaoyang

Hong, Yitao Zheng, Wanting Li, Runzhong Li, Haotian Liu, Kyriakos Moura-

tidis, Man Lung Yiu, Huan Li, Qiaomu Shen, Rui Mao, and Bo Tang. 2025.

AlayaDB: The Data Foundation for Efficient and Effective Long-context LLM

Inference. In Companion of the 2025 International Conference on Management
of Data (SIGMOD-Companion ’25), June 22–27, 2025, Berlin, Germany. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3722212.3724428

1 Introduction
Large Language Models (LLMs) have been widely used in various

real-world applications such as personal assistants [4, 6, 9, 14, 41],

search engines [2, 3, 10, 17], code generators [5, 7, 11, 41] and

document analyzers [33, 44]. Efficient and effective LLM inference

is an open problem in the industry [12, 20, 25, 50], especially for

long-context (e.g., millions of tokens) inference. In particular, the

performance of LLM inference systems is evaluated by threemetrics:

(1) inference latency, the end-to-end time cost for user tasks, (2)

* These authors contributed equally to this work.

†
Corresponding authors: Prof. Bo Tang and Prof. Rui Mao.

https://orcid.org/0009-0003-9487-1455
https://orcid.org/0000-0002-6152-3513
https://orcid.org/0009-0004-6357-3049
https://orcid.org/0009-0008-0560-1549
https://orcid.org/0009-0004-5419-1022
https://orcid.org/0009-0000-1798-8770
https://orcid.org/0009-0001-8728-7926
https://orcid.org/0009-0005-2468-7649
https://orcid.org/0000-0001-7245-6873
https://orcid.org/0000-0002-8784-8711
https://orcid.org/0000-0002-8835-430X
https://orcid.org/0000-0002-9619-4924
https://orcid.org/0000-0003-0084-1662
https://orcid.org/0000-0002-6510-0964
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0001-8424-0092
https://doi.org/10.1145/3722212.3724428
https://doi.org/10.1145/3722212.3724428

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yangshen Deng et al.

generation quality, the capabilities of LLM in various workloads,

and (3) GPU memory consumption, the used hardware resources

for the user tasks.

Many solutions have been proposed to optimize these metrics

in long-context LLM inference. They can be classified into three

categories: (i) coupled architecture; (ii) KV cache disaggregation;

and (iii) retrieval-based sparse attention. vLLM [42], SGLang [69]

and HuggingFace transformers [61] are the most widely-used LLM

inference systems in (i) coupled architecture. LLM model computa-

tion and KV cachemanagement are tightly coupled in these systems.

These systems achieve high generation quality as they use a full

attention mechanism. Mooncake [51] and LMCache [15, 46] are

representative LLM inference systems in (ii) KV cache disaggre-

gation. They store the KV cache of contexts in external storage

and reuse them among different LLM inference instances. Thus,

the inference latency of these systems is improved as it reuses

the KV cache and reduces the expensive computations (e.g., inner

product and softmax). Recently, retrieval-based sparse attention

solutions have been proposed (e.g., InfLLM [63] and RetrievalAt-

tention [45]) to alleviate the large GPU memory consumption of

these systems in both (i) and (ii). The core idea behind them is the

sparse attention mechanism, i.e., only a subset of critical key and

value tokens are selected to perform the attention computation.

Unfortunately, existing systems cannot simultaneously optimize

the three aforementioned performance metrics, as we will elaborate

in Section 3.

At AlayaDB.AI, we designed an LLM-native vector database

AlayaDB to overcome the limitations of existing LLM inference

systems/solutions and enable efficient and effective long-context

inference in LLM era. Specifically, forModel as a Service (MaaS) [38]

providers, the SLOs of different kinds of workloads indicate their

requirements for the inference latency. Thus, the core challenge of

AlayaDB is solving a bi-objective optimization problem, i.e., meet
the SLOs of different workloads by consuming less GPU memory and
offering higher generation quality simultaneously. The core idea of
AlayaDB is to decouple both KV cache and attention computation

and to encapsulate them into a monolithic vector database. The

major benefits of the novel disaggregation level are three-fold.

• Lightweight LLM Inference System. The cache management

and attention computation can be separated from the LLM in-

ference engine, which lightens its burden.

• Interface Simplification. It simplifies the interface between

LLM inference engine and KV cache service by only returning

the attention result, instead of the KV cache content.

• Co-optimization Opportunity. It sheds light on co-optimizing

attention computation and KV cache management in a mono-

lithic vector database together.

At a high level, AlayaDB’s role in LLM inference is comparable

to the role of traditional databases [21, 30, 40, 47, 53, 57] in web

applications. Specifically, the LLM application developers only need

to pay attention to the logic of their applications while AlayaDB

offers efficient long-context management from their developed

LLM applications. This is analogous to web application developers

focusing on the logic of their applications and leaving efficient data

management to a traditional relational database.

To achieve the above vision, there are three design goals of

AlayaDB: (i) ease-to-use, (ii) high generation quality, and (iii) good

efficiency. AlayaDB employs a novel system architecture and in-

troduces end-to-end optimizations. Firstly, it provides simple-yet-

powerful abstractions and APIs, which are compatible with the soft-

ware ecosystem of LLMs. Secondly, it handles sparse attention com-

putation as a vector search query. To improve the generation quality

and reduce the memory consumption simultaneously, AlayaDB de-

fines a novel query type, i.e., dynamic inner product range query

(DIPR), which overcomes the limitations of the traditional top-𝑘

query. To accelerate query processing, AlayaDB includes a native

query optimizer, which selects the best execution plan for efficient

vector search. Last but not least, a suite of optimization techniques

(from algorithm-side to index-side, from computation to storage)

has been employed in AlayaDB.

Compared to existing LLM inference systems, AlayaDB enjoys

low latency, high generation quality, and low resource consumption

at the same time from long-context inference. Our experience shows

that AlayaDB greatly lowers the cost of hardware resources for

handling long contexts and lightens the labor for optimizing the

LLM infrastructure. AlayaDB has already been used to support

several online LLM services including chatting apps and knowledge-

base QA services in our industry partners.

To sum up, the technical contributions of AlayaDB are as follows.

• Novel Decoupling Level for LLM Inference Systems: We

classify existing LLM inference solutions into three categories

and analyze their limitations to handle the challenges of long-

context LLM inference. Then, we decouple the KV cache and

attention computation from the LLM inference system and en-

capsulate them into a novel vector database system.

• Dynamic Vector Search Query for Sparse Attention: We

analyze the internal characteristics of sparse attention in various

LLM benchmarks and real-world applications, then propose a

novel dynamic vector search query, i.e., Dynamic Inner Product

Range (DIPR), to capture the dynamic nature of sparse attention,

which overcomes the limitation of traditional top-𝑘 query.

• AlayaDB System Architecture and Implementation: We

architect and implement AlayaDB for efficient and effective long-

context inference. It consists of user interface, query processing

engine, and vector storage engine. AlayaDB has been used in

several LLM applications by our industry partners. To the best

of our knowledge, it is the first vector database natively built for

LLM inference.

• Extensive Evaluation: We conduct in-depth evaluation of

AlayaDB. The results show that it is able to reduce resource

consumption and offer better generation quality while guaran-

teeing the SLOs for various LLM workloads.

The remainder of the paper is organized as follows. Section 2 in-

troduces the LLM inference procedure; Sections 3 and 4 present the

motivation, design goals and architecture of AlayaDB; Sections 5,

6, and 7 describe AlayaDB’s components; Section 8 elaborates two

use cases of AlayaDB; Section 9 presents the experimental study

results and Section 10 concludes this work.

AlayaDB SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

KV Cache

Tokenization and Embedding

Transformer

Language Model Head
" database" : 98.69%
" **" : 1.24%
" system" : 0.06%
" fundamental": 0.002%

Context: What is a database system? A

Layer 1

Multi-head
self-attention

Feed-forward
Neural Network

Layer 2

Multi-head
self-attention

Feed-forward
Neural Network

Layer N

Multi-head
self-attention

Feed-forward
Neural Network

…

Prompt: What is a database system?

A database system is a software
system that allows users to […]Response:

Trained Transformer LLM

𝑸𝟏 𝑲𝟏 𝑽𝟏

Attention Head #1

𝑸𝟐 𝑲𝟐 𝑽𝟐

Attention Head #2

𝑸𝟑𝟐 𝑲𝟑𝟐 𝑽𝟑𝟐

Attention Head #32

…

Split the given input X into heads

Combine information from all heads Query matrix 𝑸 Key matrix 𝑲 Value matrix 𝑽

𝒒𝑖

𝒌1

𝒌𝒋

𝒌𝒊

…

…

𝑧𝑖1

𝑧𝑖𝑗

𝑧𝑖𝑖

…

…

so
ft

m
a
x

𝑎𝑖1

𝑎𝑖𝑗

𝑎𝑖𝑖

…

…

𝒗1

𝒗𝒋

𝒗𝒊

𝑜𝒊

(a) LLM service illustration

(d) The self-attention calculation

(b) The LLM inference procedure

(c) The multi-head self-attention mechanism

Figure 1: The concepts and illustrations of LLM inference
2 LLM Inference
A large language model (LLM) is a deep neural language model

with billions of parameters. The decoder-only transformer is the

most prevalent architecture in LLMs, such as GPT [4], Llama [56],

and Qwen [41]. Given a well-trained LLMmodel, the LLM inference

generates the text in response to the user input prompt, as shown

in Figure 1(a). Actually, it generates the tokens in response text one

by one. Each token generation is a forward pass of the language

model. The generated token will be appended to the end of the input

prompt to form the new context. The context is used to generate

the next token by following the same forward pass of the language

model. The generation procedure terminates when a special token

<eot> (end of text) is generated or the generated text reaches the

predefined maximum length.

Figure 1(b) depicts the major components in the LLM inference

procedure. For the input context of LLM, it first breaks down the

text into small chunks (i.e., tokens), then turns tokens into numeric

representations to capture the meaning via the tokenization and

embedding modules. The embeddings of the context are the input

of the transformer model, which consists of a stack of transformer

layers that do all the processing. The output of the transformer

is probability scores for what the most likely next token is via

the language modeling head. Transformer LLMs include a stack of

transformer layers, e.g., Llama 3.1 has 32 layers. Each transformer

layer processes its inputs and passes the results to the next layer.

For each transformer layer, it has two successive modules: (i) self-

attention module, and (ii) feed-forward neural network. The feed-

forward neural network emphasizes the important features to make

the output more informative.

We next elaborate the core of transformer LLM, i.e., self-attention

mechanism, via the illustrated Figures 1(c) and (d). In general, the

self-attention mechanism involves two major steps: (i) measuring

how relevant each of the previous context tokens is to the current

token being processed; and (ii) combining the information from

them into a single output vector. A well-trained LLM has three pro-

jection matrices, i.e., a query projection matrix𝑾𝑄 , a key projection
matrix𝑾𝐾 and a value projection matrix𝑾𝑉 , which are used to

calculate the attention. In particular, the self-attention mechanism

starts by multiplying the input matrix 𝑿 ∈ R𝑛×𝑑 , where 𝑛 is the

number of input vectors and 𝑑 is the dimensionality of the embed-

ding vector of each token, by the projection matrices to create three

new matrices, i.e., query matrix 𝑸 , key matrix 𝑲 and value matrix

𝑽 , as shown in Figure 1(c). These three matrices are the information

of the input tokens in three different spaces, which are used to

calculate the attention. In recent transformer LLMs (e.g., Llama

3.1), multi-query and multi-head self-attention mechanisms are

employed to improve the scalability of larger models. For simplicity,

we utilize one self-attention head for illustration in Figure 1(d) as

every head of multi-head attention has a distinct version of matrices

of queries, keys and values, see Figure 1(c).

𝑧𝑖 𝑗 =
𝒒𝑖 · 𝒌𝑇𝑗√

𝑑
; 𝑎𝑖 𝑗 = softmax(𝑧𝑖 𝑗); 𝒐𝑖 =

𝑖∑︁
𝑠=1

𝑎𝑖𝑠 · 𝒗𝑠 (1)

As shown in Figure 1(d), to generate the 𝑖 + 1-th token 𝑡𝑖+1, the
self-attention mechanism in each head computes the inner product

between the query vector 𝒒𝑖 ∈ R1×𝑑
and the key vector of the past

tokens 𝒌 𝑗 where 𝑗 ∈ [1, 𝑖]. The computed product is scaled by

√
𝑑

and normalized via a Softmax function to derive the attention score

𝑎𝑖 𝑗 . These attention scores multiply with the value vectors 𝒗𝑠 in
value matrix 𝑽 to compute the output 𝒐𝑖 , see Equation (1).

LLM Inference Phases. In LLM services, the LLM inference pro-

cedure of a prompt can be decomposed into two phases: prefill

phase and decode phase. Specifically, in the prefill phase the LLM

processes all the input tokens in user prompts and generates the

first output token. The service level objective (SLO) of the prefill

phase in LLM service is its duration, i.e., Time-To-First-Token (TTFT).
In the decode phase the LLM sequentially generates the answers.

This phase completes when an end-of-sequence token <eot> is gen-
erated or when the context reaches a specified maximum length.

The SLO in the decode phase is Time-Per-Output-Token (TPOT).

KV Cache. Recall that the last generated token is appended to the

previous context and then input into the LLM for the next token

generation. In particular, the new context does another forward pass

of themodel. Obviously, the performance of the decode phase can be

significantly improved by caching the key and value matrices of the

previous context (see KV cache in Figure 1(d)) as they do not need

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yangshen Deng et al.

to be recomputed. The KV cache is one of the core components in

the self-attention mechanism which is widely used in recent LLMs

and offers significant speedup of the decode phase.

Sparse Attention. The attention calculation in Equation (1) is

the computationally expensive part of LLM inference. To make

matters worse, the key and value matrices consume large GPU

memory space. The sparse attention mechanism has been proposed

to improve the efficiency of the attention calculation and reduce

the GPU memory consumption during the LLM inference. The

intuition of sparse attention is that only a small proportion of to-

kens, not all tokens in previous context, dominates the generation

quality/accuracy [45]. For example, only the key vectors and value

vectors in KV cache with red rectangles in Figure 1(d) are critical

vectors for the high-quality token generation. The computation cost

of the attention calculation is significantly reduced as the sparse

attention only calculates a fixed size of keys (resp. values) in key

matrix 𝑲 (resp. value matrix 𝑽), instead of all keys and values in

both key and value matrices, see Equation (1). Key vectors with

high inner product scores relative to the query vector are consid-

ered important, as they have high attention scores, significantly

contributing to the final output.

3 Motivation of AlayaDB
The context length of an LLM request becomes very large with the

rapid development of LLM applications. For example, users may

ask LLM questions about long documents, including understand-

ing academic papers [8], getting legal assistance from law docu-

ments [22, 35], or analyzing financial documents [33]. Chat applica-

tions [4, 6, 14] utilize the long chat log to produce better responses

for users. The AI programming assistants leverage all code in the

project to accurately generate code or identify bugs/errors [5, 11].

The long-context LLM inference is extremely expensive as its

self-attention mechanism incurs high memory consumption and

numerous computation operations. In particular, it requires 𝑂 (𝑛)
memory to store the KV cache, where 𝑛 is the length of the long

context. The compute complexity for the prefill phase is 𝑂 (𝑛2) due
to the self-attention computation in Equation (1) that applies to

each input token. Thus, the TTFT of prefill phase is several minutes

to tens of minutes when the context length is quite large. For the

decode phase, it needs 𝑂 (𝑛) for each token generation. In practice,

it takes about 141.38 GB memory and 6 minutes to answer a ques-

tion about the book “Database System Concepts, 7th Edition” [52]
(495.5K tokens), with a bfloat16 version Llama-3-8B model [13] on

2 NVIDIA A800 GPUs (each has 80 GB memory). To reduce the

memory consumption and computation cost of long context LLM

inference, several research studies have been proposed to reuse

the KV cache of the long context and use them to serve different

requests from the users. For example, the users may ask various

questions about the same book “Database System Concepts”. Thus,
the KV cache of this book can be reused to answer these different

questions. The reused KV cache reduces the latency of TTFT in

prefill phase significantly, and it becomes a de facto standard in

LLM inference systems. However, the performance of long-context

LLM inference still has a lot of room for improvement. We next

analyze the existing LLM inference systems/techniques in four di-

mensions: (i) GPU memory consumption, (ii) inference latency, (iii)

generation quality, and (iv) solution usability.

Table 1: LLM inference solutions analysis
Existing GPU memory Inference Generation Solution
solution consumption latency quality usability

① Large High Good Good

② Large Medium Good Medium

③ Small — Medium Bad

AlayaDB Small Low Good Good

Inference engine Inference engine

Context
KV cache store

Context

LLM Model

Attention
output

Context

Attention

LLM Model
output

Context
KV cache

Sparse context

Sparse attention

LLM Model
output

retrieval

Inference engine

Context
AlayaDB

Sparse attention

LLM Model

output

retrieval

Inference engine

(a) Coupled
architecture

(b) KV cache
disaggregation

(c) Retrieval-based
sparse attention

(d) AlayaDB
(ours)

Figure 2: Summary of LLM inference solutions
3.1 Analysis of Existing Solutions
In this section, we classify existing work into three categories: ①

coupled architecture, ② KV cache disaggregation, and ③ Retrieval-

based sparse attention mechanism. We introduce the core idea of

each category and analyze the characteristics of them in detail.

Table 1 summarizes the analyzed results of existing solutions.

① Coupled Architecture. It is the widely-used LLM inference

system architecture in industry, e.g., vLLM [42], SGLang [69], and

transformers [61]. The core idea of the coupled architecture is the

LLM model computation and KV cache management are tightly

coupled and it processes the user request in a holistic manner, as

shown in Figure 2(a). It offers good usability with a simple user

interface and high generation quality. However, it fails to handle

long context. The major reasons are: (i) the large GPU memory

consumption for KV cache and (ii) the high TTFT in prefill phase

as it reuses the KV cache in a coarse manner, e.g., vLLM employs

LRU policy to maintain the KV cache in limited GPU memory.

② KV Cache Disaggregation. As depicted in Figure 2(b), several

systems decouple the KV cache into a separate storage service

and manage it in a stateful way. For example, LMCache [15] and

Mooncake [51] store the KV cache of a long context in external

cheap storage (e.g., CPU memory, disk or remote memory) after its

prefill phase such that the KV cache can be reused by everyone in

the future as it only needs to be loaded into the inference engine.

The inference latency of the KV cache disaggregation solutions

is slightly lower than the coupled architecture as it reduces the

TTFT of prefill phase by reusing KV cache better. The generation

quality of it is the same as the coupled solution as both employ full

attention mechanism. However, it is not easy to use, as it involves

a lot of intrusive modifications (i.e., lots of engineering work) to

the inference engine. Moreover, the KV cache disaggregation still

consumes a large GPU memory during the decoding stage.

③ Retrieval-based Sparse Attention. Recently, InfLLM [63] and

RetrievalAttention [45] use the sparse attention mechanism to alle-

viate the high GPU memory consumption of these systems in both

① and ②. In particular, they only retrieve a small subset of keys and

values from offloaded KV cache for attention computation, see Fig-

ure 2(c). Although these retrieval-based solutions can significantly

reduce GPU memory consumption, almost all (if not all) of them

are not easy to use as (i) the retrieval algorithm is hard-coded in

the underlying specific LLM model and cannot be directly used on

AlayaDB SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

other LLM models and (ii) they lack the ability to manage and reuse

the long contexts among different requests and inference engines.

Moreover, they trade off between memory consumption/inference

latency and generation quality. In particular, the generation quality

of these methods is determined by the retrieved critical keys and

values. However, it is challenging to retrieve all the critical keys

and values efficiently. Existing work assumes that the number of

critical vectors is fixed (i.e., 𝑘) and then retrieves top-𝑘 critical keys

and values from the offloaded KV cache. This static method cannot

achieve the good generation quality of ① and ②, as we will elabo-

rate in Section 6. Regarding inference latency, the retrieval-based

sparse attention methods introduce extra overhead to identify the

critical key and value vectors. However, they gains benefits during

the attention computation as only the selected critical keys and

values will be used. According to our internal experimental evalua-

tion, there is no clear winner between the extra overhead and the

reduced attention computation. Thus, we use ‘—’ in the inference

latency column of ③, see Table 1.

3.2 Design Goals of AlayaDB
Motivated by the above limitations, we propose a novel architecture

for efficient and effective long-context LLM inference by decoupling

both the KV cache and sparse attention computation from the

LLM inference engine. In particular, we architect a vector database

AlayaDB to manage the offloaded KV cache and compute the sparse

attention for LLM inference, as illustrated in Figure 2(d). The design

goals of AlayaDB are as follows.

G1: Ease-of-use. The first design goal of AlayaDB for long-context

LLM inference engine is ease-of-use. Thus, the user interface ab-

straction of AlayaDB should be simple and compatible with LLM

inference engines. With these abstractions, the LLM developers

could use AlayaDB easily for efficient and effective inference in

their LLM applications, e.g., analogue to how web developers use

traditional database systems in their web applications.

G2: High Quality. The second design goal of AlayaDB for long-

context LLM inference engines is to provide high generation quality.

As mentioned above, the generation quality is determined by the

quality of retrieved critical keys and values. Thus, AlayaDB should

offer the capability to identify the critical tokens.

G3: Good Efficiency. The third design goal of AlayaDB for long-

context LLM inference engine is good efficiency. Specifically, AlayaDB

should achieve higher generation quality and lower memory con-

sumption as much as possible for user-specified SLOs.

We are aware that many vector database systems/techniques

have been proposed [1, 18, 19, 24, 27, 34, 39, 54, 59, 60, 62], both in

academia and industry. However, to the best of our knowledge, none

of them are natively designed to support efficient and effective long-

context LLM inference. In subsequent, we introduce the architecture

and key components of AlayaDB. As the last row in Table 1 shows,

AlayaDB incurs small memory consumption, low inference latency,

and high generation quality simultaneously.

4 System Overview of AlayaDB
Figure 3 depicts the overview of AlayaDB we built at AlayaDB.AI.
It consists of three components: (i) user interface, (ii) query pro-

cessing engine, and (iii) vector storage engine. We briefly introduce

Attention engine

Query optimizer
Query type

Top-𝑘 Filter DIPR

Buffer manager

Cached
block

Cached
block

Cached
block

Query
processing

engine

Vector
storage
engine

Index type

Flat Fine Coarse

Vector file system

Vector
block

Vector
block

Vector
block

LLM inference engines

Session

DB

Session Session Session

DB

User
interface

Figure 3: System overview of AlayaDB
each component in AlayaDB to elaborate on the designs for the

aforementioned three design goals.

User Interface. The top layer of AlayaDB is the user interface

component. It abstracts the complex attention computation and

KV cache management to offer easy-to-use APIs. Thus, LLM de-

velopers can simply leverage efficient and effective long-context

LLM inferences by invoking the abstracted APIs in AlayaDB. This

is similar to how web developers can build various applications

without worrying about the underlying database management sys-

tem. Specifically, we use two widely-used concepts DB and Session
in database community to abstract the context and request in the

LLM inference procedure. We will introduce the details in Section 5.

Query Processing Engine. The middle layer of AlayaDB is the

query processing engine, which is essential to achieve high quality

and good efficiency goals. It consists of a native attention engine

and a query optimizer. The native attention engine is designed for

efficient sparse attention computation in Equation (1). The query

optimizer is devised to identify the optimal query processing plan,

which efficiently computes the critical tokens. Unlike traditional

database query optimizers, the query optimizer in AlayaDB has two

major modules: (i) query type module, and (ii) index type module.

The query typemodule includes a set of predefined queries (e.g., top-

𝑘) that are used to retrieve the critical tokens from the KV cache.

The index type module has a set of indices that can be used to

accelerate the predefined queries. It is worth pointing out that both

query type and index type in the query optimizer are extensible in

AlayaDB. The details of this engine are presented in Section 6.

Vector Storage Engine. To further improve the efficiency (both

memory consumption and inference latency), we equippedAlayaDB

with the vector storage engine in the bottom layer. It includes a

buffer manager and a novel vector file system. A novel vector data

layout scheme is designed in the vector file system, which could be

used to improve the data access locality during query processing.

The buffer manager manages the buffered blocks of KV cache and

supports high-performance keys and values retrieval. We will show

the optimizations of the vector storage engine in Section 7.3.

5 User Interface
AlayaDB provides simple and flexible abstractions and easy-to-use

APIs for users to import context, reuse context and compute sparse
attention result for efficient and effective long-context LLM infer-

ence. Two core abstractions in AlayaDB are DB and Session. A DB
in AlayaDB manages all the contexts, including prompts, KV cache

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yangshen Deng et al.

Table 2: AlayaDB APIs
DB abstraction and provided APIs
DB.create_session(prompts) -> Session, prompts

DB.import(prompts, kv_cache)

DB.store(session)

Session abstraction and provided APIs
Session.attention(q, layer) -> o

Session.update(q, k, v, layer) -> k, v

and vector indexes, e.g., an analogue of DB instance in traditional

relational database systems, which include the schema, tables, and

data tuples. In a traditional database system, a database session is

the connection established between an application server and a data-

base server to enable communication and data retrieval. Inspired by

it, in AlayaDB, a Session connects the contexts and the running
inference requests from a user. AlayaDB provides compatible APIs

with HuggingFace transformers [61] and flash-attention [31, 32]

library, which are the de facto standards of LLM inference and

attention computation. The core APIs provided by AlayaDB are

summarized in Table 2. We briefly introduce them as follows.

• DB.create_session(prompts) takes a list of prompts as input

and returns a Session object and the truncated prompts. Given

the input prompts, it reuses the longest common prefix with the

stored contexts. The reused context is in the Session object. The
non-reused part of input prompts are the truncated prompts.

• DB.import(prompts, kv_cache) imports a list of computed

contexts to AlayaDB for further reuse. Thus, its inputs are the

prompts and KV cache of these contexts.

• DB.store(session) persists all states in a session into a reusable
context in the database. It takes the sessionwith the correspond-
ing prompts and KV cache as the input.

• Session.attention(q, layer) -> o generates the attention

results of one LLM model layer for the session. It accepts the

query vectors and the layer id as the input, and returns com-

puted attention output. This API can be used to replace the

flash-attention APIs.

• Session.update(q, k, v, layer) -> k, v updates a session
with the new inputs or generated tokens for one model layer.

This API is compatible with DynamicCache.update in hugging-

face transformers. It provides an option to return the full key

and value cache for manual management.

Example.With the above APIs, it is easy for users to import con-
text, reuse context and compute sparse attention score for efficient

and effective long-context LLM inferences upon various LLM mod-

els. Figure 4 shows an illustration example of AlayaDB with Hug-

gingFace transformers, which only changes few lines of code. In

particular, Figure 4(a) is the original code. The inference function

is the common implementation of using an LLM model (offered

by HuggingFace transformers). For a model and a list of prompts,

it creates a new DynamicCache to manage the KV cache as the

past_key_values. The prompts and past_key_value are inputs
of LLMmodel to generate the next tokens. LlamaAttention.forward
is the implementation of an attention layer in HuggingFace trans-

formers. It first updates the past_key_value with the newly gen-

erated key and value matrix, which is now a DynamicCache with
the full KV cache. Then, it invokes flash_attn_func attention op-

erator on the newly generated query matrix and the full KV cache.

from transformers.cache_utils import DynamicCache
from flash_attn import flash_attn_func

def inference(model, prompts):
past_key_values = DynamicCache()
output = model(prompts, past_key_values)
...

class LlamaAttention:
def forward(self, ...):

...
k, v = past_key_values.update(k, v, self.layer_idx)
o = flash_attn_func(q, k, v)
...

(a) Original code using flash-attention and transformers

from AlayaDB.LLM import DB

def inference(model, prompts):
session, prompts = DB.CreateSession(prompts)
past_key_values = session
output = model(prompts, past_key_values)
...

class LlamaAttention:
def forward(self, ...):

...
past_key_values.update(q, k, v, self.layer_idx)
o = past_key_values.attention(q, self.layer_idx)
...

(b) Modified code using AlayaDB with transformers

Figure 4: Using AlayaDB APIs for LLM inference

Figure 4(b) shows how to use AlayaDB APIs for the above LLM

inference procedure. From the application side, users can enjoy the

ability to manage and reuse the contexts in AlayaDB by simply

replacing DynamicCache with Session, as the pink-colored lines

show. Specifically, it calls DB.CreateSession to initialize a session
and the truncated prompts for the input prompts. The non-reusable

parts (truncated prompts) are input to the LLMmodel together with

the Session for further generation. To further leverage the native at-

tention computation from AlayaDB, users only need to modify the

LlamaAttention.forward to replace the flash-attention with the

Session.attention, see the last highlighted line in Figure 4(b).

6 Query Processing in AlayaDB
In this section, we introduce the query processing procedure in

AlayaDB. In particular, we propose a novel query type in Section 6.1,

which captures the dynamic nature of sparse attention in LLM infer-

ence. In Section 6.2, we introduce the query optimizer of AlayaDB.

6.1 Dynamic Inner Product Range Query (DIPR)
6.1.1 Limitations of Top-𝑘 Query. In sparse attention, a subset of

critical key and value vectors are retrieved to approximately com-

pute the attention output. Thus, the effectiveness of the computed

attention output is determined by the number of retrieved criti-

cal tokens. The efficiency of LLM inference also depends on the

cost to retrieve these critical tokens. Almost all (if not all) exist-

ing work [26, 36, 45, 55, 63, 64, 68] utilize top-𝑘 query for critical

token retrieval. The value of 𝑘 is a pre-defined hyper-parameter,

and it is applied to all attention heads among all layers. It means

the top-𝑘 query assumes the number of critical tokens is the same

among different tasks and different heads. However, this assumption

is probably not true in various LLM applications. We summarize

two crucial observations as follows, which contradict this assump-

tion. These observations are summarized from the user experiences

of our product’s industry customers, and we reproduce them in

widely-used LLM benchmarks to follow the DeWitt Clause.

Observation I: the number of critical tokens significantly
varies in different heads. The transformer-based LLM model

AlayaDB SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

0 4 8 12 16 20 24 28 32
Layer-head id

101

102

103

104

105

of

 c
rit

ica
l t

ok
en

s

4592.18
4648.99

Recovery ratio=90% DIPR = 110

Figure 5: The number of selected tokens in different heads
Table 3: The number 𝑘 of required tokens in different tasks

Task k proportion Task k proportion

Qasper 350 9.67% LCC 65 5.26%

Passage R. 250 2.69% HotpotQA 200 2.19%

QMSum 150 1.41% TriviaQA 20 0.24%

includes multiple layers and every layer has multiple heads. We

conduct an experiment with Llama-3-8B-Instruct-262k model [12]

on the KV retrieval dataset in ∞-Bench [67] to investigate how

many critical tokens are needed to result in a good approxima-

tion of the full attention scores. We measure the accuracy of this

approximation with the recovery ratio [45], which represents the

proportion of the total attention scores accounted for by the atten-

tion scores of the selected critical tokens. The red curve in Figure 5

shows the number of tokens needed to achieve a recovery ratio of

90% for each head (randomly sampled five heads per layer), which

significantly varies among different heads. For example, it needs

on average 42,979.85 tokens in layer 0 head 5, which is much larger

than the 53.36 tokens in layer 31 head 5.

Observation II: different tasks require different number of
critical tokens. We conducted experiments on various tasks in

LongBench [23] to explore the number of critical tokens for LLM

inference in different tasks. These tasks cover key long-text applica-

tions including single-doc QA (Qasper), synthetic tasks (Passage Re-
trieval),multi-doc QA (HotpotQA), summarization (QMSum), code
completion (LCC), and fewshot learning (TriviaQA). Table 3 lists
the number of tokens 𝑘 (resp. its proportion to the context length)

required for the top-𝑘 query based sparse attention to achieve the

same accuracy as full attention in these tasks. Obviously, the num-

ber of critical tokens varies widely across tasks, ranging from 20

(0.24%) to 350 (9.67%). For the simple tasks (e.g., TriviaQA), they
only need a few tokens as the answer can be obtained from a short

paragraph of context. In contrast, complex tasks (e.g., Qasper) re-
quire a large amount of tokens to understand the whole context

then return correct answers.

Take-away message. The nature of sparse attention is to use a

dynamic set of critical tokens to generate high-quality responses

(w.r.t. full attention) in different tasks and different heads of the

transformer-based LLM models. The traditional top-𝑘 query fails

to capture the dynamic nature of sparse attention as it uses a fixed

and static 𝑘 , which always results in either low generation quality

(i.e., retrieving too few critical tokens) or high computation cost

(i.e., retrieving too many critical tokens).

6.1.2 From Attention to DIPR. To overcome the limitation of the

traditional top-𝑘 querywith static and fixed𝑘 for different heads and

tasks, we propose Dynamic Inner-Product Range query (DIPR) to

capture the dynamic nature of sparse attention. In particular, DIPR

adaptively determines the number of critical tokens in different tasks
and heads. We first formally define the critical token considered by

DIPR in Definition 1.

Definition 1 (Critical token). Give the definition of attention
score in Equation (1), considering all key vectors in the key matrix
𝑲 = [𝒌1, · · · , 𝒌𝑛], the key 𝒌 𝑗 is a critical token for query vector 𝒒𝑖
if and only if 𝑎𝑖 𝑗 ≥ 𝛼 × max𝑠∈[1,𝑛] (𝑎𝑖𝑠), where 𝛼 is a proportion
threshold and ranges in [0, 1].

The intuition of DIPR query is finding all tokens which are

larger than a given proportion 𝛼 of the token with maximum inner

product as all these tokens are critical. We next transform the

critical token in Definition 1 to an inner product-based version in

Definition 2. Theorem 1 guarantees the correctness of the definition

transformation. Interestingly, Definition 2 means the DIPR query

explicitly considers the attention computation in Equation (1).

Definition 2 (Inner Product-based Critical token). Con-
sidering all key vectors in the key matrix 𝑲 = [𝒌1, · · · , 𝒌𝑛], the key
𝒌 𝑗 is a critical token for query vector 𝒒𝑖 if and only if 𝒒𝑖 · 𝒌𝑇𝑗 ≥
max𝑠∈[1,𝑛] (𝒒𝑖 · 𝒌𝑇𝑠) − 𝛽,where 𝛽 = −

√
𝑑 × 𝑙𝑛(𝛼) .

Theorem 1. The critical token in Definition 1 is equivalent to the
inner product-based critical token in Definition 2.

Proof.

𝑎𝑖 𝑗 ≥ 𝛼 × max

𝑠∈ [1,𝑛]
(𝑎𝑖𝑠) ⇔

exp(𝑧𝑖 𝑗)∑𝑛
𝑡=1 exp(𝑧𝑖𝑡)

≥ 𝛼 × max

𝑠∈ [1,𝑛]

(
exp(𝑧𝑖𝑠)∑𝑛
𝑡=1 exp(𝑧𝑖𝑡)

)
⇔ exp(𝑧𝑖 𝑗) ≥ 𝛼 × max

𝑠∈ [1,𝑛]
(exp(𝑧𝑖𝑠)) ⇔ 𝑧𝑖 𝑗 ≥ ln(𝛼) + max

𝑠∈ [1,𝑛]
(𝑧𝑖𝑠)

⇔ 𝒒𝑖 · 𝒌𝑇
𝑗 ≥
√
𝑑 × ln(𝛼) + max

𝑠∈ [1,𝑛]
(𝒒𝑖 · 𝒌𝑇

𝑠)

The proof completes by setting 𝛽 as −
√
𝑑 × 𝑙𝑛 (𝛼) . □

Last, we formally define the novel DIPR query in Definition 3.

Definition 3 (Dynamic Inner-Product RangeQuery, DIPR(𝒒, 𝛽)).
Given a key matrix 𝑲 = [𝒌1, · · · , 𝒌𝑛], a query vector 𝒒𝑖 and a param-
eter 𝛽 ≥ 0, the DIPR query returns a subset 𝒄𝑲 of 𝑲 , which includes
all inner product-based critical tokens.

The advantages of our novel DIPR query are three-fold: (i) For

a given 𝛽 , different numbers of critical tokens will be retrieved by

different tasks and heads in DIPR query. Thus, it explicitly considers

the dynamic nature of sparse attention; (ii) the input parameter 𝛽

of DIPR query directly considers the critical tokens by the attention

score of every key, however, the top-𝑘 query utilizes the absolute

rank of every key’s attention score; and (iii) the core computation

of DIPR is the inner product 𝒒𝑖 · 𝒌𝑇𝑗 , which does not introduce

extra overhead and the optimizations for inner product-based top-𝑘

query can be directly adopted. We demonstrate the effectiveness

of our novel DIRP query by the experiments in Figures 5 and 6. In

particular, the blue curve in Figure 5 shows the number of retrieved

critical tokens of DIPR query by setting 𝛽 to 110, which is very

close to the number of tokens required to achieve 90% recovery

ratio. In Figure 6, we present the obtained results by varying 𝛽 and

𝑘 in DIPR query and top-𝑘 query for Passage R. and LCC tasks,

respectively. It confirms the DIPR query achieves higher accuracy

with fewer retrieved tokens when compared with top-𝑘 query.

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yangshen Deng et al.

0 50 100 150 200 250
of critical tokens

80

90

Ac
cu

ra
cy

DIPR
Top-k

(a) Passage R.

10 25 40 55 70
of critical tokens

56

57

58

59

Ac
cu

ra
cy DIPR

Top-k

(b) LCC

Figure 6: The number of critical tokens in different tasks

6.1.3 DIPR Query Processing. The top-𝑘 query processing algo-

rithms efficiently return a sized-𝑘 set of critical tokens for every

query vector by exploiting widely used graph indices on key vec-

tors, e.g., HNSW [48], NSG [37] and RoarGraph [28]. However, they

cannot be directly used to process DIPR query as DIPR query re-

turns a variable length of critical tokens w.r.t. the maximum inner

product value of the query 𝒒𝑖 and key matrix 𝑲 for different tasks

and different heads. In this section, we devise the first approximate

DIPR query processing algorithm DIPRS. There are two principles

of DIPRS algorithm design: (i) it should explore more points to find

the larger inner product value quickly; and (ii) it should reduce

non-critical point explorations.

Algorithm 1 shows the pseudocode of the DIPRS algorithm,

which follows the above two principles. Specifically, it utilizes the

widely used graph-based indices as the fundamental building block

as they offer high recall and good efficiency for inner product-based

vector similarity search. Given an input 𝛽 , the number of returned

tokens in the critical token set 𝒄𝑲 is dynamic and unknown in ad-

vance, until the token with maximum inner product value is found.

The core ideas of DIPRS algorithm are (1) maintaining an unordered

candidate list with variable capacity, and (2) progressively reduc-

ing the search space with the best-so-far inner product value. The

subroutine tryAppend (Line 10) decides whether the given point 𝒌
should be appended into candidate list or not.

We next briefly present how Algorithm 1 achieves both above

intuitions with the illustration example in Figure 7. To achieve (i),

we set a capacity threshold 𝑙0. When the list capacity is lower than

𝑙0, it explores all points without pruning (see Line 13). As shown in

Figure 7(a), 2 is added to the list even though it is not critical. For

(ii), after reaching the capacity threshold, it does not append the

non-critical points to the list to reduce the search space. Figures 7(b)

and (c) show that 3 is pruned and 7 is appended w.r.t. the current

maximum inner product value, respectively.

6.2 Query Optimizer in AlayaDB
Except for the traditional top-𝑘 query and our novel proposed DIPR

query, we believe other auxiliary queries can be defined to achieve

sparse attention, i.e., retrieving a subset of critical keys and values

for high-quality generation. However, the processing performance

of these queries significantly varies among different hardware set-

tings and workload characteristics. Thus, it is crucial to provide

a query optimizer in AlayaDB, which assists the LLM application

developer in choosing the best query type with its underlying index

structure. In AlayaDB, we consider three query types (e.g., top-𝑘 ,

DIPR and filter query) and three index types (e.g., coarse-grained

index, fine-grained index, and flat index). Interestingly, both query

Algorithm 1: DIPRS(𝐺 , 𝒒, 𝒌0, 𝑙0, 𝛽)
Input: Graph𝐺 , query 𝒒, start key 𝒌0, capacity threshold 𝑙0, and 𝛽
Output: Critical token set 𝒄𝑲

1 Initialize a list𝐶 with start key vector 𝒌0

2 𝑖 ← 0

3 while 𝑖 < 𝐶.capacity() do
4 𝒄𝑖 ← the (𝑖 + 1)-th key vector in𝐶

5 𝑖 ← 𝑖 + 1
6 foreach unvisited neighbor 𝒌 of 𝒄𝑖 in𝐺 do
7 tryAppend(𝒒,𝒌, 𝛽,𝐶, 𝑙0)
8 �̂� ← the closest point to 𝒒 in𝐶

9 return 𝒄𝑲 ← {𝒄 |𝒄 ∈ 𝐶, 𝒒 · 𝒄𝑇 ≥ 𝒒 · �̂�𝑇 − 𝛽 }
10 Procedure tryAppend(𝒒,𝒌, 𝛽,𝐶, 𝑙0) :
11 �̂� ← the closest point to 𝒒 in𝐶

12 Mark 𝒌 as visited

13 if 𝐶.capacity() ≤ 𝑙0 or 𝒒 · 𝒌𝑇 ≥ 𝒒 · �̂�𝑇 − 𝛽 then
14 𝐶 .append(𝒌)

8
6

2

8
6

2

7

Appended

8
6

2
Not append

3

Appended

Critical Non-critical

(a) |𝐶 | ≤ 𝑙0 (b) Point pruning (c) 𝒒 · 𝒌𝑇 ≥ 𝒒 · 𝒄𝑇 − 𝛽

Figure 7: Three cases of tryAppend in DIPRS

and index types can be extended in AlayaDB for efficient and effec-

tive sparse attention. We next introduce the core idea of each index

type and analyze their characteristics in Table 4.

• Coarse-grained index. It groups the adjacent tokens into blocks,
where each block is represented by several vectors. It only com-

putes the inner products between query and representative vec-

tors during the retrieval and selects the critical blocks for atten-

tion computation. This kind of algorithms includes InfLLM [63],

Quest [55] and PQCache [66]. These methods usually require a

large GPU memory to cache the blocks and they can provide a

very low latency for LLM inference.

• Fine-grained index. It builds the traditional vector search in-

dexes on the key-level, e.g., indexing all key vectors by a graph

(a.k.a., graph indices). It quickly and accurately locates a small

number of critical tokens in the index, which can be efficiently

computed on CPU. However, due to the expensive random mem-

ory access during index traversal, it can be slow when the num-

ber of used critical tokens is large, e.g., 𝑘 is large in top-𝑘 queries.

• Flat index. It scans all the keys to find the critical tokens on

CPU. Compared to fine-grained indices, it is less efficient when

the number of critical tokens are small due to redundant scans.

However, it can be more efficient when the number of critical

tokens is large due to the sequential memory access.

Inspired by the rule-based query optimizer in database systems,

AlayaDB implements a unified and extensible optimizer to select

an optimized query plan (including specified query type and index

type) for attention computation. The workflow of the rule-based

query optimizer in AlayaDB is shown in Figure 8. It identifies the

context length at first. Query to the short contexts will be processed

directly with full attention. For the long contexts, if the context

involves partial reuse, an attribute filtering predicate containing

AlayaDB SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Table 4: Characteristics of index types

Index
type

Supported
query type

GPU memory
comsumption

Latency
small 𝑘

Latency
large 𝑘

Coarse Top-𝑘 , Filter Large Low Low

Fine Top-𝑘 , Filter, DIPR Small Low High

Flat Top-𝑘 , Filter, DIPR Small Medium Medium

Context
length

Full A�en�on
short

Par�al
reused

long

GPU memory
budgetno

yes
+ A�ribute
filtering

+ TopK + Coarse
high

Layer id
low

+ DIPR + Flat

=1
+ DIPR + Fine

>1

Figure 8: Rule-based query optimizer in AlayaDB

the length of the reused prefix is applied to the query, as we will

introduce in Section 7.1. Then the optimizer identifies GPUmemory

budget, which is set to the available GPU memory by default and

can be manually set by users. If the budget is enough, the query

will be processed as top-𝑘 queries with coarse-grained indices, i.e.,

InfLLM [63] in AlayaDB. If the GPU memory budget is limited, the

optimizer will choose DIPR query and select the index type based on

the layer id. From production environments of LLM inference and

experimental evaluation benchmarks (see Figure 5), we observed

that the first layer requires a large number of tokens to maintain

the generation quality. Thus, the optimizer of AlayaDB chooses

flat indices for the first layer and uses graph-based DIPRS for the

other layers. It is still an open problem in optimizing the sparse

attention with different query types and index types. However,

query optimization is widely studied in our database community,

we hope the researchers in our community can solve it together.

7 Performance Optimization in AlayaDB
7.1 Query Processing Optimization

Window Caching Enhanced DIPR.Window caching retains a

window of initial and last tokens during LLM inference, which is

a standard technique in existing sparse attention algorithms [29,

43, 45, 63, 65]. The intuition of window cache is that those tokens

usually contribute large attention weights. AlayaDB adopts the

window cache mechanism and caches the window in GPU memory.

Interestingly, the cached window can be further utilized to further

enhance the quality of DIPR query results. Recall that the core

challenge of DIPR queries is to correctly identify the key vector

with the maximum inner product value. Interestingly, our engi-

neers observed that the key vector with maximum inner product

value has a large probability in the cached windows. For example,

for dataset math_find on the model Llama-3-8B-Instruct-262k, a
window of 32 (initial) + 32 (last) tokens can cover almost 98% of the

key vectors with the maximum inner product values. Motivated

by this observation, we enhance DIPRS by taking the maximum

inner product values in both the candidate list and the cached win-

dow into consideration. It improves the performance of DIPRS by

reducing the number of unnecessary tokens explored.

Flexible Context Reuse By Attribute Filtering. When a new

session containing a full context is stored in AlayaDB, its vector

index can be reused for efficient generation via sparse attention.

However, when a new session contains only a partial prefix of a

stored context, the index cannot be reused. This is a common case

in practice. For example, a stored context contains a book and user

A’s conversation, while the incoming session of user B contains the

same book but with new questions. The new session only reuses

the book, which is a partial prefix of the stored context. In these

cases, the session has to either be processed with expensive full

attention or wait until a new index is built on the partial prefix.

To address the limitations, AlayaDB supports flexible context reuse,
which enables reusing the index of a stored context for efficient

LLM inference when only a prefix of the stored context is reused.

The challenge is to retrieve critical tokens only among the subset

of tokens that are reused during searching within the full index.

Interestingly, the problem can be transformed into a well-studied

problem in the database community called attribute filtering query
by considering the token id as an attribute. The naive approach

of attribute filtering is pruning those nodes that do not satisfy the

attribute predicate. However, this approach severely disrupts the

connectivity of the graph index structure and leads to a significant

decline in accuracy. We improve DIPRS with a similar idea to [49]

to solve this problem. During each node exploration, the algorithm

traverses both its neighbors and its neighbors’ neighbors (2-hop

neighbors). Subsequently, the candidates that do not meet the fil-

tering predicate are excluded. This strategy enables AlayaDB to

achieve a broader search scope during the retrieval process, which

enjoys high efficiency and good accuracy.

7.2 Computation Optimization

Index Construction Acceleration. In AlayaDB, the index of a

long context is constructedwhen a context is imported by DB.store()
and DB.import(). Although this procedure is usually offline, e.g.,

the book is pre-loaded before the service is launched, the cost is still

not negligible. We first analyze the overhead of index construction

and then show how to optimize it. The fine-grained index used

in AlayaDB is RoarGraph [28], a state-of-the-art index for sparse

attention [45] due to its ability to handle vector search on Out-

Of-Distribution (OOD) data. Following RetrievalAttention [45], a

RoarGraph is constructed for each query head, and the procedure

can be divided into two stages: (i) 𝒒 to 𝒌 kNN construction, which

constructs a graph that links each query vector to its exact nearest

key vectors, and (ii) connectivity enhancement, which links each

vector to its approximate nearest vectors that are produced by an

ANNS search on the graph. We observe that the overhead comes

from the large number of indices and the slow kNN construction.

We devise the following optimizations to reduce the overhead.

GQA-based index sharing: GQA is commonly used in state-of-

the-art LLMs [56] to reduce KV cache size. It splits the ℎ𝑞 query

heads into ℎ𝑘𝑣 groups, where ℎ𝑘𝑣 is the number of key-value heads

and ℎ𝑘𝑣 < ℎ𝑞 . Queries heads within the same group will query the

same key head, making one copy of KV cache able to be shared

among a query group. In AlayaDB, we share a RoarGraph among a

query group by sampling query vectors from each query head and

merging them into one RoarGraph in the stage of kNN construction.

In this way, the graph can still capture the distribution of all query

heads while enjoying a speedup of ℎ𝑞/ℎ𝑘𝑣 times by the reduction

in the number of indices. Our experiments show that index sharing

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yangshen Deng et al.

only results in ≤ 3% loss in top-𝑘 recall, and does not affect the

generation quality of end-to-end LLM inference.

GPU-based kNN construction: The kNN construction [58] can

be highly parallel, making it suitable for GPU. We directly use

the NVIDIA cuVS library [16] to accelerate its construction on

GPU. To reduce the overhead of KV cache transfer, we process one

layer at a time, which is compute-bound, and overlap it with the

asynchronous CPU-GPU transmission in a pipeline manner.

LateMaterialization for Index Updating. For each session, there
are new KV caches generated from user inputs and model outputs.

It raises a design choice about when to physically update them

into the context. A straightforward solution is inserting the new

KV cache to the existing index immediately after a new token is

generated or input by users. However, it significantly (i) increases

the TPOT by the blocked index updating, and (ii) occupies two

memory copies by maintaining a physical index for every session.

To address this problem, AlayaDB adopts a late-materialization

strategy for index updating that does not affect the SLO. By default,

the newly generated KV cache is appended to the local window for

retrieval. The session will only be materialized into a new physical

index when the DB.store()API is explicitly called. This is based on
two practical observations that the user prompt and LLMgeneration

following the long context are (i) often short and (ii) often not reused

across sessions. Therefore, there is no need to early materialize the

newly generated KV cache to the physical index in most cases.

Data-centric Attention Engine. AlayaDB is integrated with a na-

tive attention engine, which is optimized with data-centric compu-

tation. Instead of computing attention after gathering the retrieved

vectors [63, 66], AlayaDB directly applies attention to the vectors

where they reside, and then aggregates the attention results. This

data-centric mechanism can reduce the overhead of moving the

large KV cache across different computing devices. For example,

when most of the context is on CPU and a window is cached on the

GPU, partial attention of the two parts is computed independently

in parallel and aggregated into a final attention output. We use the

same algorithm as FlashAttention [32] and RetrievalAttention [45]

to compute and aggregate the partial attention outputs.

7.3 Storage Optimization
During LLM inference, AlayaDB retrieves a specific portion of

vector data from each attention head of different attention layers to

generate the next token. However, storing all the data in the limited

CPU is not practical due to the large KV cache size. To efficiently

manage and reuse these vector data, we devise a vector file system

and a purpose-built buffer manager within AlayaDB.

Vector File Systems. The vector file system in AlayaDB is built

upon SPDK (Storage Performance Development Kit) to manage

multiple vector files on disk in user space. Specifically, each vector

file stores the vectors of an attention head in a specific layer. These

stored vectors are organized into blocks, where vector indices and

vector data are stored separately in different types of blocks, and

vector index blocks are linked together in a graph structure. The

benefits of our layout are two-fold: (i) the graph-based structure

allows for quick traversal and access to related vectors, and (ii)

the vector data can be inserted or deleted without the need for

restructuring the entire file. Furthermore, the system can bypass

traditional kernel I/O paths by leveraging SPDK, which significantly

reduces latency and improves throughput.

Purpose-built Buffer Manager. AlayaDB has a purpose-built

buffer manager built upon the underlying vector file system, which

is designed to efficiently process the frequently used data in mem-

ory. It employs the eviction strategy based on the corresponding

block types. For example, blocks storing the vector indices for atten-

tion heads are more likely to be kept in memory, as these vectors are

frequently accessed during inference. In contrast, blocks storing the

vector data are only fetched once to calculate the attention score for

each token. The specific designs of it minimize redundant I/O opera-

tions by avoiding the need to retrieve them from secondary storage

repeatedly. Additionally, the buffer manager supports parallel ac-

cess, enabling efficient processing in a multi-threaded environment.

8 Use Cases of AlayaDB
AlayaDB provides easy-to-use interfaces and good performance for

long context management and inference. In this section, we present

two LLM applications to demonstrate the use cases of AlayaDB.

Financial Document Analysis. AlayaDB can be used by financial

companies to assist in their financial document analysis. These

documents are long, including financial statements, audit reports,

business plans, etc. Data analysts in the financial company leverage

domain-specific LLMs with AlayaDB to analyze a large number of

financial documents and generate summarizations for their pur-

poses, e.g., the top-10 news of Hong Kong stock market in 2024.

The cost and latency of the document analysis service are reduced.

Legal Assistant for Question Answering. Law firms can utilize

AlayaDB to enhance their intelligent legal assistant service. The

major difference between the legal assistant and other LLM applica-

tions is that answers to users’ questions must be precise and accu-

rate, e.g., comply with the rules of the government. The legal docu-

ments can be stored as context in AlayaDB. Their domain-specific

LLM answers user questions by the stored context to achieve low

costs while guaranteeing result accuracy.

9 Empirical Evaluation
In this section, we conduct experiments to evaluate the end-to-end

performance of AlayaDB in long-context LLM serving. In particular,

we aim to answer the following two questions:

• Q1: Can AlayaDB achieve low latency, high quality, and
low resource consumption at the same time for long-context
LLM serving? (Section 9.1)

• Q2: How is the effectiveness of our proposed performance
optimizations in AlayaDB? (Section 9.2)

Hardware Configuration. We conduct our experiments on a

server with one NVIDIA L20 GPU (48GB memory) and two In-

tel XEON GOLD 6542Y CPUs with 48 cores, 96 threads and 512

GB DRAM in total. We use AlayaDB together with HuggingFace

Transformers [61] to support LLM inference. We use the bfloat16

version of Llama-3-8B-Instruct-262k [12], the long context variant

of a state-of-the-art LLMmodel Llama [56] for inference. The model

has 32 layers. Each layer includes 32 query heads and 8 key value

heads. Its weights occupy 15.4 GB GPU memory during inference.

AlayaDB SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Table 5: Generation quality of different sparse attention algorithms in ∞-Bench. Each method used the number of
[initial+last]+retrieved tokens for attention computation.

Methods Setting SLO Retr.KV Retr.P Retr.N Code.D En.MC En.QA En.Sum Math.F Avg.

Full Attention — ✗ 15.8 100.0 100.0 27.4 55.9 31.0 15.1 19.1 45.6

InfLLM [128+4K]+4K tokens ✓ 25.0 100.0 100.0 28.2 39.7 18.7 15.3 23.4 43.8

StreamingLLM [128]+8K tokens ✓ 3.8 8.5 8.5 27.7 41.5 14.5 14.3 16.3 16.9

Top100 [128+512]+100 tokens ✓ 6.6 100.0 100.0 30.0 56.3 29.7 15.2 24.6 45.3

Top2000 [128+512]+2K tokens ✗ 14.6 100.0 100.0 29.7 58.1 31.2 16.0 24.3 46.7

DIPRS [128+512] tokens, 𝛽 = 50 ✓ 14.0 100.0 100.0 30.7 58.1 32.1 16.4 24.9 47.0

9.1 End-to-end Performance Evaluation
9.1.1 TPOT, Quality and GPU Memory Consumption. We compare

our proposed DIPR query (see Section 6.1) with existing sparse

attention algorithms and full attention algorithm w.r.t. Time-Per-
Output-Token (a.k.a., TPOT, the inference latency per token gen-

eration), quality, and GPU memory consumption in various LLM

inference workloads.

Tested Workloads.We adopt a widely-used long-context bench-

mark∞-Bench [67] for overall performance evaluation. Specifically,

we use 8 tasks in∞-Bench including Retr.KV, Retr.P, Retr.N, Code.D,
En.MC, En.QA, En.Sum, Math.F. The average input context length
of different tasks ranges from 43.9K to 192.6K tokens. In the experi-

ments, the index of the input context is built in advance and we only

measure the latency of each token generation (TPOT). We set the

SLO of TPOT ≤ 0.24s, which is the reading speed of human [70],

Compared Methods. We compare the following methods:

• Full Attention, which stores the KV cache of full context and

computes the full attention on GPU.

• InfLLM [63], it is a coarse-grained algorithm which selects criti-

cal tokens in blocks and computes their attention on GPU.

• StreamingLLM [65], it is an algorithm that keeps a window of

tokens in GPU memory for attention computation and simply

drops the other tokens.

• Top-𝑘 , it is a fine-grained algorithm which processes the top-𝑘

similarity search with graph-based index on CPU. We follow the

RetrievalAttention [45] to use RoarGraph [28] as the index and

align the window size. In particular, the parameter 𝑘 is set as

100 and 2000 to study the performance of difference retrieved

critical tokens in our experiments.

• DIPRS, our proposed DIPR query processing algorithm for sparse

attention. It also uses RoarGraph as the index. The window size

of DIPRS is the same as that of the top-𝑘 query.

Result Analysis. Table 5 shows the generation quality of different

methods in all 8 tasks of∞-Bench. The quality score is measured by

∞-Bench. First of all, our proposed DIPRS not only guarantees the

SLO, but also achieves the best average generation quality among

all the compared methods, as the last column in Table 5 shows.

Moreover, it is the overall winner in 7 tasks out of the 8 tested tasks.

For full attention, the SLO of TPOT is violated due to the expensive

O(𝑛) computation cost even with the KV cache in GPU memory.

Compared with full attention, DIPRS can achieve a near or even

higher quality in all tasks. The result also confirms the superiority

of DIPRS against traditional top-𝑘 query. Top-𝑘 requires retrieving

16 18 20 22
GPU memory usage (GB)

40

50

60

Qu
al

ity

16 18 20 22
GPU memory usage (GB)

20

30

Qu
al

ity

InfLLM StreamingLLM Top-100 DIPRS

(1) EN.MC (2) EN.QA

Figure 9: Generation quality and GPU memory consumption
with SLO guarantees

40K 80K 120K 160K 200K
Context length

10−1

100

101

102
TT

FT
 (s

ec
)

w/o reuse LMCache AlayaDB

40K 200K
Context length

0

2

4

6

8

Ti
m

e
(s

ec
)

LMCache
AlayaDB

LMCache

AlayaDB

Load Decode

(a) TTFT (b) Latency breakdown

Figure 10: TTFT of long context reusing

2000 tokens to achieve a similar quality to DIPRS, but fails to meet

the SLO because of retrieving too many tokens. The generation

quality of top-𝑘 = 100 is worse than DIPRS in 6 tasks. In Retr.P and

Retr.N, both DIPRS and top-𝑘 = 100 have the same performance.

To answer Q1, we perform in-depth analysis on two tasks (i.e.,

EN.MC and EN.QA) w.r.t. the generation quality and GPU mem-

ory consumption with user specified SLO. We vary the number of

cached tokens for InfLLM and StreamingLLM to investigate the

relationship of generation quality and GPU memory consumption.

For top-𝑘 = 100 and DIPRS, we use the same settings in Table 5. As

Figure 9 shows, compared to all the other methods, DIPRS achieves

the best generation quality and lowest GPU memory consumption

while guaranteeing the SLO of TPOT. Regarding the coarse-grained

methods InfLLM and StreamingLLM, a large GPU memory is re-

quired to achieve higher accuracy, which limits the throughput of

online serving and makes them impractical to run on the consumer-

grade GPU, e.g., NVIDIA GTX4090 (24GB memory). Compared to

top-𝑘 , the generation quality of DIPRS surpasses top-𝑘 due to its

ability to identify the dynamic number of critical tokens for efficient

sparse attention.

9.1.2 Time-To-First-Token: TTFT. We compare AlayaDB with the

state-of-the-art disaggregated KV cache service LMCache [15, 46]

to evaluate its ability to reduce the TTFT by efficiently reusing the

stored long context in Figure 10. LMCache stores the compressed KV

cache of the full context, and supports context reusing by loading

the KV cache into GPU. In this experiment, we store the context

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yangshen Deng et al.

40K 80K 120K 160K 200K
Context length

102

103

104

Co
ns

tru
ct

io
n

tim
e

(s
ec

)

40K 80K 120K 160K 200K
Context length

100

101

M
em

or
y

us
ag

e
(G

B)

CPU GPU GPU+share

(a) Construction time (b) Memory consumption

Figure 11: Index construction optimization

in CPU memory in advance and measure the time of decoding the

first token on this offloaded context as TTFT. Figure 10(a) depicts

the experimental results. Firstly, reusing the KV cache is faster

than recomputing the expensive prefill stage without reuse. For

example, our AlayaDB outperforms the w/o reuse by 2 to 3 orders

of magnitude, see the red and black curves in Figure 10(a). Secondly,

the TTFT of AlayaDB is 19 to 42 times faster than LMCache, see the

red and blue curves in Figure 10(a). By analyzing the breakdown

of latency of LMCache and AlayaDB in Figure 10(b), LMCache

suffers from the slow KV cache loading, including decompressing

and transferring from CPU to GPU. The loading time increases

linearly with the context length. Instead of loading the KV cache,

AlayaDB can directly decode on the offloaded KV cache with an

extremely low latency, thus, resulting to a low TTFT for context

reuse. This experiment also confirms the analyzed limitation of

the existing KV cache disaggregation architecture. In other words,

decoupling both attention computation and KV cache from the LLM

inference engine as our proposal AlayaDB is a new opportunity

for our community to develop fast and accurate LLM inference

systems, which provides a huge optimization space.

9.2 Effectiveness of Optimization Techniques
9.2.1 Index construction. We conduct an ablation study of our pro-

posed optimizations for the RoarGraph construction in Section 7.2.

In particular, we set the ratio of sampled queries for each index

to 40%, which means when building an index, the number of used

query vectors is 40% of the key vectors. Figure 11(a) shows the in-

dex construction time under different context lengths. The baseline

method follows RetrievalAttention, which builds the index on CPU

and builds one index for each query head, see the black curve. Intro-

ducing GPU to build kNN and employing CPU-GPU pipeline can

gain a speedup from 3× to 15×, see the blue curve. Then, by sharing
the index in the same query group, index construction time can be

further reduced from 12× to 62× compared to pure CPU baseline,

as the red curve shows. Moreover, index sharing also significantly

reduces memory consumption by reducing the number of indexes.

As depicted in Figure 11(b), the index size can be 4× smaller than

the GPU and CPU baseline without index sharing.

9.2.2 Filter-basedDIPRS. In Section 7.1, we introduce that AlayaDB
leverages the attribute filtering with DIPRS algorithm to support

partial context reuse. In this experiment, we study the effect of this

optimization to the generation quality and inference latency. In

particular, we conduct a micro-benchmark to evaluate the recall

and latency of filter-based DIPRS search in the case of partial con-

text reuse. We fix the reused prefix length to 40K, and range the

reuse ratio from 100% to 20% by varying the length of the stored

40K
(100%)

50K
(80%)

67K
(60%)

100K
(40%)

200K
(20%)

Index size and reuse ratio (%)

0.0

0.5

1.0

Re
ca

ll

0

1

2

3

La
te

nc
y

(m
s)

Recall Latency

Figure 12: Micro-benchmark of filter-based DIPRS

context, i.e., the index size. This micro-benchmark uses the KV

cache generated by all heads in layer 1 during the En.QA task. The

100% reuse ratio means the stored context is fully reused, in other

words, the filter-based DIPRS is the same as the original DIPRS

without attribute filtering. Figure 12 shows the measured recall

and latency. Firstly, the recall of filter-based DIPRS remains high

with different reuse ratios, which guarantees the generation quality

with partial context reuse in AlayaDB. Secondly, when searching

in a larger context with the same prefix length, the latency of filter-

based DIPRS increases only slightly . For example, the latency to

search in 200K long context is only 1.13 ms higher than it is of 40K

long context. Thus, AlayaDB guarantees the inference latency with

good generation quality when partial context reuse is enabled.

10 Conclusion
At AlayaDB.AI, we built AlayaDB for efficient and effective long-

context inference in LLM era. From the architecture perspective,

AlayaDB decouples the KV cache and attention computation from

the LLM inference systems, and encapsulates them into a novel

vector database system. It optimizes the overall performance by

co-optimizing attention computation and KV cache management

in a monolithic manner. Collaborating with the inference engine,

AlayaDB is able to guarantee the SLO while enjoying low resource

consumption and high generation quality for long-context LLM

inference. The novel architecture poses new challenges and oppor-

tunities, including (i) implementing different parallelism strategies

to enable distributed inference, (ii) supporting more LLM inference

engines like vLLM and SGLang, (iii) improving the query processing

methods (or sparse attention algorithms) and query optimizer, (iv)

leveraging various storage tiers to store the KV cache of contexts,

(v) utilizing heterogeneous hardware to accelerate the attention

computation, and (vi) designing attention-hybrid architecture for

general-purpose vector databases. We hope the researchers from

different communities (e.g., database, machine learning, system)

could tackle them together in the future.

Acknowledgments
Bo Tang was supported by National Science Foundation of China

(NSFC No. 62422206). Huan Li was supported by National Science

Foundation of China (NSFC No. 62402420). Man Lung Yiu was sup-

ported by Hong Kong Research Grants Council (GRF 152043/23E).

Kyriakos Mouratidis was supported by the Ministry of Education,

Singapore, under its Academic Research Fund Tier 2 (Award No.

MOE-T2EP20121-0002). Any opinions, findings and conclusions

or recommendations expressed in this material are those of the

authors and do not reflect the views of the Ministry of Education,

Singapore.

AlayaDB SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

References
[1] 2024. AlloyDB AI. https://cloud.google.com/alloydb/ai

[2] 2024. Amazon Kendra. https://aws.amazon.com/cn/kendra

[3] 2024. Bing. https://www.microsoft.com/en-us/bing/apis/llm

[4] 2024. ChatGPT. https://chatgpt.com

[5] 2024. Cursor. https://www.cursor.com

[6] 2024. Deepseek. https://chat.deepseek.com

[7] 2024. Deepseek Coder. https://chat.deepseek.com/coder

[8] 2024. Explainpaper. https://www.explainpaper.com/

[9] 2024. Gemini. https://gemini.google.com

[10] 2024. Generative AI in Search: Let Google do the searching for you. https://blog.

google/products/search/generative-ai-google-search-may-2024

[11] 2024. Github Copilot. https://github.com/features/copilot

[12] 2024. Gradient AI. Llama-3-8b-instruct-262k. https://huggingface.co/gradientai/

Llama-3-8B-Instruct-262k

[13] 2024. Gradient AI. Llama-3-8B-Instruct-Gradient-1048k. https://huggingface.co/

gradientai/Llama-3-8B-Instruct-Gradient-1048k

[14] 2024. Kimi. https://kimi.moonshot.cn

[15] 2024. LMCache. https://lmcache.ai/

[16] 2024. NVIDIA cuVS. https://github.com/rapidsai/cuvs

[17] 2024. Perplexity AI. https://www.perplexity.ai

[18] 2024. Pinecone. http://pinecone.io

[19] 2024. weaviate: The AI-native database for a new generation of software. http:

//weaviate.io

[20] 01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei

Zhang, Guoyin Wang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang,

Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shiming Yang,

Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng

Nie, Yanpeng Li, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu,

Zhiyuan Liu, and Zonghong Dai. 2025. Yi: Open Foundation Models by 01.AI.

arXiv:2403.04652 [cs.CL]

[21] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,

Jim Gray, Patricia P. Griffiths, W. Frank King III, Raymond A. Lorie, Paul R.

McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger, Bradford W.

Wade, and Vera Watson. 1976. System R: Relational Approach to Database

Management. TODS 1, 2 (1976), 97–137.
[22] Saleem Ayesha. 2023. LLM for Lawyers, Enrich Your Precedents with the Use of

AI. In Data Science Dojo. https://datasciencedojo.com/blog/llm-for-lawyers/

[23] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang,

Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and

Juanzi Li. 2024. LongBench: A Bilingual, Multitask Benchmark for Long Context

Understanding. In ACL. 3119–3137.
[24] Zheng Bian, Xiao Yan, Jiahao Zhang, Man Lung Yiu, and Bo Tang. 2024. QSRP:

Efficient Reverse k-Ranks Query Processing on High-Dimensional Embeddings.

In ICDE. 4614–4627.
[25] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun

Chen, Zehui Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan,

Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng

Guo, Conghui He, Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao, Zhenjiang

Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yining Li,

Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun Liu, Xiaoran Liu,

Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang Ning,

Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song,

Zifan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng

Wang, Jiaqi Wang, Jiayu Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian

Wei, Qizhen Weng, Fan Wu, Yingtong Xiong, Chao Xu, Ruiliang Xu, Hang Yan,

Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia Yu, Jing Yu, Yuhang

Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo

Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang,

Xinyue Zhang, Hui Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida

Zhou, Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao, and Dahua Lin. 2024.

InternLM2 Technical Report. arXiv:2403.17297 [cs.CL]

[26] Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne

Xiong, Yue Dong, Baobao Chang, Junjie Hu, and Wen Xiao. 2024. PyramidKV:

Dynamic KV Cache Compression based on Pyramidal Information Funneling.

arXiv:2406.02069 [cs.CL]

[27] Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, ChunWu, Szu-PoWang,

Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo Wang. 2024. SingleStore-V:

An Integrated Vector Database System in SingleStore. Proc. VLDB Endow. 17, 12
(2024), 3772–3785.

[28] Meng Chen, Kai Zhang, Zhenying He, Yinan Jing, and X. Sean Wang. 2024.

RoarGraph: A Projected Bipartite Graph for Efficient Cross-Modal Approximate

Nearest Neighbor Search. Proc. VLDB Endow. 17, 11 (2024), 2735–2749.
[29] Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang,

Niklas Nolte, Yuandong Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, and

Beidi Chen. 2024. MagicPIG: LSH Sampling for Efficient LLM Generation.

arXiv:2410.16179 [cs.CL]

[30] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,

Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,

Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.

The Snowflake Elastic Data Warehouse. In SIGMOD. 215–226.
[31] Tri Dao. 2024. FlashAttention-2: Faster Attention with Better Parallelism and

Work Partitioning. In ICLR.
[32] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.

FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.

In NIPS.
[33] Gunika Dhingra. 2023. LLMs in Finance: BloombergGPT and FinGPT — What You

Need to Know. https://12gunika.medium.com/llms-in-finance-bloomberggpt-

and-fingpt-what-you-need-to-know-2fdf3af29217

[34] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,

Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2025.

The Faiss library. arXiv:2401.08281 [cs.LG]

[35] Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Alan Huang,

Songyang Zhang, Kai Chen, Zhixin Yin, Zongwen Shen, Jidong Ge, and Vincent

Ng. 2024. LawBench: Benchmarking Legal Knowledge of Large Language Models.

In EMNLP. 7933–7962.
[36] Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. 2025. Ada-KV:

Optimizing KV Cache Eviction by Adaptive Budget Allocation for Efficient LLM

Inference. arXiv:2407.11550 [cs.CL]

[37] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474.

[38] Wensheng Gan, ShichengWan, and Philip S. Yu. 2023. Model-as-a-Service (MaaS):

A Survey. In BigData. 4636–4645.
[39] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,

Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang Qiao,

Ting Wang, Bo Tang, and Charles Xie. 2022. Manu: A Cloud Native Vector

Database Management System. Proc. VLDB Endow. 15, 12 (2022), 3548–3561.
[40] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu

Tang, Yuxing Zhou, Menglong Huang, WanWei, Cong Liu, Jian Zhang, Jianjun Li,

XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,

Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based HTAP Database. Proc. VLDB
Endow. 13, 12 (2020), 3072–3084.

[41] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu

Liu, Jiajun Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang,

An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong

Feng, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang Lin. 2024.

Qwen2.5-Coder Technical Report. arXiv:2409.12186 [cs.CL]

[42] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,

Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient

Memory Management for Large Language Model Serving with PagedAttention.

In SOSP.
[43] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli,

Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. 2024. SnapKV: LLM

Knows What You are Looking for Before Generation. In NIPS.
[44] Yiming Lin, Madelon Hulsebos, Ruiying Ma, Shreya Shankar, Sepanta Zeigham,

Aditya G. Parameswaran, and Eugene Wu. 2024. Towards Accurate and Efficient

Document Analytics with Large Language Models. arXiv:2405.04674 [cs.DB]

[45] Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang,

Qi Chen, Chengruidong Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang,

Yuqing Yang, and Lili Qiu. 2024. RetrievalAttention: Accelerating Long-Context

LLM Inference via Vector Retrieval. arXiv:2409.10516 [cs.LG]

[46] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng

Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael

Maire, Henry Hoffmann, Ari Holtzman, and Junchen Jiang. 2024. CacheGen: KV

Cache Compression and Streaming for Fast Large Language Model Serving. In

SIGCOMM. 38–56.

[47] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,

Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen

Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu,

Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for

Transactional and Analytical Workloads. In SIGMOD. 2530–2542.
[48] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. In IEEE
transactions on pattern analysis and machine intelligence. 824–836.

[49] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN: Per-

formant and Predicate-Agnostic Search Over Vector Embeddings and Structured

Data. Proc. ACM Manag. Data 2, 3 (2024), 120.
[50] Sundar Pichai and Demis Hassabis. 2024. Our next-generation model: Gemini

1.5. https://blog.google/technology/ai/google-gemini-next-generation-model-

february-2024/#context-window

[51] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin

Zheng, and Xinran Xu. 2024. Mooncake: A KVCache-centric Disaggregated

Architecture for LLM Serving. arXiv:2407.00079 [cs.DC]

https://cloud.google.com/alloydb/ai
https://aws.amazon.com/cn/kendra
https://www.microsoft.com/en-us/bing/apis/llm
https://chatgpt.com
https://www.cursor.com
https://chat.deepseek.com
https://chat.deepseek.com/coder
https://www.explainpaper.com/
https://gemini.google.com
https://blog.google/products/search/generative-ai-google-search-may-2024
https://blog.google/products/search/generative-ai-google-search-may-2024
https://github.com/features/copilot
https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://kimi.moonshot.cn
https://lmcache.ai/
https://github.com/rapidsai/cuvs
https://www.perplexity.ai
http://pinecone.io
http://weaviate.io
http://weaviate.io
https://arxiv.org/abs/2403.04652
https://datasciencedojo.com/blog/llm-for-lawyers/
https://arxiv.org/abs/2403.17297
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2410.16179
https://12gunika.medium.com/llms-in-finance-bloomberggpt-and-fingpt-what-you-need-to-know-2fdf3af29217
https://12gunika.medium.com/llms-in-finance-bloomberggpt-and-fingpt-what-you-need-to-know-2fdf3af29217
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2405.04674
https://arxiv.org/abs/2409.10516
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#context-window
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#context-window
https://arxiv.org/abs/2407.00079

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yangshen Deng et al.

[52] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System
Concepts, Seventh Edition.

[53] Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of Postgres. In

SIGMOD. 340–355.
[54] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Kr-

ishaswamy, and Harsha Vardhan Simhadri. 2019. DiskANN: fast accurate billion-

point nearest neighbor search on a single node. In NIPS.
[55] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song

Han. 2024. QUEST: Query-Aware Sparsity for Efficient Long-Context LLM

Inference. In ICML.
[56] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-

laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.

arXiv:2302.13971 [cs.CL]

[57] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz

Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations

for High Throughput Cloud-Native Relational Databases. In SIGMOD. 1041–1052.
[58] Hui Wang, Wan-Lei Zhao, Xiangxiang Zeng, and Jianye Yang. 2021. Fast k-NN

Graph Construction by GPU based NN-Descent. In CIKM. 1929–1938.

[59] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-

angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,

Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua

Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built

Vector Data Management System. In SIGMOD. 2614–2627.
[60] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and

Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards Query

Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12 (2020),
3152–3165.

[61] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,

Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,

and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language

Processing. In EMNLP Demos. 38–45.
[62] Long Xiang, Xiao Yan, Lan Lu, and Bo Tang. 2021. GAIPS: Accelerating maximum

inner product search with GPU. In SIGIR. 1920–1924.
[63] Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan

Zhang, Zhiyuan Liu, and Maosong Sun. 2024. InfLLM: Training-Free Long-

Context Extrapolation for LLMs with an Efficient Context Memory. In NIPS.
[64] Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian

Tang, Yao Fu, and Song Han. 2024. DuoAttention: Efficient Long-Context LLM

Inference with Retrieval and Streaming Heads. arXiv:2410.10819 [cs.CL]

[65] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2024.

Efficient Streaming Language Models with Attention Sinks. In ICLR.
[66] Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan

Nie, Weipeng Chen, and Bin Cui. 2025. PQCache: Product Quantization-based

KVCache for Long Context LLM Inference. arXiv:2407.12820 [cs.CL]

[67] Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao,

Xu Han, Zhen Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024. ∞Bench:

Extending Long Context Evaluation Beyond 100K Tokens. In ACL. 15262–15277.
[68] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi

Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang

Wang, and Beidi Chen. 2023. H2O: Heavy-Hitter Oracle for Efficient Generative

Inference of Large Language Models. In NIPS.
[69] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang,

Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez,

Clark W. Barrett, and Ying Sheng. 2024. SGLang: Efficient Execution of Struc-

tured Language Model Programs. In NIPS.
[70] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu,

Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating Prefill and Decoding

for Goodput-optimized Large Language Model Serving. In OSDI. 193–210.

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2410.10819
https://arxiv.org/abs/2407.12820

	Abstract
	1 Introduction
	2 LLM Inference
	3 Motivation of AlayaDB
	3.1 Analysis of Existing Solutions
	3.2 Design Goals of AlayaDB

	4 System Overview of AlayaDB
	5 User Interface
	6 Query Processing in AlayaDB
	6.1 Dynamic Inner Product Range Query (DIPR)
	6.2 Query Optimizer in AlayaDB

	7 Performance Optimization in AlayaDB
	7.1 Query Processing Optimization
	7.2 Computation Optimization
	7.3 Storage Optimization

	8 Use Cases of AlayaDB
	9 Empirical Evaluation
	9.1 End-to-end Performance Evaluation
	9.2 Effectiveness of Optimization Techniques

	10 Conclusion
	Acknowledgments
	References

