
IGP: Efficient Multi-Vector Retrieval via Proximity Graph Index
Zheng Bian

Department of Computer Science and

Engineering, Southern University of

Science and Technology

Shenzhen, China

Department of Computing, The Hong

Kong Polytechnic University

Hung Hom, Hong Kong

cszbian@comp.polyu.edu.hk

Man Lung Yiu

Department of Computing, The Hong

Kong Polytechnic University

Hung Hom, Hong Kong

csmlyiu@comp.polyu.edu.hk

Bo Tang
∗

Department of Computer Science and

Engineering, Southern University of

Science and Technology

Shenzhen, China

tangb3@sustech.edu.cn

Abstract
Neural embedding models are extensively employed in retrieval

applications, including passage retrieval, question answering, and

web search. In particular, multi-vector models (e.g., ColBERTv2),
which represent a document as multiple embedding vectors, have

been demonstrated to achieve superior retrieval quality. Neverthe-

less, these models incur significant overhead at the retrieval time

due to the massive amount of embedding vectors.

Several promising proposals (e.g., PLAID, DESSERT, EMVB, and

MUVERA) have been made to optimize the query latency. To yield

high recall, these methods need to generate a considerable amount

(e.g., ten thousands) of document candidates, rendering both the

candidate generation phase and the refinement phase inefficient.

In this paper, we propose a high-quality candidate generation tech-

nique that produces only hundreds of candidates yet achieves high

recall. Specifically, we develop an incremental next-similar retrieval

technique for a proximity graph index in order to facilitate high-

quality candidate generation. Our experiments on real datasets

show that our proposed method IGP achieves 2x-3x query through-

put compared to existing methods at the same accuracy level.

CCS Concepts
• Information systems→ Top-k retrieval in databases .

Keywords
Multi-Vector Retrieval, Neural Information Retrieval, Efficient Search

ACM Reference Format:
Zheng Bian, Man Lung Yiu, and Bo Tang. 2025. IGP: Efficient Multi-Vector

Retrieval via Proximity Graph Index. In Proceedings of the 48th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’25), July 13–18, 2025, Padua, Italy.ACM, NewYork, NY, USA, 10 pages.

https://doi.org/10.1145/3726302.3730004

1 Introduction
Neural embedding models are commonly used in information re-

trieval to improve quality. Multi-vector models (e.g., ColBERT [16])

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1592-1/2025/07

https://doi.org/10.1145/3726302.3730004

achieve state-of-the-art quality in tasks like multi-modal search-

ing [24], open-domain question answering [15], and passage re-

trieval [19]. These models represent each document as a set of

embedding vectors (called a multi-vector thereafter).

We illustrate an application of the multi-vector model, i.e., pas-

sage retrieval, in Figure 1. At the offline stage, the multi-vector

model encodes each textual document (or passage) into a multi-

vector. An index can be built on those multi-vectors to support effi-

cient retrieval. At the online stage, the multi-vector model encodes

the user’s question into the query multi-vector, then the index is

used to search for the top-𝑘 similar documents. This retrieval prob-

lem is known as the multi-vector retrieval (MVR) problem [16, 43],

which takes a query multi-vector, a set of document multi-vectors

and a score function as input and then returns 𝑘 documents with the

highest score to the user. Efficiently searching MVR is challenging

because the number of documents reaches a hundred million and

the number of embedding vectors can reach several billion [6, 33].

The existing methods for MVR (e.g., PLAID [41], DESSERT [8],

EMVB [32], andMUVERA [13]) adopt the filter-and-refine frame-

work as follows:

(1) Candidate generation: exploit the index (or precomputed in-

formation) to compute a set of candidate documents,

(2) Candidate refinement: compute the exact score of each can-

didate, then return the top-𝑘 among candidates.

To identify the performance bottleneck, we plot the query latency

breakdown of PLAID in Figure 2, using two benchmarks for passage

retrieval (LoTTE pooled [42] and MS MARCO [34]). The detailed

setting is in Section 5. Both the candidate generation and refinement

phases take significant amounts of time. A further investigation

reveals that existing methods require fetching many candidates to

ensure high quality, rendering both the candidate generation and

refinement phases inefficient. For example, to reach a high recall (>

84%) on MS MARCO, PLAID, DESSERT, EMVB andMUVERA need

to generate 36,724, 4,096, 30,949, and 8,192 candidates, respectively.

For details, see Table 4(b) in Section 5.

The above findings motivate us to develop a high-quality can-

didate generation technique that produces far fewer candidates

yet achieves a high retrieval accuracy. In this paper, we leverage

a Proximity Graph (PG) index, the state-of-the-art in single-vector
retrieval (SVR), to solve MVR. The challenge is that, existing PG in-

dexes have been designed to support single-vector score functions

(e.g., Euclidean distance [30] and inner product [31]), but not for

multi-vector score functions.MUVERA [13] is the first attempt to

https://doi.org/10.1145/3726302.3730004
https://doi.org/10.1145/3726302.3730004

SIGIR ’25, July 13–18, 2025, Padua, Italy Zheng Bian, Man Lung Yiu, & Bo Tang

Answer:

Neon tetras will indeed

eat baby shrimp. …

Encode Search

Generator

model

Postprocessing

Passage Retrieval

Do neon tetras

eat shrimp?

Similar

documents

…

𝑉1
𝑉2

Document Multi-Vector

Query Multi-Vector

𝑄
Index

Multi-Vector

Model
Encode

Offline

Online

Document

Figure 1: Application of Multi-Vector Retrieval

LoTTE pooled MS MARCO0

100

200

Top-10
Top-100 Top-10

Top-100
Query Encode
Cand. Generation

Cand. Refinement

Qu
er

y
Ti

m
e

(m
s)

Figure 2: Profiling result of PLAID in LoTTE pooled and MS
MARCO (when 𝑘=10, nprobe=1, 𝑡𝑐𝑠 =0.5, ndocs=256;
when 𝑘=100, nprobe=2, 𝑡𝑐𝑠 =0.45, ndocs=1024)

use a PG index for MVR. However, it incurs heavy computation at

the retrieval phase due to the huge dimensionality of transformed

vectors (16x-160x compared to original embedding vectors). How
to utilize a PG index more efficiently in the multi-vector retrieval
problem?

We make the following contributions:

(1) We conduct experimental analysis to (i) identify the causes

of expensive candidate generation in existing MVR methods,

and (ii) make observations about document benchmarks.

(Sections 3.3 and 3.4)

(2) We propose Incremental Greedy Probe (IGP) to utilize a PG

index efficiently for multi-vector retrieval. It exploits the

above experimental analysis, a greedy approach for fetching

high-quality candidates, and incremental search on PG index.

(Section 4)

(3) We conduct extensive evaluation to compare IGP with other

state-of-the-art methods. Our experimental study on four

benchmarks shows that, at the same accuracy level, IGP
achieves 2x-3x shorter query latency and higher throughput

than the state-of-the-art. (Section 5)

IGP is open source at https://github.com/DBGroup-SUSTech/

multi-vector-retrieval

2 Related Work
The introduction of transformers boosts many neural-based models

in the IR community. The earlymodels use cross-encoder [12, 29, 35]

that jointly computes the similarity score of a document and query.

However, it could not cache the document embeddings [16] and

suffers from scalability issues. Later models focus on producing

the independent query and document representation and can be

classified into single-vector models and multi-vector models. Its

related models and the retrieval solutions are presented as follows.

Single-vector retrieval. Single-vector models represent a docu-

ment and a query into a high-dimensional vector with different spar-

sity. In particular, lexical-based models [9, 17] encode a document to

a sparse vector based on term weights while representation-based

models [38, 44] encode a document into a dense vector. The top-k

documents can be efficiently retrieved by Maximum Inner Prod-

uct Search solutions, which can be classified into three categories.

In particular, Locality Sensitive Hashing [7, 47] projects a high-

dimensional vector into a low dimensional space that preserves

similarity. Quantization-based index [4, 11, 14, 48] approximates

the document vectors by a small set of generated vectors. Proxim-

ity graph [10, 30] builds a graph index over the database vectors

and searches the query vector by traversing the graph index with

the best-first-search algorithm. Empirical study [22] shows that

proximity graph index achieves state-of-the-art performance in

single-vector retrieval.

Multi-vector retrieval.Multi-vector models (e.g, ColBERT and its

variants [24, 42, 46]) encode a document and a query into a multi-

vector. They perform better than the single-vector representations

[27, 46]. Later models [20, 21, 37] focus on the model training phase

to reduce the search cost and they are orthogonal to our paper.

For example, CITADEL [21, 37] learns a dynamic routing function

to reduce the number of embedding vectors in a document. The

retrieval solutions adopt the filter-and-refine framework. PLAID
[41, 42] uses quantization-based indexes to approximate the docu-

ment multi-vector and proposes a two-stage filtering framework.

EMVB [32] proposes parallelized-friendly threshold-based filtering

methods with optimized bit vector. DESSERT [8] approximates the

document-query pairwise vector score by the cheap hashing-based

estimation (e.g, signed random projections [5]), and that accelerates

the refinement phase. MUVERA [13] proposes a space partitioning

method that transforms the multi-vector retrieval problem into

single-vector retrieval. Other works focus on the index update of

PLAID [18] and reproducing its performance [28]. In this paper, we

leverage the observation in Section 3.4 to reduce the number of can-

didates and exploit a graph index to reduce the score computation

cost.

3 Problem Setting and Observations
We first define the multi-vector retrieval problem in Section 3.1. As

preliminary background, we introduce the data storage and index-

ing of ColBERTv2 [42] in Section 3.2. Next, we identify the causes of

high candidate generation time in existing methods in Section 3.3.

https://github.com/DBGroup-SUSTech/multi-vector-retrieval
https://github.com/DBGroup-SUSTech/multi-vector-retrieval

IGP: Efficient Multi-Vector Retrieval via Proximity Graph Index SIGIR ’25, July 13–18, 2025, Padua, Italy

0 2 4 6 8
Dimension 1

0

2

4

6

8

Di
m

en
sio

n
2

a1

a2

a3

b1
b2

b3

d1

d2

d3

e1

e2

e3

f1

f2

f3

q1

q2
q3

c1
c2

c3
c4

c5
c6

Doc. VA: a1, a2, a3

Doc. VB: b1, b2, b3

Doc. VD: d1, d2, d3

Doc. VE: e1, e2, e3

Doc. VF: f1, f2, f3
Query Q: q1, q2, q3

Centroid C: c1, c2, c3,
c4, c5, c6

(a) Vectors in the space R2 (shown in colors)
Doc. Vec. 𝑞1 𝑞2 𝑞3 Doc. Vec. 𝑞1 𝑞2 𝑞3

𝑉𝐴 :

𝑎1 26 37 30

𝑉𝐵 :

𝑏1 62 62 58

𝑎2 50 64 54 𝑏2 57 68 59
𝑎3 18 28 22 𝑏3 43 29 33

𝑉𝐷 :

𝑑1 30 26 26

𝑉𝐸 :

𝑒1 48 54 48
𝑑2 60 52 52 𝑒2 33 41 35

𝑑3 10 19 14 𝑒3 11 24 17

𝑉𝐹 :

𝑓1 19 33 25

𝑓2 51 38 41

𝑓3 41 50 43
(b) Inner product ⟨𝑞𝑖 , 𝑣𝑗 ⟩ for each pair of 𝑞𝑖 , 𝑣𝑗

Figure 3: Example of multi-vector retrieval

Finally, we present our observations on document benchmarks in

Section 3.4.

3.1 Problem definition
In our problem context, all vectors are in the same spaceR𝑑

. We first

define a multi-vector. Then, we adopt the similarity score function,

used in ColBERTv2 [42] and our competitors [8, 13, 32, 41], to

compute the similarity score between two multi-vectors.

Definition 1 (Multi-vector). A multi-vector 𝑉 is defined as a set

of vectors in R𝑑
, e.g., 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑚}. We call each 𝑣𝑖 ∈ 𝑉 as a

constituent vector of 𝑉 .

Definition 2 (Similarity score). Given a multi-vector 𝑉 and a

multi-vector 𝑄 , the similarity score F (𝑄,𝑉) is defined as:

F (𝑄,𝑉) =
∑︁
𝑞∈𝑄

max

𝑣∈𝑉
⟨𝑞, 𝑣⟩ (1)

where ⟨𝑞, 𝑣⟩ is the inner product between vectors 𝑞 and 𝑣 .

Example 1. In Figure 3(a), all vectors are in the space R2
. The

multi-vector𝑉𝐴 consists of vectors 𝑎1, 𝑎2, 𝑎3 (shown as red squares).

The multi-vector 𝑄 consists of vectors 𝑞1, 𝑞2, 𝑞3 (shown as black

dots). To compute F (𝑄,𝑉𝐴), we first compute the inner product

for each pair of 𝑞𝑖 , 𝑎 𝑗 , as shown in Figure 3(b). Then, we obtain

F (𝑄,𝑉𝐴) = 50 + 64 + 54 = 168.

Next, we define our retrieval problem as follows.

Definition 3 (Multi-vector retrieval). Given an integer 𝑘 , a query

multi-vector𝑄 and a datasetD⇛ ofmulti-vectors, theMVR problem

returns 𝑘 multi-vectors from D⇛ that have the 𝑘 highest similarity

scores (with respect to 𝑄).

For the ease of discussion, we use query and document to denote
the query multi-vector 𝑄 and a document multi-vector 𝑉 ∈ D⇛,

respectively.We callF (𝑄,𝑉) as document score, and ⟨𝑞, 𝑣⟩ as vector
score. We also call the results of MVR as the 𝑘 nearest neighbors

of 𝑄 . Like the existing works on MVR [8, 13, 32, 41], we focus on

finding approximate results efficiently.

Example 2. Figure 3(a) shows the constituent vectors of the query

𝑄 and five documents 𝑉𝐴,𝑉𝐵,𝑉𝐷 ,𝑉𝐸 ,𝑉𝐹 . According to the calcula-

tion in Figure 3(b), the top-2 documents are𝑉𝐵 and𝑉𝐴 , whose scores

are 189 and 168, respectively.

Table 1: Inverted file based on our example (Figure 3)

Centroid Constituent vectors

𝑐1 𝑎2, 𝑏2
𝑐2 𝑏1, 𝑑2, 𝑒1
𝑐3 𝑏3, 𝑑1, 𝑓2
𝑐4 𝑒2, 𝑓3
𝑐5 𝑎1, 𝑓1
𝑐6 𝑎3, 𝑑3, 𝑒3

3.2 Data storage and indexing of ColBERTv2
We introduce the data storage and indexing of ColBERTv2 [42],

consisting of (i) quantized data storage for multi-vectors, and (ii) an

inverted file. These components are adopted in existing works [8,

32, 41] as well as in our proposed method.

Quantized data storage formulti-vectors.ColBERTv2 [42] lever-
ages Vector Quantization and Scalar Quantization as the data stor-

age. Let D→ be the set of constituent vectors from the dataset D⇛

of multi-vectors, i.e., D→ = {𝑣 | for every 𝑣 ∈ 𝑉 ,𝑉 ∈ D⇛}. Vec-
tor Quantization (VQ) approximates the set of constituent vectors

D→ by a small set of vectors called centroids. Given the number

of centroids 𝑛𝑐 , those centroids are obtained by running K-means

(𝐾 = 𝑛𝑐) clustering on D→. A constituent vector is approximated

by a centroid when it is assigned to the cluster of that centroid. For

instance, in Figure 3(a), the centroids are 𝑐1, · · · , 𝑐6, and the dot-

ted lines indicate the region closest to each centroid. Each vector

(e.g., 𝑑1) can be approximately represented by the ID of its nearest

centroid (e.g., 𝑐3).

Scalar Quantization (SQ) approximates each floating-point value

by a low-bit integer called codeword. SQ is used to approximate the

residual vector 𝑣−𝑐 produced by VQ, thus allowing us to reconstruct
a finer approximation of 𝑣 in the refinement phase. SQ introduces

the parameter 𝐵, which specifies the number of bits per dimension

for encoding a vector. A high 𝐵 preserves accuracy but incurs a

large amount of memory footprint. The recommended settings can

be referred to Table 6.

Inverted file. The inverted file stores a mapping from the centroid

identifier (ID) to the set of constituent vectors which are quantized

to that centroid. Given a centroid 𝑐 , we use the inverted file to find

all vectors that is approximated by 𝑐 . Table 1 shows the inverted

file obtained from the example in Figure 3.

3.3 Causes of high candidate generation time
We proceed to identify the causes of high candidate generation time

in existing methods. In PLAID, DESSERT and EMVB, we vary the

SIGIR ’25, July 13–18, 2025, Padua, Italy Zheng Bian, Man Lung Yiu, & Bo Tang

0 200000 400000 600000
#. retrieved candidate

85

90

95

100

Re
ca

ll
(%

)

24% cand.

DESSERT
PLAID
EMVB

(a) Recall on LoTTE pooled

0 200000 400000 600000
#. retrieved candidate

0

50

100

Ca
nd

. g
en

. t
im

e
(m

s)

24% cand.

DESSERT
PLAID
EMVB

(b) Gen. time on LoTTE pooled

0 200000 400000 600000
#. retrieved candidate

92

94

96

98

100

Re
ca

ll
(%

)

6.8% cand.

DESSERT
PLAID
EMVB

(c) Recall on MS MARCO

0 200000 400000 600000
#. retrieved candidate

0

50

100

150

Ca
nd

. g
en

. t
im

e
(m

s)

6.8% cand.

DESSERT
PLAID
EMVB

(d) Gen. time on MS MARCO

Figure 4: The effect of the candidate size on the recall and the candidate generation time

0 10 20 30
Centroid score ranking

0%

10%

20%

30%

40%

Pe
rc

en
ta

ge

(a) LoTTE pooled

0 10 20 30
Centroid score ranking

0%

20%

40%

Pe
rc

en
ta

ge

(b) MS MARCO

Figure 5: Percentage of relevant document w.r.t. the centroid
ranking. A document is more likely to be the relevant docu-
ment when it has a higher centroid score ranking.

parameter nprobe (i.e., the number of candidate centroids) to obtain

different candidate sizes, then measure the recall and the candidate

generation time at those candidate sizes. The other parameters as set

by default. The above experiment is conducted on two benchmarks

(LoTTE pooled and MS MARCO). Figures 4(a),(c) show the recall of

existing methods vs. the candidate size. They need to generate at

least ten thousand candidates to yield high recall. Figures 4(b),(d)

show the candidate generation time of existing methods vs. the

candidate size. Even at a low candidate size, all methods incur a

fixed overhead, which is caused by the score computation between

𝑄 and every index entry (i.e., every centroid).

3.4 Observation on document benchmarks
We conduct the experiment below to investigate whether a docu-

ment 𝑉 is relevant to the query 𝑄 , in terms of the inner product

score of their constituent vector pairs. Recall that we approximate

a constituent vector by a centroid vector for fast filtering. For each

pair (𝑄,𝑉), we define the centroid score ranking for a document 𝑉

and a query vector 𝑞 ∈ 𝑄 as the ranking of the centroid 𝑐★ in the

centroid set 𝐶 w.r.t. the centroid inner product score ⟨𝑞, 𝑐★⟩, where
the centroid 𝑐★ is defined as the one approximated by the vector 𝑣★

with the highest inner product score to the query vector 𝑞 in the

document 𝑉 , i.e., 𝑣★ = argmax𝑣∈𝑉 𝑞⊤𝑣 . Figure 5 plots the percent-
age of the relevant documents versus the centroid score ranking for

every pair of the query vector and the document. Observe that the

vectors of𝑉 contributing to F (𝑄,𝑉) are likely to be within the 5-10
clusters nearest to vectors of 𝑄 . We shall exploit this observation

to develop our retrieval method in the next section.

4 Incremental Greedy Probe (IGP)
In this section, we present incremental greedy probe (IGP). In par-

ticular, we adopt the data storage and indexing of ColBERTv2 [42],

as discussed in Section 3.2. We propose the next-similar fetch oper-

ation and use it to design the retrieval algorithm in Section 4.1. We

discuss the choice of the index in Section 4.2, then present an effi-

cient implementation of the next-similar fetch operation in Section

4.3. Finally, we discuss the update issue in Section 4.4.

4.1 Retrieval algorithm
Recall the definition of D→ from Section 3.2. Inspired by the obser-

vation in Section 3.4, we propose to generate candidates by fetching

vectors 𝑣 ∈ D→ in the descending order of the similarity ⟨𝑞, 𝑣⟩,
where 𝑞 ∈ 𝑄 .

Definition 4 (Next-similar fetch, NF𝑞 .Init(D→), NF𝑞 .GetNext()).
Given a query vector 𝑞 and the set of all document vectors D→,
NF𝑞 .Init(D→) is used to preprocess D→ such that, when the op-

eration NF𝑞 .GetNext() is called at the 𝑖-th time, it returns the 𝑖-th

most similar vector 𝑣 ∈ D→ according to ⟨𝑞, 𝑣⟩.

Table 2: Example of calling NF𝑞 .GetNext()

𝑖-th call 𝑞1 𝑞2 𝑞3

1 𝑏1 : 62 𝑏2 : 68 𝑏2 : 59

2 𝑑2 : 60 𝑎2 : 64 𝑏1 : 58

3 𝑏2 : 57 𝑏1 : 62 𝑎2 : 54

4 𝑓2 : 51 𝑒1 : 54 𝑑2 : 52

5 𝑎2 : 50 𝑑2 : 52 𝑒1 : 48

· · · · · · · · · · · ·

Example 3. Based on the example in Figure 3(a), we illustrate the

result of each next-similar fetch operation for three query vectors

𝑞1, 𝑞2, 𝑞3 in Table 2. For instance, for 𝑞1, the first call returns 𝑏1
(with score 62), and the second call returns 𝑑2 (with score 60).

A naive implementation of the NF𝑞 .GetNext() operation requires
computing ⟨𝑞, 𝑣⟩ for every 𝑣 ∈ D→. Such implementation is clearly

inefficient. We shall present efficient approximate implementations

of the NF𝑞 .GetNext() operation in later subsections. We shall ex-

ploit the property below to design our retrieval algorithm.

Theorem 1. The maximum score of a document 𝑉 and a query
vector 𝑞 (i.e., max𝑣∈𝑉 ⟨𝑞, 𝑣⟩) is found when we meet a vector of 𝑉 in
the next-similar fetch of 𝑞 for the first time.

For instance, suppose that we wish to compute max𝑣∈𝑉𝐵 ⟨𝑞2, 𝑣⟩
between query vector 𝑞2 and document𝑉𝐵 = {𝑏1, 𝑏2, 𝑏3}. According

IGP: Efficient Multi-Vector Retrieval via Proximity Graph Index SIGIR ’25, July 13–18, 2025, Padua, Italy

Algorithm 1 Incremental Greedy Probe (Query 𝑄 , result size 𝑘)

System parameters: 𝜙𝑐𝑎𝑛𝑑 , 𝜙𝑟𝑒 𝑓
1: NF𝑞 .Init(D→), for every 𝑞 ∈ 𝑄
2: Ψ← Create a hash table with the key type as document ID

3: for each 𝑟𝑎𝑛𝑘 from 1 to 𝜙𝑐𝑎𝑛𝑑 do
4: for each 𝑞 ∈ 𝑄 do
5: 𝑣 ← NF𝑞 .GetNext()
6: 𝑖𝑑 ← Find the ID of the document 𝑉 that contains 𝑣

7: if 𝑖𝑑 is not found in Ψ then
8: Ψ[𝑖𝑑] .score← 0

9: Init Ψ[𝑖𝑑] .isSeen[𝑞] to false, for each 𝑞 ∈ 𝑄
10: if Ψ[𝑖𝑑] .isSeen[𝑞] = false then
11: Ψ[𝑖𝑑] .isSeen[𝑞] ← true

12: Ψ[𝑖𝑑] .score← Ψ[𝑖𝑑] .score + ⟨𝑞, 𝑣⟩
13: S ← Top-𝜙𝑟𝑒 𝑓 doc. ID from Ψ with the highest Ψ[𝑖𝑑] .score
14: for each 𝑖𝑑 ∈ S do
15: 𝑉 ←Reconstruct document by 𝑖𝑑 using Scalar Quantization

16: Compute F (𝑉 ,𝑄) =∑
𝑞∈𝑄 max𝑣∈�̂� ⟨𝑞, 𝑣⟩

17: return Top-𝑘 documents in S

to Table 2, the first call of NF𝑞2 .GetNext() returns 𝑏2 (whose score
is 68). Even when we meet other vectors of 𝑉𝐵 in future calls of

NF𝑞2 .GetNext(), they have no chance contributing to a higher score
than 𝑏2.

Algorithm 1 is our proposed Incremental Greedy Probe (IGP).
1

We provide two parameters to control the candidate generation

time and the refinement time: (i) 𝜙𝑐𝑎𝑛𝑑 denotes the number of next-

similar fetch calls per query vector, and (ii)𝜙𝑟𝑒 𝑓 denotes the number

of candidate documents for refinement. These two parameters also

entail trade-offs between the query latency and the retrieval quality.

The recommended settings can be referred in Table 6.

The hash table Ψ maintains the score of each seen document

(Line 2). In the for loop, we call the next-similar fetch on each query

vector 𝑞 (Line 5), then find the corresponding document identifier

𝑖𝑑 (Line 6). When we see 𝑖𝑑 for the first time, we initialize the score

of 𝑖𝑑 in Ψ as 0 and set the pair (𝑞, 𝑖𝑑) as unseen for every 𝑞 ∈ 𝑄
(Lines 7-9). We add the score to Ψ only when the first time we see

the pair (𝑞, 𝑖𝑑) (Lines 10-12). This step is used for computing the

maximum vector score in the document 𝑉 and the query vector 𝑞,

i.e, max𝑣∈𝑉 ⟨𝑞, 𝑣⟩. When the loop terminates, we find the top-𝜙𝑟𝑒 𝑓
documents with the highest score in Ψ and store these documents

inS (Line 13). We refine the documents inS by Scalar Quantization

and return the top-𝑘 results.

Example 4. Consider the example in Figure 3 and Table 2. Suppose

the algorithm retrieves top-2 documents (𝑘 = 2) with the system

parameter as 𝜙𝑐𝑎𝑛𝑑 = 2 and 𝜙𝑟𝑒 𝑓 = 2. Thus Ψ = {(𝑉𝐴, 64), (𝑉𝐵, 189),
(𝑉𝐷 , 60)}. Thus the top-2 documents are exactly the top-2 in the Ψ.
Then we refine the top-𝜙𝑟𝑒 𝑓 in Ψ and return 𝑉𝐴 and 𝑉𝐵 as a result.

1
We assume all vector scores (e.g., ⟨𝑞, 𝑣⟩) have non-negative values. When it is not

the case we add a score offset to every vector score.

𝑣13

𝑣12
𝑣14

𝑣8

𝑣6

𝑣5 𝑣1 𝑣2

𝑣3

𝑣9
𝑣10𝑣11

𝑣4

𝑣7

Entry vertex

Query

(a) Proximity graph index with entry vertex𝐺.𝑣ent = 𝑣4

Vector 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7
Score with 𝑞 65 75 88 68 40 47 49

Vector 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14
Score with 𝑞 64 99 86 66 21 23 38

(b) Score table with 𝑞 for every vector
Iteration 𝐴 𝑆vis 𝑆out 𝑆fnd

Initial (𝑣4, 68) 𝑣4 ∅ (𝑣4, 68)

1 (𝑣10, 86) 𝑣1, 𝑣4, 𝑣10, 𝑣11 𝑣4
(𝑣4, 68),
(𝑣10, 86)

2

(𝑣9, 99),
(𝑣3, 88)

𝑣1, 𝑣3, 𝑣4, 𝑣9,

𝑣10, 𝑣11
𝑣4, 𝑣10

(𝑣3, 88),
(𝑣9, 99)

3 (𝑣3, 88)
𝑣1, 𝑣3, 𝑣4, 𝑣9,

𝑣10, 𝑣11
𝑣4, 𝑣9, 𝑣10

(𝑣3, 88),
(𝑣9, 99)

4 ∅ 𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣9, 𝑣10, 𝑣11
𝑣3, 𝑣4, 𝑣9, 𝑣10

(𝑣3, 88),
(𝑣9, 99)

(c) Example of the first calling GetNextCentroid(𝑛𝑏 =1)
Iteration 𝐴 𝑆vis 𝑆out 𝑆fnd

Initial

(𝑣2, 75),
(𝑣11, 66),
(𝑣1, 65)

𝑣1, 𝑣2, 𝑣3, 𝑣4,

𝑣9, 𝑣10, 𝑣11
𝑣3, 𝑣4, 𝑣9, 𝑣10

(𝑣2, 75),
(𝑣10, 86),
(𝑣3, 88)

1

(𝑣11, 66),
(𝑣1, 65)

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣7,

𝑣8, 𝑣9, 𝑣10, 𝑣11

𝑣2, 𝑣3, 𝑣4, 𝑣9,

𝑣10

(𝑣2, 75),
(𝑣10, 86),
(𝑣3, 88)

(d) Example of the second calling GetNextCentroid(𝑛𝑏 =2)

Figure 6: Example of incremental search (Function
GetNextCentroid(·) in Algorithm 2) with entry vertex
𝐺.𝑣ent = 𝑣4 and candidate buffer size 𝑏𝑠 = 1

4.2 Proximity graph index for MIPS
Our proposed method requires the next-similar fetch operation,

which incrementally searches the top vector score from all docu-

ment vectors. This requires Maximum Inner Product Search (MIPS)

index that supports incremental search. However, there is limited

research on incremental search in the MIPS problem. EI-LSH [26]

proposes using Locality Sensitive Hashing (LSH) for incremental

searching. However, it suffers from a high computation costs in our

experiment (Figure 10).

The proximity graph index (PG) is another type of solution and it

achieves the state-of-the-art performance [22] in the MIPS problem.

However, current proximity-graph indexes focus on efficient top-𝑘

retrieval [25, 31, 36] but do not support the incremental search. A

simple solution is to start a new search procedure once the incre-

mental search is called. However, it suffers from redundant score

computation and vertex traversal. This motivates us to design an

algorithm for incremental search. In this paper, we use the base

SIGIR ’25, July 13–18, 2025, Padua, Italy Zheng Bian, Man Lung Yiu, & Bo Tang

Algorithm 2 Next-similar fetch NF𝑞 (graph index 𝐺 built the cen-

troid set
ˆD→, query vector 𝑞)

System parameters: 𝑛𝑏 , 𝑏𝑠

1: function Init()

2: 𝑆vis ← {(𝐺.𝑣ent, ⟨𝐺.𝑣ent, 𝑞⟩)} ⊲ Set of visited vectors

3: 𝑆out ← ∅ ⊲ Set of visited out-neighbor points

4: 𝑆rtn ← ∅ ⊲ Set of returned neighbors

5: 𝐿eval ← ∅ ⊲ Queue of document vectors to return

6: function GetNext()

7: if 𝐿eval == ∅ then
8: 𝐶𝑅 ← GetNextCentroid(𝑛𝑏)
9: for every 𝑐 ∈ 𝐶𝑅 in descending order w.r.t. ⟨𝑞, 𝑐⟩ do
10: for every vector 𝑣 ∈ IVF(𝑐) do
11: 𝐿eval . Enqueue(𝑣)
12: 𝑣←𝐿eval .Dequeue()
13: return 𝑣
14: function GetNextCentroid(number of calls 𝑛𝑏)

15: 𝐴← 𝑆vis − 𝑆out ⊲ Set of candidates

16: 𝑆fnd←(𝑆vis−𝑆rtn). Top(𝑛𝑏+𝑏𝑠) ⊲ Set of found neighbors

17: while 𝐴 ≠ ∅ do
18: 𝑣best ← 𝐴. Top(1); 𝐴. Remove(𝑣best)
19: 𝑣fnd ← 𝑆fnd . Bottom(1)
20: Break if ⟨𝑣best, 𝑞⟩ < ⟨𝑣fnd, 𝑞⟩
21: 𝑆out ← 𝑆out ∪ {(𝑣best, ⟨𝑣best, 𝑞⟩)}
22: for each 𝑣adj adjacent to 𝑣best in 𝐺 do
23: if 𝑣adj not in the set of vertices in 𝑆vis then
24: 𝑡adj ← (𝑣adj, ⟨𝑣adj, 𝑞⟩)
25: 𝑆vis ← 𝑆vis ∪ {𝑡adj}
26: 𝑣fnd ← 𝑆fnd . Bottom(1)
27: if ⟨𝑣adj, 𝑞⟩ > ⟨𝑣fnd, 𝑞⟩ then
28: 𝐴← 𝐴 ∪ {𝑡adj}, 𝑆fnd ← 𝑆fnd ∪ {𝑡adj}
29: 𝑆fnd ← 𝑆fnd . Top(𝑛𝑏 + 𝑏𝑠)
30: 𝑅 ← 𝑆fnd . Top(𝑛𝑏); 𝑆rtn ← 𝑆rtn ∪ 𝑅
31: return the set of vertices in 𝑅

graph (i.e., the bottom layer) of ip-NSW [31] as the graph index. We

introduce this graph index in the next paragraph and the procedure

of incremental search in Section 4.3.

Figure 6(a) shows an example of the graph index and its searching

procedure. The graph index𝐺 contains (1) a set of vertices, (2) a set

of edges, and (3) an entry vertex (denoted as 𝐺.𝑣ent). Each vertex

in the graph index represents a vector and a (direct) edge for a

vertex pair (𝑢 → 𝑣) means that 𝑣 is the vertex neighborhood of

𝑢. Typically, an edge is constructed when a vertex 𝑣 has a high

inner product score to another vertex 𝑢 and the index construction

algorithm connects 𝑢 to its nearest neighbors among all vectors.

The entry vertex is the fixed vertex generated by the index to start

searching. The construction of PG requires two parameters: the

search beam width 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 and the out-neighbor degree

𝑀 , whose settings can be found in Table 6. We suggest readers refer

to [30] for detailed graph index construction. Given a query vector

(red star), the algorithm starts searching at the entry vertex (𝑣4 in

Figure 6(a)) and performs the best-first-search algorithm to find the

nearest neighbor. We will propose our search procedure in the next

subsection.

To reduce the searching time, we build the graph index based on

the centroid set
ˆD→ (Section 3.2) that approximates the document

vector D→. This is because the size of ˆD→ is much smaller than

D→. For example, the size of
ˆD→ in Lotte is 13K, while the size of

D→ is 266M.

4.3 Next-similar fetch on proximity graph
Algorithm 2 shows the procedure of next-similar fetch at the re-

trieval phase. Function Init() andGetNext() correspond to the inter-
face of next-similar fetch (Definition 4). FunctionGetNextCentroid()
is called by GetNext() to retrieve centroids by incremental search

on the graph index. We provide two parameters to control the re-

trieval quality and efficiency of incremental search: (i) 𝑛𝑏 denotes

the number of centroids returned by GetNextCentroid() and (ii)

the candidate buffer size 𝑏𝑠 that resembles the buffer size in the

graph searching algorithm [30]. Those parameters are discussed in

Section 5.1 and the recommended settings are shown in Table 6.

In Init(), Lines 2-4 are used to initialize the incremental search,

and 𝐿eval (Line 5) is the cache used in GetNext().
Recall that GetNext() incrementally returns the vector with the

highest inner product score. In GetNext(), we call the incremental

search algorithm to find the top-𝑛𝑏 centroids (Line 8) and cache

the document vector that is quantized to the centroid (Lines 9-11).

We use the inverted file (Section 3.2) to find every vector approxi-

mated by the centroid (Line 10). We do not specifically maintain

the order of the cached document vector and randomly return a

document vector that is quantized to the centroid. When GetNext()
is requested, we pop the front vector in 𝐿eval and return it as the

result (Line 12). When the cache is empty, we run the incremental

search to fill the cache (Lines 7-11).

FunctionGetNextCentroid() shows the incremental search using

the proximity graph index. The search procedure is the same as the

graph-searching algorithm at the first call. Lines 15-16 are used for

initialization and Lines 17-28 are used for traversal. Each set run

in GetNextCentroid() (i.e., 𝑆vis, 𝑆out, 𝑆rtn, 𝐴, 𝑆fnd and 𝑅) stores tuples
and each tuple contains a vertex and its score to the query vector 𝑞.

For a set of vector 𝑆 , 𝑆. Top(𝑚) denotes the top-𝑚 vectors with the

highest score in 𝑆 , and 𝑆. Bottom(𝑚) denotes the𝑚 vectors with

the lowest score in 𝑆 . For node traversal, each time we pop the top

vector 𝑣best in 𝐴 (Line 18) and compare it with the bottom vector

𝑣fnd in 𝑆fnd (Line 20). If the score of 𝑣best is smaller than 𝑣fnd, then no

vectors have a higher score than 𝑣fnd and the loop terminates (Line

20). Otherwise, we iterate for every out neighbor of 𝑣best (Lines

22-28). When an out-neighbor 𝑣adj of 𝑣best in the graph 𝐺 is found

to have a higher score than 𝑣fnd, then we add 𝑣adj to 𝑆fnd and 𝐴

(Lines 27-28). We maintain the top-(𝑛𝑏 + 𝑏𝑠) vectors in 𝑆fnd (Line
29). The set 𝑆vis records whether a vector is visited beforehand (Line

23). This guarantees that a vector score is computed only once in

the search phase.

Function GetNextCentroid() differs from the non-incremental

graph searching algorithm at the further call. The main idea is

caching. Specifically, we need to design the data structures to re-

store the search situation while avoiding the redundant (1) score

computation and (2) out-neighbor traversal operation (Lines 22-28)

and (3) to reduce the size of 𝑆fnd. Problem (1) is simply solved by

caching all computed scores and is implemented in 𝑆vis. Once we

compute the score of a vector 𝑣 , we mark 𝑣 as visited and cache

IGP: Efficient Multi-Vector Retrieval via Proximity Graph Index SIGIR ’25, July 13–18, 2025, Padua, Italy

its score in 𝑆vis (Line 25). To solve problem (2), we classify vectors

into three categories (i) unvisited vectors, (ii) visited vectors whose

out-neighbors are traversed by the previous call and (iii) visited

vectors but its out-neighbors are not traversed. The algorithm does

not see vector (i) beforehand, which means it must not be in 𝐴 and

𝑆fnd and we do not need to cache them. Due to the enlarged result

size, vector (ii) must be traversed in this call and we can cache their

result, which is stored in the set 𝑆out (Line 21). Vector (iii) may be

traversed in this call due to the enlarged result size, thus we add

them to 𝐴 (Line 15). Similar to problem (2), problem (3) classifies

the vectors into three categories (a) unvisited vectors (b) visited

vectors which are already returned, and (c) visited vectors which

are not returned as the result in the previous call. Vector (a) will

be explored in the graph traversal and does not need to be cached.

Vector (b) should not be further returned as the result and thus we

use 𝑆rtn to store it. Vector (c) would not be further visited but it

may be the result. Therefore we initialize them in 𝑆fnd but exclude

𝑆rtn to ensure that each time the algorithm returns a unique result

(Line 16).

Example 5. Figure 6 shows the example of incremental search

(FunctionGetNextCentroid(·) in Algorithm 2) with 14 vertices. The

score function is the inner product and a higher score means a

higher similarity. For the ease of presentation, we do not show the

tuple in 𝑆vis and 𝑆out. At the initialization and the first call (Figure

6(c)), 𝑆rtn = ∅. The algorithm starts from entry vertex 𝐺.𝑣ent = 𝑣4
and traverses through its neighbor vertex 𝑣1, 𝑣10 and 𝑣11. Only 𝑣10
is the closer vector than 𝑣4, so it is inserted in 𝐴. Then the algo-

rithm selects the top vector in 𝐴 (𝑣10 with score 86), and repeats

the above procedure until the fourth iteration, where there are no

candidates in𝐴 and the algorithm terminates. At the end of the first

call, 𝑅={(𝑣9, 99)} and 𝑆rtn={(𝑣9, 99)}. The difference between the

second call (Figure 6(d)) and the first call is the initialization of 𝐴.

At the beginning 𝑆rtn = {(𝑣9, 99)}. With the cached distance (in 𝑆vis)

and the cached vertex (in 𝑆out), we obtain 3 cached candidates on 𝐴.

This largely reduces the number of nodes for iteration, since 𝑣2, 𝑣10,

and 𝑣3 are closer to the query vector 𝑞 than the entry vertex 𝑣4. At

the second call, algorithm breaks because ⟨𝑣2, 𝑞⟩ > ⟨𝑣11, 𝑞⟩. At the
end 𝑅 = {(𝑣3, 88), (𝑣10, 86)} and 𝑆rtn = {(𝑣3, 88), (𝑣9, 99), (𝑣10, 86)}.
Compared with starting from scratch, the incremental graph algo-

rithm saves 4 times of vertex traversal and 7 score computations at

the second call.

4.4 Handling update
IGP consists of a quantization-based index and a proximity graph-

based index. Quantization-based index naturally support index

updates because the index entry of a document is independent of

the other. We suggest regularly rebuilding those indexes because

the database distribution may shift over time. Proximity graph-

based index is built upon the quantization index, which does not

need frequent update and enjoys fast index building. For example,

the graph index building time in MS MARCO is less than 3 minutes.

5 Experimental Study
Section 5.1 shows the experimental settings. Section 5.2 compares

the query performance with the state-of-the-art methods in differ-

ent settings. Section 5.3 compares different components and shows

the indexing performance of IGP.

Table 3: Statistics of datasets.

Dataset # Doc. # Vector # Vector per set # Query

Quora 522K 8M 15 1,000

LoTTE pooled 2.4M 266M 109 2,931

HotpotQA 5.2M 283M 54 7,405

MS MARCO 8.8M 596M 67 6,980

Table 4: Performance comparison in MS MARCO. Number
after IGP denotes the parameter settings of (𝜙𝑝𝑏 , 𝜙𝑟𝑒 𝑓)

(a) The number of retrieved documents 𝑘 = 10

Method QT(ms) FLOQ # cand. MRR@10 NDCG@10

BM25 5.3 35M - 18.4 22.8

PLAID 113.9 2.3B 20K 39.4 45.8

DESSERT 103.3 2.1B 2K 36.3 41.3

EMVB 90.8 2.2B 17K 36.4 41.6

MUVERA 124.2 2.4B 4K 38.3 42.0

IGP(8, 600) 54.8 0.4B 600 39.0 45.5

IGP(4, 100) 32.4 0.1B 100 37.8 43.7

(b) The number of retrieved documents 𝑘 = 100

Method QT(ms) FLOQ # cand. R@100 NDCG@100

BM25 11.4 66M - 65.8 28.7

PLAID 160.4 2.8B 36K 90.6 51.2

DESSERT 142.7 2.1B 4K 84.5 47.1

EMVB 115.8 2.2B 31K 87.3 47.8

MUVERA 161.5 2.6B 8K 87.0 47.7

IGP(32, 1K) 86.1 0.6B 1K 89.2 50.7

IGP(8, 500) 52.2 0.3B 500 87.5 49.9

Table 5: Performance comparison in LoTTE pooled. Number
after IGP denotes the parameter settings of (𝜙𝑝𝑏 , 𝜙𝑟𝑒 𝑓)

(a) The number of retrieved documents 𝑘 = 10

Method QT(ms) FLOQ # cand. MRR@10 NDCG@10

BM25 3.5 25M - 34.4 28.3

PLAID 64.4 1.4B 16K 54.0 45.1

DESSERT 81.0 1.7B 2K 53.4 43.9

EMVB 52.6 1.1B 13K 53.8 44.9

MUVERA 60.5 1.2B 4K 53.7 44.7

IGP(8, 400) 31.9 0.3B 400 53.8 45.1

IGP(4, 200) 23.2 0.2B 200 53.2 44.6

(b) The number of retrieved documents 𝑘 = 100

Method QT(ms) FLOQ # cand. R@100 NDCG@100

BM25 8.2 48M - 57.2 34.6

PLAID 103.0 1.8B 29K 70.6 51.1

DESSERT 139.0 2.3B 4K 68.7 50.0

EMVB 100.1 1.9B 25K 69.0 50.4

MUVERA 105.4 1.9B 4K 69.2 50.4

IGP(8, 1K) 66.2 0.6B 1K 70.7 51.0

IGP(8, 500) 42.1 0.4B 500 69.2 50.5

5.1 Experimental settings

Datasets.We use the four datasets (see [2, 3] for source) in Table

3, which are widely used in information retrieval. Quora [1] is

designed for question deduplication. Its data is sampled from Quora.

LoTTE pooled [42], HotpotQA [45] and MS MARCO [34] aim for

SIGIR ’25, July 13–18, 2025, Padua, Italy Zheng Bian, Man Lung Yiu, & Bo Tang

0 50 100 150
QPS

70.0

72.5

75.0

77.5

80.0

82.5

85.0

M
RR

@
10

Dessert
Plaid
EMVB
MUVERA
IGP

(a) Quora

0 20 40 60 80
QPS

44

46

48

50

52

54

56

M
RR

@
10

Dessert
Plaid
EMVB
MUVERA
IGP

(b) LoTTE pooled

0 10 20 30 40 50
QPS

70.0

72.5

75.0

77.5

80.0

82.5

85.0

M
RR

@
10

Dessert
Plaid
EMVB
MUVERA
IGP

(c) HotpotQA

0 10 20 30 40
QPS

20

25

30

35

40

M
RR

@
10

Dessert
Plaid
EMVB
MUVERA
IGP

(d) MS MARCO

Figure 7: QPS-MRR comparison with the number of retrieved documents 𝑘 = 10. A higher QPS is better.

0 25 50 75 100 125 150
QPS

80

85

90

95

100

Re
ca

ll@
10

0

Dessert
Plaid
EMVB
MUVERA
IGP

(a) Quora

0 10 20 30 40 50 60
QPS

40
45
50
55
60
65
70
75

Re
ca

ll@
10

0

Dessert
Plaid
EMVB
MUVERA
IGP

(b) LoTTE pooled

0 10 20 30
QPS

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Re
ca

ll@
10

0

Dessert
Plaid
EMVB
MUVERA
IGP

(c) HotpotQA

0 10 20 30
QPS

50

60

70

80

90

Re
ca

ll@
10

0

Dessert
Plaid
EMVB
MUVERA
IGP

(d) MS MARCO

Figure 8: QPS-Recall comparison with the number of retrieved documents 𝑘 = 100. A higher QPS is better.

passage retrieval, whose queries and passages are extracted from

StackExchange, Wikipedia articles and Microsoft Bing, respectively.

Following [41], we use ColBERTv2 [42] to generate the query and

document multi-vectors. The vector dimensionality is 128.

Competitors. To demonstrate the indexing and query performance

of our method, we compare our IGP with PLAID [41], DESSERT[8],
EMVB[32] and MUVERA[13], the four state-of-the-art solutions

in Multi-Vector Retrieval. We include BM25 [39] as the baseline

solution implemented by Pyserini [23]. Please refer to Section 2 for

a detailed description of those baseline methods.

Parameter settings. Table 6 shows the parameter settings of IGP.
We follow [31, 41] to set parameters in the build index phase. Similar

to [8, 32], we suggest fine-tuning (i.e, perform grid search) the pa-

rameters𝜙𝑝𝑏 , 𝜙𝑟𝑒 𝑓 at the online stage.We tune𝜙𝑝𝑏 in {1, 2, 4, 8, 16, 32, 64}
and tune 𝜙𝑟𝑒 𝑓 in {𝑘, 2𝑘, 5𝑘, 10𝑘, 20𝑘, 30𝑘, 40𝑘, 60𝑘} for different 𝑘 .
We tune 𝑛𝑏 in {1, 4, 8, 12, 16} and tune 𝑏𝑠 in {0, 8, 16, 24, 32} and find
that setting 𝑛𝑏 = 8 and 𝑏𝑠 = 16 achieves a good balance between

accuracy and efficiency. We use all threads of CPU and GPU to

build the index and run all of the methods in a single thread for

searching and GPU for query encoding.

Performance metric. Following [40, 41], we use Mean Reciprocal
Rank (MRR), Normalized Discounted Cumulative Gain (NDCG) and
Recall as the accuracy measurements. We report Query Time (QT,

or Latency) andQuery Per Second (QPS) in the search phase as the ef-
ficiency metric. For an explanation of the searching time, we report

its Floating-point Operations per Query (FLOQ) and the number of

retrieved candidates (No. cand.) in the candidate generation phase

to measure the score computation cost. We report the performance

with different 𝑘 , i.e., the number of retrieved documents.

Platform. The machine is equipped with a Intel(R) Xeon(R) Gold

5318Y@2.10 GHz CPU with 96 threads, a NVIDIA A10 GPU, and

Table 6: Parameters settings of IGP. Section number refers to
the position where the parameters are being discussed. 𝑁𝑣 is
the number of constituent vectors in D→. 𝑛𝑖𝑣𝑓 is the average
number of documents that a centroid is mapped through the
inverted file.

Procedure \ Index Quantization index Proximity Graph index

Build index

𝑛𝑐 = 16

√
𝑁𝑣

𝐵 = 2

Section 3.2

𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 200

𝑀 = 64

Section 4.2

Retrieval

𝜙𝑐𝑎𝑛𝑑 = 𝜙𝑝𝑏𝑛𝑖𝑣𝑓
𝜙𝑟𝑒 𝑓

Section 4.1 and 5.1

𝑛𝑏 = 8

𝑏𝑠 = 16

Section 4.3

20 40 60 80
QPS

0

20

40

M
RR

@
10

IGP
IGP w/o cand. refinement
IGP w/o cand. gen.

(a) LoTTE pooled

10 20 30 40
QPS

0

10

20

30

40

M
RR

@
10

IGP
IGP w/o cand. refinement
IGP w/o cand. gen.

(b) MS MARCO

Figure 9: Ablation study of IGP with 𝑘=10.

512GB main memory with Linux version 4.15.0. We implement our

IGP in C++. For baseline solutions, we use available implementa-

tions when possible; otherwise we implement them in C++.

5.2 Query processing evaluation
Table 4 and Table 5 compare the performance with different 𝑘 in

LoTTE pooled and MS MARCO. Specifically, we randomly sample

IGP: Efficient Multi-Vector Retrieval via Proximity Graph Index SIGIR ’25, July 13–18, 2025, Padua, Italy

0 10 20
pb

0

20

40

60

80

Ca
nd

. g
en

. t
im

e
(m

s) Incremental LSH
IncrG

0 10 20
pb

0

10

20

30

40

M
RR

@
10

Incremental LSH
IncrG

Figure 10: Comparison with incremental search index in MS
MARCO with 𝑘=10

50 queries as the validation set and use the remaining as the test

set. We fine-tune the performance using the grid search run on the

validation set and report the best validation settings on the test set.

We also fine-tune the performance of baseline solutions using their

recommended parameter settings [8, 13, 28, 32]. Observe that IGP
achieves a 2X-3X speedup than the state-of-the-art. This is because

IGP achieves up to 24X FLOQ lower than the baseline methods

and IGP can reach a high recall with a small number of candidates.

The significant reduction of FLOQ can be attributed to two reasons.

First, we leverage the observation in Section 3.3 and that generates

high-quality candidates with a small computation cost. Second, we

propose to incrementally search for the top vector score, which

speeds up the candidate generation phase. The reduction of query

time is not as significant as FLOQ because our algorithm incurs a

considerable amount of random memory access in updating the

hash table (Algorithm 1) and searching the graph index (Algorithm

2). Both IGP and MUVERA use proximity graph index but IGP
outperformsMUVERA. This is becauseMUVERA suffers from an

increased vector dimensionality. For example, the dimensionality

inMUVERA is 16x-160x larger than the one in IGP.
Figure 7 and Figure 8 compare the QPS-accuracy tradeoff in all

datasets with different 𝑘 . We perform grid search of all methods

using their recommended parameter range [8, 13, 28, 32] and select

the Pareto frontier in terms of throughput (query per second) and

accuracy (MRR@10 or Recall@100) to plot the figure. It tests the

comprehensive performance under different parameter settings.

We only tune the parameter at the search stage and use the default

settings in the index building. We obtain the following observa-

tions: (1) IGP consistently outperforms the baseline on all of the

benchmarks. On average, IGP achieves 2X-3X speedup on the same

accuracy level. (2) IGP achieves a higher performance gain on a

larger dataset, this shows the good scalability of IGP. We also ob-

serve a significant reduction in the FLOQ, which reaches up to 20x

lower than the state-of-the-art.

5.3 Ablation study
IGP can be decomposed into the candidate generation phase (Lines

1-13 in Algorithm 1) and candidate refinement phase (Lines 14-16

in Algorithm 1). Figure 9 compares IGP and the version without

candidate generation (IGP w/o cand. gen.) and the version without

candidate refinement (IGPw/o cand. refinement). The experimental

settings are the same as Figures 7 and 8. In particular, the method

"IGP w/o cand. gen." randomly chooses candidates for refinement

and the method "IGP w/o cand. refinement" simply returns top-

𝑘 documents based on scores in the hash table. IGP significantly

Table 7: Index Size and Index Time in MS MARCO

DESSERT PLAID EMVB MUVERA IGP
Index Size (GB) 40.09 22.33 13.45 5.653 22.34

Index Time (Hour) 1.44 1.88 1.96 0.53 1.96

outperforms the other versions. This shows the effectiveness of our

proposed techniques.

Figure 10 compares the performance with different incremental

search indexes. In particular, IncrG uses our proposed incremental

search algorithm (Algorithm 2), and Incremental LSH replaces the

incremental search (Function GetNextCentroid() in Algorithm 2)

with Locality Sensitive Hashing algorithm [26]. We fix the other

parameters and increase 𝜙𝑐𝑎𝑛𝑑 through increasing 𝜙𝑝𝑏 and measure

its candidate generation time (Lines 1-13 in Algorithm 1) and the

end-to-end MRR. We note that the incremental search indexes only

affect the candidate generation time. Incremental LSH is worse

than IncrG because IncrG achieves significantly faster computation

than Incremental LSH. For example, when 𝜙𝑝𝑏 = 1, IncrG requires

2,022 vector score computation per query, while Incremental LSH

requires 16,053.

Table 7 shows the Index Size (IS) and the Index Time (IT) on

the largest document benchmark MS MARCO (with 8.8M docu-

ments). Recall that IGP uses Vector Quantization, Inverted File,

Scalar Quantization, and Proximity Graph as the index structure.

IGP requires 22.34 GB index space, which is reasonable compared

to other methods. We note that the majority (20 GB) of index size

is incurred by SQ, 2.3 GB is occupied by VQ, and the other indexes

costs less than 0.5 GB. Even for this large dataset, it takes less than

2 hours to build the index for IGP.

6 Conclusion
We study the efficient processing of multi-vector retrieval prob-

lems under the multi-vector model framework (e.g., ColBERTv2),

a framework that has many applications in retrieval-based tasks.

Existing solutions require fetching a large number of candidates.

Our analysis and experiments on benchmarks reveal an interesting

characteristic: the vectors of a document𝑉 contributing to F (𝑄,𝑉)
are likely to be within a few clusters nearest to vectors of the query

𝑄 . This motivates us to incrementally compute the top vector score

during candidate generation, and bounds the number of candidates

to be refined. We also design incremental search on the proxim-

ity graph index that achieves considerable speedup. Experimental

results show that IGP outperforms the state-of-the-art by 2x-3x.

In the future, we will study how to efficiently update the index

structures used in our solution.

7 Acknowledgment
We sincerely thank the reviewers for their insightful comments.

This work was partially supported by National Science Foundation

of China (NSFC No. 62422206), Hong Kong Research Grants Council

(GRF 152043/23E).

References
[1] 2017. Quora Reference. https://quoradata.quora.com/First-Quora-Dataset-

Release-Question-Pairs

[2] 2022. Lotte Data Source. https://github.com/stanford-futuredata/ColBERT/blob/

main/LoTTE.md

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/stanford-futuredata/ColBERT/blob/main/LoTTE.md
https://github.com/stanford-futuredata/ColBERT/blob/main/LoTTE.md

SIGIR ’25, July 13–18, 2025, Padua, Italy Zheng Bian, Man Lung Yiu, & Bo Tang

[3] 2022. MS MARCO, Quora and HotpotQA Data Source. https://huggingface.co/

datasets/BeIR/beir

[4] Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper, and

Theodore L.Willke. 2023. Similarity search in the blink of an eye with compressed

indices. PVLDB (2023).

[5] Moses Charikar. 2002. Similarity estimation techniques from rounding algorithms.

In STOC.
[6] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Ellen M. Voorhees,

and Ian Soboroff. 2021. TREC Deep Learning Track: Reusable Test Collections in

the Large Data Regime. In SIGIR.
[7] MayurDatar, Nicole Immorlica, Piotr Indyk, and Vahab S.Mirrokni. 2004. Locality-

sensitive hashing scheme based on p-stable distributions. In SoCG.
[8] Joshua Engels, Benjamin Coleman, Vihan Lakshman, and Anshumali Shrivastava.

2023. DESSERT: An Efficient Algorithm for Vector Set Search with Vector Set

Queries. In NeurIPS.
[9] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:

Sparse Lexical and Expansion Model for First Stage Ranking. In SIGIR.
[10] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. PVLDB
(2019).

[11] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,

and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic

Vector Quantization. In ICML.
[12] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. 2020.

Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate

Multi-sentence Scoring. In ICLR.
[13] Rajesh Jayaram, Laxman Dhulipala, Majid Hadian, Jason Lee, and VahabMirrokni.

2024. MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encoding. In

NeurIPS.
[14] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. (2011).
[15] Omar Khattab, Christopher Potts, and Matei Zaharia. 2021. Relevance-guided

Supervision for OpenQA with ColBERT. Trans. Assoc. Comput. Linguistics (2021).
[16] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage

Search via Contextualized Late Interaction over BERT. In SIGIR.
[17] Carlos Lassance and Stéphane Clinchant. 2022. An Efficiency Study for SPLADE

Models. In SIGIR.
[18] Dawn J. Lawrie, Efsun Selin Kayi, Eugene Yang, James Mayfield, and Douglas W.

Oard. 2024. PLAID SHIRTTT for Large-Scale Streaming Dense Retrieval. In

SIGIR.
[19] Dawn J. Lawrie, Sean MacAvaney, James Mayfield, Paul McNamee, Douglas W.

Oard, Luca Soldaini, and Eugene Yang. 2023. Overview of the TREC 2023 NeuCLIR

Track. In TREC.
[20] Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu, Tao Lei, Iftekhar Naim,

Ming-Wei Chang, and Vincent Zhao. 2023. Rethinking the Role of Token Retrieval

in Multi-Vector Retrieval. In NeurIPS.
[21] Minghan Li, Sheng-Chieh Lin, Barlas Oguz, Asish Ghoshal, Jimmy Lin, Yashar

Mehdad, Wen-tau Yih, and Xilun Chen. 2023. CITADEL: Conditional Token

Interaction via Dynamic Lexical Routing for Efficient and Effective Multi-Vector

Retrieval. In ACL.
[22] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and

Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional

Data - Experiments, Analyses, and Improvement. IEEE Trans. Knowl. Data Eng.
(2020).

[23] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,

and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Infor-

mation Retrieval Research with Sparse and Dense Representations. In SIGIR.
[24] Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. 2023.

Fine-grained Late-interaction Multi-modal Retrieval for Retrieval Augmented

Visual Question Answering. In NeurIPS.
[25] Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, and Ming-Chang Yang.

2020. Understanding and Improving Proximity Graph Based Maximum Inner

Product Search. In AAAI.
[26] Wanqi Liu, HanchenWang, Ying Zhang,WeiWang, Lu Qin, and Xuemin Lin. 2021.

EI-LSH: An early-termination driven I/O efficient incremental c-approximate

nearest neighbor search. VLDB J. (2021).
[27] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse,

Dense, and Attentional Representations for Text Retrieval. Trans. Assoc. Comput.
Linguistics (2021).

[28] Sean MacAvaney and Nicola Tonellotto. 2024. A Reproducibility Study of PLAID.

In SIGIR.
[29] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:

Contextualized Embeddings for Document Ranking. In SIGIR.
[30] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. (2020).

[31] Stanislav Morozov and Artem Babenko. 2018. Non-metric Similarity Graphs for

Maximum Inner Product Search. In NeurIPS.
[32] Franco Maria Nardini, Cosimo Rulli, and Rossano Venturini. 2024. Efficient

Multi-vector Dense Retrieval with Bit Vectors. In ECIR.
[33] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan

Majumder, and Li Deng. 2016. Ms marco: A human-generated machine reading

comprehension dataset. (2016).

[34] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan

Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine

Reading COmprehension Dataset. In CoCo@NeurIPS.
[35] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.

CoRR abs/1901.04085 (2019).

[36] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database

management systems. VLDB J. (2024).
[37] Cheoneum Park, Seohyeong Jeong, Minsang Kim, KyungTae Lim, and Yong-

Hun Lee. 2025. SCV: Light and Effective Multi-Vector Retrieval with Sequence

Compressive Vectors. In COLING.
[38] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-

ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training

Approach to Dense Passage Retrieval for Open-Domain Question Answering. In

NAACL-HLT.
[39] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,

and Mike Gatford. 1994. Okapi at TREC-3. In Text REtrieval Conference.
[40] Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau

Yih, Joelle Pineau, and Luke Zettlemoyer. 2022. Improving Passage Retrieval with

Zero-Shot Question Generation. In EMNLP.
[41] Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. 2022.

PLAID: An Efficient Engine for Late Interaction Retrieval. In CIKM.

[42] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei

Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late

Interaction. In NAACL-HLT.
[43] ShiguangWu, Wenda Wei, Mengqi Zhang, Zhumin Chen, Jun Ma, Zhaochun Ren,

Maarten de Rijke, and Pengjie Ren. 2024. Generative Retrieval as Multi-Vector

Dense Retrieval. In SIGIR.
[44] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,

Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor

Negative Contrastive Learning for Dense Text Retrieval. In ICLR.
[45] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, WilliamW. Cohen, Ruslan

Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for

Diverse, Explainable Multi-hop Question Answering. In EMNLP.
[46] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiao-

dan Liang, Zhenguo Li, Xin Jiang, and Chunjing Xu. 2022. FILIP: Fine-grained

Interactive Language-Image Pre-Training. In ICLR.
[47] Xi Zhao, Bolong Zheng, Xiaomeng Yi, Xiaofan Luan, Charles Xie, Xiaofang Zhou,

and Christian S. Jensen. 2023. FARGO: Fast Maximum Inner Product Search via

Global Multi-Probing. PVLDB (2023).

[48] Wengang Zhou, Yijuan Lu, Houqiang Li, and Qi Tian. 2012. Scalar quantization

for large scale image search. In ACM Multimedia Conference.

https://huggingface.co/datasets/BeIR/beir
https://huggingface.co/datasets/BeIR/beir

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting and Observations
	3.1 Problem definition
	3.2 Data storage and indexing of ColBERTv2
	3.3 Causes of high candidate generation time
	3.4 Observation on document benchmarks

	4 Incremental Greedy Probe (IGP)
	4.1 Retrieval algorithm
	4.2 Proximity graph index for MIPS
	4.3 Next-similar fetch on proximity graph
	4.4 Handling update

	5 Experimental Study
	5.1 Experimental settings
	5.2 Query processing evaluation
	5.3 Ablation study

	6 Conclusion
	7 Acknowledgment
	References

