
QSRP: Efficient Reverse k-Ranks Query Processing
on High-dimensional Embeddings

Zheng Bian1,2, Xiao Yan2, Jiahao Zhang3, Man Lung Yiu1, Bo Tang2§

1Department of Computing, The Hong Kong Polytechnic University
2Department of Computer Science and Engineering, Southern University of Science and Technology

3Huawei Technologies Co., Ltd.
{cszbian,csmlyiu}@comp.polyu.edu.hk, {yanx,tangb3}@sustech.edu.cn, cupermanrose@gmail.com

Abstract—Embedding models represent users and products as
high-dimensional embedding vectors and are widely used for
recommendation. In this paper, we study the reverse k-ranks
query, which finds the users that are the most interested in a
product and has many applications including product promotion,
targeted advertising, and market analysis. As reverse k-ranks
solutions for low dimensionality (e.g., trees) fail for the high-
dimensional embeddings generated by embedding models, we
propose the QSRP framework. QSRP precomputes the score table
between all user and product embeddings to facilitate pruning
and refinement at query time. As the score table is usually large,
QSRP samples some of its columns as the index to fit in memory.
To tackle the problem that naive uniform sampling results in
poor pruning effect, we propose query-aware sampling, which
conducts sampling by explicitly maximizing the pruning effect
for a set of sample queries. Moreover, we introduce regression-
based pruning, which fits cheap linear functions to predict the
bounds used for pruning. We also design techniques to build
the index with limited memory, reduce index building time, and
handle updates. We evaluate QSRP under various configurations
and compare with state-of-the-art baselines. The results show
that QSRP achieves shorter query time than the baselines in all
cases, and the speedup is usually over 100x.

Index Terms—Reverse k-Ranks, Ranking Query, High Di-
mensional Data, Product-oriented Recommendation, Embedding
Model

I. INTRODUCTION

To conduct recommendations, embedding models learn to
embed users and products as high-dimensional vectors from
data (e.g., user-product interactions, knowledge graphs, and
text descriptions) [1], [2], [3]. Representative embedding mod-
els include matrix factorization [1], [4], [5], neural network-
based models [6], [7], [8], and graph neural networks [9], [10],
[11]. They are widely adopted in industry and extensively
explored in academia due to their strong learning ability
and good recommendation performance. The high-dimensional
vectors produced by these models can be stored in vector
databases [12], [13] and used for various downstream appli-
cations, e.g., product recommendation [14], video recommen-
dation [8], and music recommendation [15].

Mathematically, every user u in a user set U (and every
product p in a product set P) is represented by an embedding
vector. The preference of a user for a product is indicated by

§Dr. Bo Tang is the corresponding author.

the inner product between their embeddings, i.e., f(u,p) =
u>p (also called the score) [16]. Each user ranks the products
in the product set according to their scores in descending
order. Given the embedding vectors of users and products and
the score function, many works study queries for downstream
applications, and we classify these queries into the following
two categories.

(I) User-oriented queries. A representative of this category
is maximum inner product search (MIPS) [17], which takes a
user and an integer k and returns the k products that have the
largest scores for the user. MIPS recommends products to a
user and is a key subroutine in recommendation systems [12].
Various techniques [18], [19], [20] have been proposed to
process the MIPS query efficiently for high-dimensional em-
beddings, e.g., vector quantization, and proximity graph.

(II) Product-oriented queries. Reverse k-ranks is a well-
known query in this category [21], [22], [23]. Given a product
p and an integer k, reverse k-ranks returns the k users that give
the smallest ranks to the query product. Intuitively, reverse k-
ranks recommends users to products by identifying the k users
that are the most interested in a product. It has many appli-
cations such as product promotion, targeted advertising, and
market analysis. For example, in product promotion, a product
producer has a budget to buy online advertisements [24], and
reverse k-ranks query can identify the k most promising users.
In Section II, we compare reverse k-ranks with other product-
oriented queries and show that it yields better accuracy.

In this work, we focus on processing reverse k-ranks
query on the high-dimensional embedding vectors generated
by embedding models. The reverse k-ranks query has been
studied [21], [22], [25] but existing works assume that each
dimension of the embeddings has explicit meanings (e.g., price
of a hotel and age of customer), and thus the embedding
dimensionality is low (e.g., <10). Their solutions use either
computational geometry techniques (e.g., skyline [26], onion
layer [27], and UTK [28]) or space-partitioning data structures
(e.g., R-tree [29], M-tree [30], and τ -LevelIndex [31]). These
techniques fail in high dimensionality (e.g., >50) due to the
curse of dimensionality [32]. For example, the pruning effect
of R-tree diminishes with dimensionality and almost vanishes
when the dimensionality exceeds 30 [22], and the skyline

3

Product set

Inception(𝐩1) (0.6,0.9) Léon(𝐩5) (0.3,0.6)

Devotion(𝐩2) (0.2,2.7) Iron Man(𝐩6) (2.4,0.9)

Troll(𝐩3) (2.1,1.8) Titanic(𝐩7) (0.9,0.0)

Smile(𝐩4) (1.8,2.7) Fight Club(𝐪) (2.7,0.6)

User set

Bob(𝐮1) (1.5,0.9)

Mary(𝐮2) (2.7,1.2)

Alan(𝐮3) (0.3,2.7)

Tom(𝐮4) (1.2,0.0)

Jerry(𝐮5) (0.9,1.2)

Score Sorted list

𝑓(𝐮1, 𝐪) 4.59 𝐩4, 5.13 , 𝐩3, 4.77 , 𝐪, 4.59 , 𝐩6, 4.41 , 𝐩2, 2.73 , 𝐩1, 1.71 , 𝐩7, 1.35 , 𝐩5, 0.99

𝑓(𝐮2, 𝐪) 8.01 𝐩4, 8.10 , 𝐪, 8.01 , 𝐩3, 7.83 , 𝐩6, 7.56 , 𝐩2, 3.78 , 𝐩1, 2.70 , 𝐩7, 2.43 , 𝐩5, 1.53

𝑓(𝐮3, 𝐪) 2.43 𝐩4, 7.83 , 𝐩2, 7.35 , 𝐩3, 5.49 , 𝐩6, 3.15 , 𝐩1, 2.61 , 𝐪, 2.43 , 𝐩5, 1.71 , 𝐩7, 0.27

𝑓(𝐮4, 𝐪) 3.24 𝐪, 3.24 , 𝐩6, 2.88 , 𝐩3, 2.52 , 𝐩4, 2.16 , 𝐩7, 1.08 , 𝐩1, 0.72 , 𝐩5, 0.36 , 𝐩2, 0.24

𝑓(𝐮5, 𝐪) 3.15 𝐩4, 4.86 , 𝐩3, 4.05 , 𝐩2, 3.42 , 𝐩6, 3.24 , 𝐪, 3.15 , 𝐩1, 1.62 , 𝐩5, 0.99 , 𝐩7, 0.81

(a) User and product embeddings

2

Product set

Inception(𝐩1) (0.6,0.9) Léon(𝐩5) (0.3,0.6)

Devotion(𝐩2) (0.2,2.7) Iron Man(𝐩6) (2.4,0.9)

Troll(𝐩3) (2.1,1.8) Titanic(𝐩7) (0.9,0.0)

Smile(𝐩4) (1.8,2.7) Fight Club(𝐪) (2.7,0.6)

User set

Bob(𝐮1) (1.5,0.9)

Mary(𝐮2) (2.7,1.2)

Alan(𝐮3) (0.3,2.7)

Tom(𝐮4) (1.2,0.0)

Jerry(𝐮5) (0.9,1.2)

Score Sorted list

𝑓(𝐮1, 𝐪) 4.59 𝐩4, 5.13 , 𝐩3, 4.77 , 𝐪, 4.59 , 𝐩6, 4.41 , 𝐩2, 2.73 , 𝐩1, 1.71 , 𝐩7, 1.35 , 𝐩5, 0.99

𝑓(𝐮2, 𝐪) 8.01 𝐩4, 8.10 , 𝐪, 8.01 , 𝐩3, 7.83 , 𝐩6, 7.56 , 𝐩2, 3.78 , 𝐩1, 2.70 , 𝐩7, 2.43 , 𝐩5, 1.53

𝑓(𝐮3, 𝐪) 2.43 𝐩4, 7.83 , 𝐩2, 7.35 , 𝐩3, 5.49 , 𝐩6, 3.15 , 𝐩1, 2.61 , 𝐪, 2.43 , 𝐩5, 1.71 , 𝐩7, 0.27

𝑓(𝐮4, 𝐪) 3.24 𝐪, 3.24 , 𝐩6, 2.88 , 𝐩3, 2.52 , 𝐩4, 2.16 , 𝐩7, 1.08 , 𝐩1, 0.72 , 𝐩5, 0.36 , 𝐩2, 0.24

𝑓(𝐮5, 𝐪) 3.15 𝐩4, 4.86 , 𝐩3, 4.05 , 𝐩2, 3.42 , 𝐩6, 3.24 , 𝐪, 3.15 , 𝐩1, 1.62 , 𝐩5, 0.99 , 𝐩7, 0.81

(b) User ranks for products

Fig. 1: An example of reverse k-ranks query, we use 2 dimension embeddings for illustration.

of an embedding set contains almost all the embeddings in
high dimensionality [33]. In addition, reverse k-ranks is more
complex than MIPS because it considers the ranks of a product
for all users while MIPS considers a single user. We highlight
the two main research challenges of efficient reverse k-ranks
query processing on high-dimensional embeddings as follows.

• C1: High computation cost. To obtain the k-users having
the smallest ranks for the query product, a brute-force solu-
tion computes the scores for every user-product pair (called
score table) to determine the ranks, which is expensive
because there are many user-product pairs (e.g., trillions)
and each pair involves two high-dimensional embeddings.

• C2: Large memory footprints. To reduce the computation
cost, a straightforward solution is to precompute the user-
product score table and store it as the index. However, the
score table can take up several TBs. which is beyond the
memory capacity of most servers.

Our solution QSRP. To overcome the above challenges, we
propose the QSRP framework to process high-dimensional
reverse k-ranks query. In particular, QSRP devises a sampling-
based index (Section III) to facilitate pruning at query time.
Since the score table can be very large for real datasets (e.g.,
several TBs), QSRP samples some columns (i.e., the scores at
certain ranks for all users) of the score as the sampling-based
index to meet the memory budget. With the sampling-based
index, QSRP determines a rough rank for each user, which
allows pruning users that cannot enter the result set. For the
remaining users, QSRP computes scores to refine their rough
ranks of the query product to derive the final query result.

The ranks to sample for the sampling-based index are cru-
cial for pruning effectiveness and query efficiency. In QSRP,
we propose query-aware sampling (Section IV), which chooses
the ranks to sample according to a set of training queries
that resemble the real queries. In particular, we formulate the
computation cost of the training queries as a function of the
sampled ranks and design a dynamic programming procedure
to solve the optimal sampled ranks that minimize computation
cost. To further reduce the costs of score computation and
sampling-based index search, we design the regression-based
pruning technique (Section V) in QSRP, which is inspired by
learned index techniques [34]. Specifically, we compute cheap
lower and upper bounds of the user-product score and fit a

simple linear function to map the score bounds to the rank
bounds of the query product for each user. These rank bounds
allow us to prune users from score computation, and we utilize
linear programming to minimize the maximum prediction error
of the linear functions for a good pruning effect. Besides the
two key designs, QSRP also incorporates techniques to build
index for large datasets with limited memory, speed up index
construction, and handle dataset updates (Section VI).

We compare our QSRP with two state-of-the-art reverse
k-ranks solutions in low dimensionality (i.e., MPA [21] and
Grid [22]) and an adaption of high-dimensional MIPS (i.e.,
reverse RMIPS [35]) (Section VII). We use four large-scale
real datasets that contain millions of users and hundreds
of thousands of products and experiment with various con-
figurations of the result size k, index size, and embedding
dimensionality. The results show that QSRP achieves a shorter
query processing time than the baselines in all cases, and the
speedup is usually two orders of magnitude and can be up
to three orders of magnitude. Micro benchmarks suggest that
our optimizations (e.g., query-aware sampling and regression-
based pruning) are effective in reducing query time, and QSRP
can build index for large datasets with reasonable time (e.g.,
half an hour).

II. PROBLEM DEFINITION

For a user set U that contains m users and a product set
P that contains n products, embedding models represent each
user u ∈ U and product p ∈ P as a d-dimensional vector.
The dimensionality d is usually large for high recommendation
accuracy, e.g., hundreds or even thousands [36]. The score of
a user for a product is typically calculated as the inner product
between their embedding vectors,

f(u,p) = u>p,

with a larger score indicating a higher preference. For a prod-
uct q that may or may not belong to the product set P (e.g.,
an existing product or a new product processed incrementally
by the embedding model [37]), we use R(u,q,P) to denote
its rank for user u, which is defined as follows.
Definition 1 (Rank). Given a user u and a product set P , the
rank of a product q is R(u,q,P) = 1+

∑
p∈P I[f(u,p) >

f(u,q)], where I[·] is the indicator function.

We add 1 in Definition 1 such that R(u,q,P) starts from
1. If R(u,q,P) is small, there are only a few products p with
f(u,p) > f(u,q) for user u, which suggests that product q

2

10 50 100 150 200
k

0%

25%

50%

75%

100%
Hi

t R
at

io
Reverse k-Rank
k-Score
Random

UserPop
RMIPS

(a) Last.FM

10 50 100 150 200
k

0%

20%

40%

60%

Hi
t R

at
io

Reverse k-Rank
k-Score
Random

UserPop
RMIPS

(b) Pinterest

Fig. 2: Number of recommended users (i.e., k) vs. hit ratio, a
higher hit ratio means better recommendation accuracy.

is attractive to u. We also denote R(u,q,P) as Ru or R(u,q)
when the meaning is clear from the context.
Definition 2 (Reverse k-ranks query, R-Ranks(q, k)). Given
a positive integer k and a query product q ∈ Rd, return a user
set UR with UR ⊆ U and |UR| = k such that for any user pair
u ∈ UR and u′ ∈ U − UR, Ru ≤ Ru′ holds.

R-Ranks(q, k) returns the k users u that have the smallest
ranks Ru for the query product q in the user set U . There
can be some users u′ ∈ U − UR outside the result set with
Ru′ = Ru for a user u in the result set UR. We break ties
arbitrarily among these users with the same ranks and allow
to include any of them in the result set.
Example 1. Figure 1 shows an example of R-Ranks(q, k),
where each product is a movie and each user is a movie viewer.
The query product is Fight Club with q = (2.7, 0.6) and k =
2. In Figure 1(b), the products are sorted in descending order
of their scores for each user, and the rank Ru of query product
q is its position in the sorted list (marked with the dash). Thus,
we have Ru1

= 3, Ru2
= 2, Ru3

= 6, Ru4
= 1, and Ru5

= 5.
The result of R-Ranks(q, k = 2) is {Mary(u2),Tom(u4)} as
u2 and u4 have the smallest ranks for q among all users.

Alternative queries. To show the effectiveness of reverse k-
ranks for product-oriented recommendation, we compare its
recommendation accuracy with 4 alternative queries on two
datasets (see [38] for source) in Figure 2. In particular, we
use matrix factorization to obtain the embeddings and measure
recommendation accuracy by hit ratio (HR) [39], which is
widely used in recommender systems [39], [40], [41] and
defined as

HR@k =
1

|Q|
∑
q∈Q

I
[
|Tq ∩Rq|

]
, (1)

where Q is the set of query products; Tq and Rq are the
actual interacted user set and algorithm recommended user
set for product q, respectively; k is the size of Rq. Larger
hit ratio means that Tq and Rq overlap for more products.
Among the alternative queries, Random randomly samples k
users and serves as a naive baseline; UserPop [40] selects the
k users that have the largest number of product interactions; k-
Score [21] chooses the k users that have the largest scores for
the query product. Reverse MIPS [42] chooses the users whose
top-k′ products include the target product, and to align with
the other queries, we tune k′ such that the average number of
recommended users for a product is k.

Figure 2 shows that reverse k-ranks yields higher rec-

1 2 3 4 5 6 7

𝐮1 5.13 4.77 4.41 2.73 1.71 1.35 0.99

𝐮2 8.10 7.83 7.56 3.78 2.70 2.43 1.53

𝐮3 7.83 7.35 5.49 3.15 2.61 1.71 0.27

𝐮4 2.88 2.52 2.16 1.08 0.72 0.36 0.24

𝐮5 4.86 4.05 3.42 3.24 1.62 0.99 0.81

Rank

4.59

8.01

2.43

3.24

3.15

𝑓(𝐮, 𝐪)

(a) Score table

1 4 7

𝐮1 5.13 2.73 0.99

𝐮2 8.10 3.78 1.53

𝐮3 7.83 3.15 0.27

𝐮4 2.88 1.08 0.24

𝐮5 4.86 3.24 0.81

𝑓(𝐮1, 𝐪)=4.59

pos𝐮1 = 1

Rank refinement

Rank

Find position

Early pruning

1 4 7

𝐮1 5.13 2.73 0.99

𝐮2 8.10 3.78 1.53

𝐮3 7.83 3.15 0.27

𝐮4 2.88 1.08 0.24

𝐮5 4.86 3.24 0.81

Rank

(b) Sample index

Fig. 3: An example of US with τ = 3.

ommendation accuracy than these alternative queries. For
UserPop, users that interact with many products may not like
the particular query product. For k-Score, some users tend to
give large scores to all products and thus may not like the
query product even if their scores are large. Reverse MIPS
suffers from the uncontrollable result size problem, i.e., it
recommends a popular product to many users and an ordinary
product to only a few or no users. In comparison, reverse
k-ranks effectively identifies the most interested users for a
product by using their preference ranks for all products and
allows explicit control on the result size.

III. SAMPLING-BASED INDEX

As space partitioning indexes (e.g., R-tree and M-tree) are
not effective in high dimensionality [22], [32], we precompute
the table that contains the scores f(u,p) of all user-product
pairs to facilitate pruning at query time. In this section, we
introduce the sampling-based index, and a baseline sampling
solution called uniform sample (US).

A. Index Structure

We use T to denote the score table, which contains the
scores of all user-product pairs, i.e., T = {f(u,p) | ∀p ∈
P,∀u ∈ U}. Tu is a row of T , which contains the scores
of a user Tu = {f(u,p) | ∀p ∈ P} and is sorted in
descending order. As shown in Figure 3(b), the sampling-
based index samples a subset of ranks (i.e., columns) of the
score table T as index. We denote the set of sampled ranks as
S = {s1, s2, · · · , sτ}, where 1 ≤ si ≤ n for si ∈ S and τ is
the number of sampled ranks. The ranks in S are arranged in
ascending order with si < si+1. The index can be expressed as
T (S) = {f(u,p) | R(u,p,P) ∈ S,∀u ∈ U}. We use Tu(S)
to denote the row of user u in the index. For US, the sampled
ranks S span [1, n] with uniform spacing. For Figure 3(b),
S={1, 4, 7}, which means that US keeps the first, fourth, and
seventh columns of the score table T . We determine τ by the
memory budget θmem of the sampling-based index as

τ = bθmem/(mθscr)c ,
where m is the number of users, θscr is the size of a score,
and b·c is the floor function.

B. Query Processing

The sampling-based index allows to derive bounds for the
rank of the query product for each user, which can be used to
prune users that do not belong to the result set.

Theorem 1 (Rank bound). For a product q and rank set S,
define posu as the position of f(u,q) in the index Tu(S) of

3

𝐮1, 𝐮2

1 2 3 4 5 6 7 8 Rank

3

2

1

0
𝐮4

𝐮3, 𝐮5
pruned users

early detected users

refinement

pos𝐮

Fig. 4: Rank bound pruning example.

Algorithm 1 Query processing for US (product q, k, U , P)

1: for each user u ∈ U do
2: posu ← BinarySearch(Tu(S), f(u,q))

3: kpos← kth minimum of {posu | ∀u ∈ U}
4: Candidate set UC ← {u ∈ U | posu = kpos}
5: Result set UR ← {u ∈ U | posu < kpos}
6: Compute Ru for ∀u ∈ UC by Definition 1
7: UC ← {k−|UR| users with the smallest Ru in UC}
8: return UR ∪ UC

user u if Tu[posu] > f(u,q) ≥ Tu[posu + 1], where Tu[i] is
the ith entry of Tu(S). By extending S with s0 =0 and sτ+1 =
n+1, the rank of q for u satisfies sposu + 1 ≤ Ru ≤ sposu+1.
That is, the lower and upper bounds for Ru are

R↓u = sposu + 1, R↑u = sposu+1. (2)

The proof of Theorem 1 is straightforward and thus omitted.

Example 2. Consider the query product q and user u1 in
Figure 3, we have f(u1,q) = 4.59, and posu1

= 1 (shown
with blue bracket). By Theorem 1, we have R↓u1

=s1+1=2,
and R↑u1

=s2 =4. The actual rank of q for u1 is Ru1 =3.

Theorem 2 (Rank bound pruning). For a product q, de-
note the kth minimum among the positions of all users (i.e.,
{posu | ∀u ∈ U}) as kpos, it suffices to determine the exact
ranks for users whose posu is kpos, i.e., {u | posu =kpos}.

Proof. Let u′ be the user(s) whose posu is the kth minimum
among all users. If a user u has posu < posu′ , we have R↑u <
R↓u′ and there are at most k − 1 such users, thus u is in the
result set. In contrast, if posu > posu′ , we have R↓u > R↑u′
and thus u is not in the result set. Therefore, we do not need to
determine the exact ranks for users in {u | posu 6=kpos}.

Example 3. Figure 4 illustrates rank bound pruning for the R-
Ranks(q, k=2) query in Figure 3. The blue part represents the
kth minimum position (kpos=1). By Theorem 2, we determine
that u4 is in the result set, and u3 and u5 are not in the result
set. Thus, we only need to compute the exact rank of the query
product for u1 and u2, which fall in the blue part.

Algorithm 1 summarizes the query processing procedure
of the sampling-based index. Function BinarySearch(A, v)
returns the position of the rightmost element in the sorted
array A that is larger than the key v. For each user u, we
first compute the score f(u,q) and posu (lines 1-2). Then,
we conduct pruning and initialize the candidate set UC and
the result set UR by Theorem 2 (lines 3-5). This step (lines
1-5) is referred to pruning. For each user in the candidate

MovieLens Amazon0%

50%

100%
k=100 k=200 k=100 k=200

Refinement Pruning

Pc
t.Q

ue
ry

 T
im

e

Fig. 5: Query time decomposition for US.

1 2 4

𝐮1 5.13 4.77 2.73

𝐮2 8.10 7.83 3.78

𝐮3 7.83 7.35 3.15

𝐮4 2.88 2.52 1.08

𝐮5 4.86 4.05 3.24

Rank

(a) An optimal sample

𝐮1

1 2 3 4 5 6 7 8

3

2

1

0

pos𝐮 𝐮3, 𝐮5

pruned users

early detected users

refinement𝐮2

Rank

𝐮4

(b) Pruning situation in (a)

Fig. 6: An example of the optimal rank set.

set UC , we compute her scores for all products to obtain the
exact rank Ru (line 6), which is referred to refinement. With
the exact ranks, we select the users with the smallest ranks
from UC and merge them with UR.

Performance profiling. Figure 5 decomposes the query time
of US into pruning part and refinement part. The result shows
that both refinement and pruning take up a significant portion
of the query time. As such, we design query-aware sampling
in Section IV and regression-based pruning in Section V to
reduce refinement and pruning costs, respectively.

IV. QUERY-AWARE SAMPLING

In this part, we first show that the refinement cost can be
reduced by carefully choosing the rank sample set S with a toy
example. Then, we express the refinement cost as a function
of S and propose a dynamic programming procedure to find
the optimal S that minimizes the refinement cost.

A. Motivation

Consider the query R-Ranks(q, k = 2) in Figure 1(a) and
the memory index in Figure 3(b) that uses S = {1, 4, 7}. We
can prune u3, u4 and u5 from refinement but still need to
determine the exact ranks of u1 and u2 for the query product.
Define the refinement cost as the number of users whose exact
ranks need to be computed, S= {1, 4, 7} yields a refinement
cost of 2. If the ranks of all users for the query product are
known beforehand, we can construct a rank sample set S to
minimize the refinement cost. In fact, for the example query,
any rank sample set that contains 2 incurs zero refinement
cost because it allows determining that Ru2

,Ru4
≤ 2 and

Ru1 ,Ru3 ,Ru5 ≥ 3, which gives {u2,u4} as the result set
without refinement. We show an example of such optimal rank
sample sets, i.e., S={1, 2, 4} in Figure 6.

In practice, we cannot have the queries and hence the ranks
of the users for the queries beforehand. However, we can sam-
ple a set of historical query products Q= {q1,q2, · · · ,qw}
(called training queries hereafter) and result set sizes (denoted
as kidx to distinguish from the result size kqry of online
queries) and assume that the historical queries resemble the

4

online queries. If we can select a rank set S to minimize
the refinement cost of the training queries, the refinement
cost of the online queries will also be small. The problem of
rank set selection is challenging for two reasons. (i) Different
queries may require to include different ranks in the rank set
S, and thus we need to define a cost function that considers
all queries. (ii) The search space is large. With n products and
τ ranks to sample, there are

(
n
τ

)
possible rank sets, and thus

we need an efficient search strategy.

B. Cost Function and Dynamic Programming

Similar to Theorem 1, we extend the rank set S =
{s1, s2, · · · , sτ} with two virtual elements, i.e., s0 = 0 and
sτ+1 = n+1. For a set of training queries Q, we define the
refinement cost CQ(S) as the total number of users whose
exact ranks (denoted as R(u,q)) needs refinement for the
queries in Q. CQ(S) is a function of the rank set S and can
be expressed as

CQ(S)=
∑
q∈Q

∑
u∈U

τ+1∑
i=1

I
[
si-1 < R(u′,q),R(u,q) ≤ si

]
. (3)

Eq. (3) utilizes Theorem 2, which states that for a query
q, we only need to refine the users with posu = kpos. In
particular, R(u,q) is the rank of user u for product q, and
R(u′,q) is the kidx

th smallest rank among all users for q. In
the indicator function I[·], si−1 < R(u′,q) ≤ si indicates that
kpos falls in score segment (si−1, si] while si−1 < R(u,q) ≤
si indicates that posu also falls in the score segment. If the
two conditions hold, it suggests that posu = kpos and means
that user u needs to be refined for product q. Thus, Eq. (3)
uses the indicator function I[·] to determine if a user needs to
be refined for a query, and sums over all queries, users, and
score segments. Note that the rank of a user R(u,q) can fall
in only one score segment for each query, and thus Eq. (3) will
not count one user multiple times for a query. With the cost
function CQ(S), we define the rank set selection problem.

Definition 3 (Rank set selection problem). Given the user set
U , product set P , a set of training queries Q, and the size of
the rank set τ , find the rank set that minimizes the refinement
cost CQ(S). That is,

arg min
S

CQ(S)

s.t. S ⊆ {1, 2, · · ·, n} and |S| ≤ τ.
(4)

At first glance, the rank set selection problem in Definition 3
requires enumerating all possible rank sets. In the following,
we massage the cost function CQ(S) in Eq. (3) into a form
that is amendable for efficient optimization.

Lemma 1. Define function Υ(si−1, si) as
Υ(si−1, si)=

∑
q∈Q

∑
u∈U

I
[
si-1 < R(u′,q),R(u,q) ≤ si

]
, (5)

then the cost function CQ(S) in Eq. (3) can be expressed as
CQ(S) =

∑τ+1
i=1 Υ(si−1, si). (6)

Proof. The proof is straightforward by moving the summation
over the score segments to the outermost for Eq. (3).

Lemma 1 shows that CQ(S) can be expressed as a summa-
tion over the refinement cost of each score segment (si−1, si].
This suggests that if we modify some score segments (e.g., by
inserting a rank in between (si−1, si]), the refinement costs of
the unaffected segments will not change.

Lemma 2. Denote S(i, j) as a rank set that satisfies (i) the
largest rank in S(i, j) is i and (ii) the rank set S(i, j) contains
exactly j ranks, and we also extend S(i, j) with s0 = 0 and
sj+1 = n+ 1. Define function Γ(t, i) as

Γ(t, i) = Υ(t, i) + Υ(i, n+ 1)−Υ(t, n+ 1). (7)
For rank set S(t, j) with t < i ≤ n and 2 ≤ j ≤ τ , we have

CQ(S(t, j − 1) ∪ {i}) = Γ(t, i) + CQ(S(t, j − 1)). (8)

Proof.
Γ(t, i) + CQ(S(t, j − 1)) = Γ(t, i) +

∑j
i=1 Υ(si−1, si)

= Γ(t, i) + Υ(t, n+ 1) +
∑j−1
i=1 Υ(si−1, si)

= Υ(t, i) + Υ(i, n+ 1) +
∑j−1
i=1 Υ(si−1, si)

= CQ(S(t, j − 1) ∪ {i}).

We can construct rank set S(i, j) by inserting rank i at the
end of rank set S(t, j− 1). Lemma 2 shows that CQ(S(i, j))
can be expressed by adding CQ(S(t, j − 1)) and Γ(t, i), and
Γ(t, i) is not affected by CQ(S(t, j − 1)).

Theorem 3. Given parameter i and j, denote S∗(i, j) as the
rank set that has the minimum refinement cost for the query set
Q among all possible S(i, j). For 1 ≤ i ≤ n and 1 ≤ j ≤ τ ,
we have

CQ(S∗(i,j))=

{
Υ(0,i)+Υ(i,n+1) j=1

min
1≤t<i

{CQ(S∗(t,j−1))+Γ(t,i)} otherwise. (9)

Proof. When j = 1, the rank set can only be S∗(i, 1) = {i},
which divides the ranks into two segments (0, i] and (i, n+1].
This gives the upper half of Eq. (9).

When j 6= 1, by Lemma 2, we have CQ(S(i, j)) =
CQ(S(t, j−1))+Γ(t, i). For a fixed t and i, Γ(t, i) is fixed,
and thus we should choose S∗(t, j−1) among all possible
S(t, j − 1) to minimize CQ(S(t, j − 1)); then we should
minimize CQ(S∗(t, j−1))+Γ(t, i) over all possible choices
of t, which gives the lower half of Eq. (9).

With S∗(i, τ) for all possible i, the solution to the rank set
selection problem in Definition 3 can be expressed as

S∗ = arg min
S∗(i,τ),i∈[τ,n]

CQ(S∗(i, τ)). (10)

We constrain i ∈ [τ, n] as the rank set S contains τ ranks and
thus the maximum rank i ≥ τ . If i < τ for some optimal rank
set S∗ (which also means that |S∗| < τ), we can add ranks to
S∗ without increasing CQ(S∗).1

C. Overall Procedure

Algorithm 2 shows the procedure of finding the optimal rank
set using Eq. (9). In particular, we use two arrays to record
the states: cost(i, j) for the refinement cost of the optimal
rank set S∗(i, j) and rank(i, j) for the second largest rank in

1It is straightforward to show that if S′ ⊂ S, then CQ(S′) ≥ CQ(S).

5

Algorithm 2 Query-aware sampling (rank set size τ)

1: cost← 2D array with size (n+ 1)× τ
2: rank ← 2D array with size (n+ 1)× τ
3: Precompute and cache Υ(i, j), ∀1 ≤ i < j ≤ n
4: for i ∈ [1, n] do
5: cost(i, 1)← Υ(0, i) + Υ(i, n+ 1), rank(i, 1)← i

6: for j from 2 to τ do
7: for i ∈ [1, n] do
8: rank(i, j)← arg min

t∈[1,i)
{cost(t, j − 1) + Γ(t, i)}

9: cost(i, j)←cost(rank(i, j), j−1)+Γ(rank(i, j), i)

10: Result rank set S ← ∅, i∗ ← arg min
i∈[τ,n]

cost(i, τ)

11: for j from τ to 1 do
12: S ← S ∪ rank(i∗, j), i∗ ← rank(i∗, j)

13: return S
S∗(i, j). We precompute and store Υ(i, j) for all i, j at line
3, which is used to compute Γ(·, ·) (see Eq. (7)). Lines 4-5
initialize cost(i, j) for j=1, and lines 6-9 compute cost(i, j)
and rank(i, j) from j = 2 to j = τ . The optimal refinement
cost is given by the minimum cost(i, τ) over all i, and the
corresponding rank set is obtained by recursively traversing
the rank array (lines 11-12).

Algorithm 2 consists of two main parts: (i) compute Υ(·, ·)
(line 3) and (ii) nested loop (lines 6-9). Computing a single
Υ(·, ·) takes O(wm log n) time, and thus enumerating all
possible i and j takes O(wmn2 log n) time. The nested loop
take O(τn2) time because both i and t range in [1, n]. Both
parts involve n2 but the number of products n is usually large.

We introduce two optimizations to speedup Algorithm 2.
First, we precompute R(u,q) for all user-query pairs and look
up the required entries when computing Υ(·, ·). In particular,
we store a 2D array with dimension w× (n+1) named CT
with CTq[i]=

∑
u∈U I[R(u,q)∈ [1, i]]. To compute Υ(s1, s2),

we find all the queries with Q′ = {q | R(u′,q) ∈ [s1, s2]},
and thus Υ(s1, s2) =

∑
q∈Q′ (CTq [s2]−CTq [s1−1]). By

summing over the queries, the computation of Υ(·, ·) reduces
the O(wmn2 log n) time of part (i) to O(wn2) time.

Second, we use a simple heuristic to reduce the number
of candidate ranks for the nested loop. In particular, Eq. (3)
shows that user refinement is invoked when R(u,q) falls in
the same score segment (si−1, si] as R(u′,q), which is the
kidx

th smallest rank for q. Intuitively, the optimal rank set
should be around R(u′,q) because this shortens the length
of the score segments surrounding R(u′,q) and thus reduces
the number of users whose R(u,q) falls in the same score
segment as R(u′,q). Thus, we change the rank candidate set
from [1, n] in line 7 to Ω =

⋃
q∈QR(u′,q) ∪ {R(u′,q)+1}.

This optimization reduces the number of Υ(·, ·) to compute
from O(n2) to O(w2) and the number of possible values for i
and t from n to w. With the two optimizations, the overall time
complexity becomes O(w3), which is much smaller because
w�m and w�n usually hold.
Parameter selection. Query-aware sampling requires to spec-
ify the historical query workloads, which involves (i) the query

MovieLens Amazon0%

50%

100%
k=100 k=200 k=100 k=200

Refinement Pruning

Pc
t.Q

ue
ry

 T
im

e

Fig. 7: Query time decomposition for QS.

Model ො𝑔𝐮(𝑓𝐪
↓)

ො𝑔𝐮(𝑓𝐪
↑)

𝑔𝐮(𝑓𝐪
↑) 𝑔𝐮(𝑓𝐪

↓)

𝑔𝐮(𝑓𝐪)

R𝐮 Rank

𝑓𝐪
↑𝑓𝐪

↓ 𝑓𝐪

−𝜖𝐮 +𝜖𝐮−𝜖𝐮 +𝜖𝐮

Score

R𝐮
↓ R𝐮

↑

Fig. 8: The schematic diagram of regression-based pruning.

vector q, (ii) the number of users kidx required by each query
for index building, and (iii) the number of training queries w.
We randomly sample the product embeddings as q. Setting kidx
is subtle because the number of users required by the actual
queries (denote as kqry) may be different from kidx. We suggest
configuring kidx as the maximum possible kqry and explain the
reasons in Section VII-C. For the number of training queries
w, we empirically observe that query time first decreases with
w but stabilizes after w reaches several thousand (see Figure
15(a)) and thus suggest using w=5, 000.

Performance profiling. Query-aware sampling (QS) achieves
significantly shorter query time than uniform sample (US) by
reducing the refinement cost. For instance, with k = 200 on
the Amazon dataset, US takes 272ms while QS takes only
117ms for an average query. This is because US computes
55 million scores for each query while QS computes only 0.4
million scores. Figure 7 decomposes the query time of QS. The
results show that the pruning part now dominates the query
time. Thus, we introduce regression-based pruning to reduce
the pruning time in the next section.

V. REGRESSION-BASED PRUNING

Recall that the pruning part of query processing computes
the score f(u,q) and searches the sampling-based index
for each user (i.e., lines 1-2 in Algorithm 1). We optimize
the pruning part because the score computation and index
searching need to be invoked many times. Figure 8 shows how
regression-based pruning (RP) accelerates the pruning part. In
particular, RP first computes cheap lower and upper bounds
for the score f(u,q), denoted as f↓(u,q) and f↑(u,q) (or f↓q
and f↑q for conciseness). Inspired by the learned index [34],
RP learns a function ĝu : R → R that predicts the rank of a
score for each user u. As the learned function ĝu incurs errors,
we relax the predicted ranks by the maximum prediction error
εu. This yields rank bounds for each user (marked by the red
bracket in Figure 8) and thus allows fast pruning.

6

Score bounds. We use the Cauchy–Schwarz inequality to
compute bounds for fq. In particular, we have{

fq ≤ f↑q = f(uh,qh) + ‖u{h‖‖q{h‖
fq ≥ f↓q = f(uh,qh)− ‖u{h‖‖q{h‖

, (11)

where uh is the first h dimensions of vector u and ‖u{h‖ is the
l2-norm of the last d−h dimensions of u. Note that ‖q{h‖ is
computed only once for each query, and ‖u{h‖ is precomputed
during index building. We adopt the SVD technique in [43]
to project the embeddings such that the norm of the last
dimensions is small. Compared with computing the exact score
with d dimensions, Eq.(11) uses only h dimensions.

A. Regression-based Rank Bound

Based on the score bounds f↑q and f↓q , we obtain rank
bounds for each user u without conducting the binary search
on the sampling-based index. In particular, we regard the index
of user u (i.e., Tu(S)) as a function gu : R→ {1, 2, · · · , τ+1}
that maps score (i.e., fq) to position (i.e., posu). Regression-
based pruning fits a function ĝu to approximate gu. We define
the approximation error εu as

εu = max
Tu[1]≤scr≤Tu[τ]

|gu(scr)− ĝu(scr)|, (12)

where Tu[1] and Tu[τ] are the largest and smallest scores in
the index of user u, respectively. With the approximation error
εu, we can obtain the bounds for posu as

pos↓u = bĝu(f↑q)− εuc, pos↑u = dĝu(f↓q) + εue. (13)
The bounds for posu may overflow, e.g., pos↓u < 1 or pos↑u >
τ+1, we set pos↓u as 1 and pos↑u as τ+1 in these cases. With
the bounds for posu, rank bounds (i.e., R̂

↓
u and R̂

↑
u) for user

u are derived using Theorem 1 as
R̂
↓
u = spos↓u + 1, R̂

↑
u = spos↑u+1, (14)

where si is the ith rank in the rank set S. We use Eq.(14) for
user pruning following the logic of Algorithm 1. In particular,
we first compute the rank lower bound and upper bound for
each user as R̂

↓
u and R̂

↑
u, and then find the kth smallest lower

and upper bounds as R′ and R′′. Users with R̂
↑
u < R′ are in

the result set and users with R̂
↓
u ≥ R′′ cannot be in the result

set (i.e., pruned), and the remaining users are in the candidate
set and checked with the sampling-based index.

B. Model Training

We fit ĝu(·) as a linear function, i.e.,
ĝu(fq) = afq + b, (15)

where a and b are the slope and intercept of the linear function,
fq is the score, and ĝu(fq) is the predicted posu. To obtain
a and b, we need to define a loss function for model training.
As εu quantifies how well ĝu(fq) approximates gu(fq), we
use εu as the loss, which is expressed as follows.

Theorem 4. Given the rank set S, the maximum prediction
error εu in the interval of [Tu[τ], Tu[1]] can be computed as
εu = max

i∈{1,2,··· ,τ−1}
{|i+1−ĝu(Tu[i+1])| , |i+1−ĝu(Tu[i])|},

where Tu[i] is the ith score in the sampling-based index Tu(S).

0 1 2
Score

0k

5k

10k

Fr
eq

ue
nc

y

(a) Score distribution

1 2
Score

0

200

400

Ra
nk

(b) w/o transform

0.0 0.5 1.0
Score

0

200

400

Ra
nk

(c) w transform

Fig. 9: Relation between score and rank for a user from the
Yelp dataset without and with distribution transformation. The
red dotted line plots the learned linear function.

Proof. By the definition of posu, gu(fq) can be expressed as

gu(fq) =

1 Tu[1]≤fq
i+1 Tu[i+1]≤fq<Tu[i],

τ+1 Tu[τ]≥fq
∀i∈{1, 2, · · · , τ−1}.

That is, gu(fq) is constant for every score interval [Tu[i+
1], Tu[i]]. As ĝu(fq) is a linear function and thus monotonic,
function ĝu(·)−gu(·) is also monotonic in each score interval.
Therefore, the maximum error of an interval only appears at
the boundary points, i.e., fq =Tu[i] or fq =Tu[i+1]. Thus we
have εu ≥ max{|i+1− ĝu(Tu[i+1])|, |i+1− ĝu(Tu[i])|} for
each interval. Traversing all the score intervals gives εu.

We minimize εu for tight rank bounds, i.e.,
argmin
a,b

εu.

Given the expression of εu, the optimization problem can be
transformed into the following linear programming problem,

Minimize εu

s.t.

aTu[i+1]+b+εu ≥ i+1
aTu[i+1]+b− εu ≥ i+1
aTu[i]+b+εu ≥ i+1
aTu[i]+b−εu ≥ i+1

∀i ∈ {1,2,· · ·,τ−1}.
(16)

There are 3 variables and 4τ−4 constraints in Eq. (16), and
thus Eq. (16) can be solved with O(τ) complexity using the
Seidel’s linear programming algorithm [44].

Distribution transformation. We find that the approximation
error εu is large for some datasets. This is because the score-
rank relation does not fit well with a linear function. For
instance, for the user in Figure 9(a), the score distribution is
bell-shaped and resembles a normal distribution. Figure 9(b)
shows that the rank changes slowly when the score is large
but very quickly for moderate scores, which is difficult to fit
with a linear function that changes at a constant rate.

To tackle this problem, we apply a distribution transforma-
tion before fitting the linear function for each user. Denote the
cumulative distribution function (CDF) of the scores for a user
as Lu(·), the linear function to fit becomes

ĝu(fq) = aLu(fq) + b. (17)
This is because Lu(fq) is the percentage of scores that are
smaller than fq, and the rank of fq among the n products
is approximately n− nLu(fq), which is linear function w.r.t.
Lu(fq). We observe that the score distribution resembles the
normal distribution for some datasets. In this case, to obtain
the CDF, we estimate the normal distribution parameters
(i.e., mean and variance) for each user using the maximum
likelihood method. Figure 9(c) shows the relation between

7

Algorithm 3 QSRP index building (U , P , query set Q)

1: for user u ∈ U do . Comp. the rank of sample queries
2: Compute Tu ← {f(u,p) | p ∈ P}
3: for sample query q ∈ Q do
4: R(u,q)← BinarySearch(Tu, f(u,q))

5: S ← Find the optimal rank sample set . Algorithm 2
6: for user u ∈ U do
7: Compute Tu ← {f(u,p) | p ∈ P}
8: Store Tu(S) as the sampling-based index of u
9: Fit function ĝu(·) using Tu(S) . Regression index

Lu(fq) and rank after the transformation, which is similar
to a linear function and easier to fit than Figure 9(b).

Prediction objective. Instead of predicting the position of
a score in the sampling-based index (i.e., learn gu : R →
{1, 2, · · · , τ+1}), one may predict the rank of the score among
all products (i.e., learn g′u : R→ {1, 2, · · · , n+1}). We ex-
perimented with this choice and observed that it yields longer
query time. This is because the maximum error becomes larger
with more data points to fit for each user, and thus the pruning
effect of regression deteriorates.

VI. DISCUSSIONS

Index construction. Algorithm 3 summarizes the index con-
struction procedure of QSRP, which consists of 4 main steps,
i.e., compute the rank of the sample queries for each user to
facilitate query-aware sampling (lines 1-4, which will be used
to compute Υ(i, j)), query-aware sampling to determine the
optimal rank set S (line 5), sample the scores according to S
for each user (line 8), and build the regression index (line 9).
The score table is usually large (e.g., several TBs) and cannot
be stored in memory. Fortunately, our index construction does
not require to materialize the entire score table. As shown
in lines 1 and 6 of Algorithm 3, we compute the scores at
user granularity and discard the scores after use. This requires
computing the scores twice but we observe that it is faster than
storing the scores to disk and then loading them for use. We
adopt GPU to compute the scores efficiently and parallelize
among different users as they are independent.

Dataset updates. QSRP allows to delete and insert both
users and products. Deleting a user is conducted by removing
its regression function and the corresponding row of the
sampling-based index; to insert a user, we compute its scores
with all products with O(nd) time and store the scores for
solving the rank of the user for the query product. To insert
or delete a product, we compute its scores for all users and
store these scores to compute rank offset. In particular, for each
user, we first compute how many inserted and deleted products
have larger scores than f(u,q) to derive a rank offset and then
calibrate the rank bounds obtained by the regression index and
sampling-based index with the rank offset. We recommend
rebuilding the index after accumulating some updates because
updates require to store scores and degrade query efficiency.
Query distribution shift. The online queries can become dif-
ferent from the queries used for query-aware sampling, which

TABLE I: Statistics of the experiment datasets

Name # User # Product Score table size
Yahoo!Music 1,823,179 135,736 0.9TB

Yelp 2,189,457 159,585 1.2TB
MovieLens 2,197,225 272,038 2.2TB

Amazon 2,511,610 409,243 3.7TB

may degrade query performance. In particular, a historical
query takes the form (q, k), where q is the product embedding
and k is the number of required users. For the change of q, we
randomly sample 5,000 query embeddings and use the same
k for index building, and we observe that the average query
time differs by less than 5% over 10 trials for both Yelp and
Amazon. Changing k has more significant influence and the
effect depends on the relation between the k of online queries
(i.e., kqry) and the k of historical queries (i.e., kidx); as we
will show in Figure 15(b), query time becomes much longer
when kqry>kidx, but the degradation is small when kqry≤kidx.
Thus, considering query distribution shift, we only need to
rebuild the index when kqry >kidx, and note that (i) the case
kqry > kidx does not happen frequently because kidx is set as
the maximum possible kqry, and (ii) our index building cost
is reasonable (e.g., around 25 minutes of the Amazon dataset
with a score table of 3.7TB).

Efficient refinement. To refine R(u,q) of user u, Algorithm 1
computes the user’s exact scores for all products. To improve
efficiency, we filter the candidates by Cauchy-Schwarz in-
equality, where only products with {p | fq ≤ ‖u‖‖p‖} needs
further refinement. Then we compute the cheap score bounds
in Eq.(11) of f(u,p) for each product p, and the exact score
is only computed when f(u,q) falls in between the lower and
upper bounds.

Other score functions. QSRP generalizes to score functions
other than inner product (e.g., Euclidean distance [45] and
hyperbolic distance [46]). The sampling-based index, query-
aware sampling, and rank regression techniques directly apply,
and the only modification is to change the score bounds in
Eq.(11) to suit the target score function. For instance, if the
score function is Euclidean distance, i.e., fEuc

q =‖u−q‖, the
score bounds can be expressed as{

fEuc
q ≤fEuc,↑

q =‖uh−qh‖+‖u{h‖+‖q{h‖
fEuc
q ≥fEuc,↓

q =‖uh−qh‖−‖u{h‖−‖q{h‖
. (18)

Parallelization. QSRP is easy to parallelize in retrieval be-
cause both rank bound computation and rank refinement are
independent for different users.

VII. EXPERIMENTAL EVALUATION

We introduce experiment settings in Section VII-A, compare
QSRP with state-of-the-art baselines in Section VII-B, and
evaluate the designs of QSRP in Section VII-C.

A. Experiment Settings

Datasets. We use the 4 datasets (see [38] for source) in
Table I, which are widely used in recommendation [10], [40].
In particular, Yahoo!Music [47], Yelp [48], MovieLens [49],
and Amazon [50] record user-product interactions for music,

8

0 50 100 150 200
k

10 2

100

102

104
Qu

er
y

Ti
m

e
(S

ec
on

d)

Grid
RMIPS
QSRP

MPA
US

(a) Yahoo!Music

0 50 100 150 200
k

10 2

100

102

104

Qu
er

y
Ti

m
e

(S
ec

on
d)

Grid
RMIPS
QSRP

MPA
US

(b) Yelp

0 50 100 150 200
k

10 2

100

102

104

Qu
er

y
Ti

m
e

(S
ec

on
d)

Grid
RMIPS
QSRP

MPA
US

(c) MovieLens

0 50 100 150 200
k

10 2

100

102

104

Qu
er

y
Ti

m
e

(S
ec

on
d)

Grid
RMIPS
QSRP

MPA
US

(d) Amazon

Fig. 10: Average query processing time under different k.

10 50 100 150 200
k

105

107

109

1011

Sc

or
e

Co
m

pu
ta

tio
n

Grid
US

MPA
QSRP

RMIPS

(a) Yahoo!Music

10 50 100 150 200
k

105

107

109

1011

Sc
or

e
Co

m
pu

ta
tio

n
Grid
US

MPA
QSRP

RMIPS

(b) Yelp

10 50 100 150 200
k

105

107

109

1011

Sc

or
e

Co
m

pu
ta

tio
n

Grid
US

MPA
QSRP

RMIPS

(c) MovieLens

10 50 100 150 200
k

105

107

109

1011

Sc

or
e

Co
m

pu
ta

tio
n

Grid
US

MPA
QSRP

RMIPS

(d) Amazon

Fig. 11: The average number of score computations conducted by each query.

restaurant, movie, and e-commerce recommendation, respec-
tively. Following [43], we use LIBPMF [51] to generate the
user and product embedding vectors via matrix factorization.
The dimensionality of the embeddings is set as 150 by default.

Baselines. We compare QSRP2 with 4 baselines, i.e., uniform
sample (US), marked pruning approach (MPA) [21], grid
index (Grid) [22] and reverse MIPS (RMIPS) [35]. US is our
initial solution in Section III, which uniformly samples the
score table as the index. MPA builds an R-tree on the product
set to compute the rank of the query product for each user. Grid
improves linear scan with two techniques, (i) the concept of
dominance to filter products from score computation, and (ii)
a uniform quantization for each dimension of the embedding
vectors to speedup inner product computation. RMIPS adapts
the state-of-the-art reverse MIPS solution Simpfer++ [35]. As
Simpfer++ cannot control the number of returned users, we
start with k′= 1 and double k′ each time until the result set
contains at least k users. For a fair comparison, we ensure that
all methods use the same index size. Among the baselines,
MPA and Grid are state-of-the-art reverse k-ranks solutions
for low-dimensional embeddings while RMIPS targets high-
dimensional embeddings.

Evaluation methodology. We use query processing time as
the main performance metric. In particular, for each dataset,
we randomly sample 10,000 products and choose k from
{10, 50, 100, 150, 200} to generate the queries and measure
the average query processing time for each k. As RMIPS,
MPA, and Grid can be very slow, we terminate an experiment
after 12 hours and calculate query processing time according
to the finished queries. By default, the memory index size
is set as 64GB for all methods. QSRP uses 5,000 training
queries and kidx =200 in query-aware sampling. The products

2QSRP is open source at https://github.com/DBGroup-SUSTech/
reverse-k-ranks.

of the training queries are randomly sampled from the prod-
uct embeddings. The training queries are excluded from the
performance evaluation for a fair comparison.
QSRP uses the GPU to compute the score table and all

threads of the CPU for the other index building part. As micro
performance metrics, we report the average number of refined
users and computation cost for each query. The refined users
are those that cannot be pruned by index checking in US and
QSRP, and thus require score computation for rank refinement.
Computation cost is measured by the number of exact score
computations. For methods that use score bounds, computation
cost is the cost of exact score plus the score bound, which is
measured by profiling the costs of the two operations.

Platform. The experiment machine is equipped with a Intel(R)
Xeon(R) Gold 5318Y@2.10GHz CPU with 96 threads, a
NVIDIA A10 GPU, and 512GB main memory with Linux
version 4.15.0. All experiment codes are written in C++17
and complied with the -O3 optimization flag.

B. Main Results

Figure 10 and Table II compare the average query time
of QSRP with US, RMIPS, MPA, and Grid for different k.
We report the average computation costs in Figure 11 to help
understand the query time performance. Two observations can
be made from these results.

First, both US and QSRP are significantly faster than MPA,
RMIPS, and Grid. In particular, the speedup of QSRP over
MPA, RMIPS, and Grid is more than 1,000 on the Amazon
dataset and more than 100 on the other datasets. Figure 11
shows that this is because MPA, RMIPS, and Grid conduct
many more score computations than US and QSRP. The
poor performance of Grid is attributed to two reasons. First,
its dominance-based pruning does not work for the learned
embeddings as they contain negative elements. Second, its
quantization-based score computation has limited speedup

9

https://github.com/DBGroup-SUSTech/reverse-k-ranks
https://github.com/DBGroup-SUSTech/reverse-k-ranks

TABLE II: Query time (in seconds) for US and QSRP.

Yahoo!Music Yelp MovieLens Amazon
k US QSRP US QSRP US QSRP US QSRP
10 0.10 0.08 0.10 0.04 0.10 0.08 0.20 0.05
50 0.11 0.08 0.11 0.04 0.15 0.08 0.23 0.07

100 0.12 0.08 0.11 0.04 0.21 0.08 0.23 0.08
150 0.12 0.09 0.11 0.05 0.24 0.08 0.26 0.09
200 0.12 0.09 0.12 0.05 0.27 0.08 0.27 0.09

32 64 128 256 512
Dimensionality

0.0

0.1

0.2

0.3

0.4

Qu
er

y
Ti

m
e

(S
ec

on
d) US

QSRP

(a) Yelp

32 64 128 256 512
Dimensionality

0.0

0.1

0.2

0.3

0.4

Qu
er

y
Ti

m
e

(S
ec

on
d) US

QSRP

(b) Amazon

Fig. 12: The influence of dimensionality on query time.

over exact score computation for high-dimensional vectors
(about 1.05 according to our measurement). The R-tree in
MPA suffers from the curse of dimensionality [32] and de-
grades to linear scan. The poor performance of Grid and MPA
suggests that reverse k-ranks solutions in low dimensionality
do not work for high dimensionality. Detailed profiling finds
that RMIPS usually requires a large k′ to output k users for a
query. For instance, on Amazon and with k=100, the average
k′ is 3,806. This phenomenon can be explained by the fact
that most products are not popular and thus need a large k′ to
appear in the top-k′ MIPS set of the users. As reported in [35],
the query time of Simpfer++ increases quickly with k′, which
explains the poor performance of RMIPS.

Second, Table II shows that QSRP consistently outperforms
US for all datasets and values of k, and the speedup is
usually about 1.5x and could be 4x. This suggests that our two
key optimizations, i.e., query-aware sampling and regression-
based pruning, are effective, which can also be observed from
Figure 11. In particular, query-aware sampling prunes users
from rank refinement, and regression-based pruning avoids
exact score computation in pruning. The speedup of QSRP
over US on Yahoo!Music is smaller than the other datasets
because Yahoo!Music has the smallest score table, and thus
US already has a good pruning effect with the default 64GB
memory index, which is evidenced by the score computation
cost in Figure 11(a). Compared with the score computation
reduction in Figure 11, the query time speedup of QSRP over
US is smaller because operations other than score computation
also take up a considerable portion of query time, e.g., binary
search and linear function computation.

As MPA, RMIPS, and Grid perform much worse than US
and QSRP, we exclude them in the subsequent experiments.
Moreover, we mainly report the results on Yelp and Amazon
because the observations are similar on the other datasets.

Dimensionality. Figure 12 shows how embedding dimension-
ality affect the query time of US and QSRP. We observe that
the query time of US increases quickly with dimensionality
while the query time of QSRP is more stable. This is because

1 4 16 64 256
Index Size (GB)

10 2

10 1

100

Qu
er

y
Ti

m
e

(S
ec

on
d) US

QSRP

(a) Yelp

1 4 16 64 256
Index Size (GB)

10 2

10 1

100

101

102

Qu
er

y
Ti

m
e

(S
ec

on
d) US

QSRP

(b) Amazon

Fig. 13: The influence of memory index size on query time.

0 50 100 150 200
k

0.00

0.05

0.10

Qu
er

y
Ti

m
e

(S
ec

on
d)

US
QS
QSRP

(a) Yelp

0 50 100 150 200
k

0.00

0.05

0.10

0.15

0.20

0.25

Qu
er

y
Ti

m
e

(S
ec

on
d)

US
QS
QSRP

(b) Amazon

Fig. 14: Query time comparison with different techniques.

pruning becomes more difficult in higher dimensionality, and
QSRP has better pruning effect than US due to our query-
aware sampling and regression-based pruning optimizations.

Index size. Figure 13 reports the query time with different
index sizes. The results show that both QSRP and US achieve
shorter query time with a larger index but the query time of US
observes a more significant reduction. This is because QSRP
adopts query-aware sampling to build the memory index, and
its pruning power is already good with a small index size.
For instance, to match the query time of QSRP with a 4GB
memory index, US needs a memory index of 256GB and
64GB for Yelp and Amazon, respectively. The query time of
US increases slightly in the Yelp dataset when the index size
increases from 64GB to 256GB. This is because a large index
size reduces the refinement cost but incurs additional searching
costs in the sampling-based index. The refinement cost of US
is very small at 64GB, and searching the sampling-based index
(i.e., binary search) becomes the bottleneck.

C. Micro Results

This part conducts experiments to evaluate the designs of
QSRP. We use k = 100 and 64GB memory index size by
default. Only Amazon and Yelp are reported for conciseness.

Figure 14 conducts an ablation study for our optimizations,
and QS only applies the query-aware sampling. The results
show that QS outperforms US. This is because query-aware
sampling reduces the number of refined users for each query
and thus the computation cost. For example, query-aware
sampling needs to refine 28 users on average with k = 100
in the Amazon dataset, while that number in US is 113.
Adding regression-based pruning, QSRP further improves QS
because regression-based pruning avoids expensive exact score
computation in the pruning stage. The gain of regression-
based pruning is larger than query-aware sampling on the Yelp
dataset while the opposite is true on the Amazon dataset. This
suggests that both optimizations are effective and crucial.

10

10 2500 5000 7500 10000
Train Query

0

20

40

60
In

de
x

Bu
ild

in
g

Ti
m

e
(M

in
ut

e) Compute Score Table
Find Sample Rank
Build Regression Index
Query Time

0.0

0.1

0.2

0.3

0.4

Qu
er

y
Ti

m
e

(S
ec

on
d)

(a) Training queries

10 100 200 300 400
Index k

0

5

10

Qu
er

y
Ti

m
e

(S
ec

on
d) Query k=200

Query k=100
Query k=10

(b) kidx

Fig. 15: Query time and index building time with the training
parameter kidx and training queries on Amazon.

10 100 200 300 400
Index k

0

10

20

30

40

Bu
ild

 In
de

x
Ti

m
e

(M
in

ut
e) Compute Score Table

Find Sample Rank
Build Regression Index

(a) kidx

0.2 0.4 0.6 0.8 1.0
Sample Ratio

0

10

20

30

Bu
ild

 In
de

x
Ti

m
e

(M
in

ut
e) Compute Score Table

Find Sample Rank
Build Regression Index

(b) Data size proportion

Fig. 16: Index building time w.r.t. the number of required users
(i.e., kidx) and dataset size for the Amazon dataset.

Figure 15(a) shows the influence of the number of train-
ing queries on query time and index building time. The
result shows that time for query-aware sampling increases
slowly with the number of training queries, which suggests
that the cubic scaling analyzed in Section IV is pessimistic.
Figure 15(a) also shows that the query time reduces when
increasing from 10 training queries to 2,500 but stabilizes
afterward, which suggests that using 2,500-5,000 training
queries is sufficient. This is favorable as query-aware sampling
does not need many queries to achieve good performance.

Recall that query-aware sampling needs to assign kidx to
each training query and we use kidx = 200 by default.
Figure 15(b) reports how the value of kidx (used in index
construction) and kqry (used in actual queries) affects the
query time. The results show that the query time reaches the
minimum when kqry = kidx, becomes stable when kidx > kqry
but blows up when kidx < kqry. This is because query-aware
sampling builds the memory index to minimize the refinement
cost in finding the top-kidx users; when kidx > kqry, the index is
optimized to prune refinement for the top-kidx users, for which
the candidates contain the top-kqry users. In contrast, when
kidx < kqry, the index cannot learn to prune refinement for
candidates that rank in [kidx, kqry], resulting in high refinement
cost. Thus, we recommend setting kidx as the maximum kqry
that may be used by the actual queries.

In Figure 16, we explore the influence of kidx and dataset
size on index building time. Figure 16(a) shows that the index
construction time stays constant w.r.t. kidx, and our analysis in
Section IV-C also suggests that the time complexity of index
construction does not depend on kidx. Using µ to denote the
sample ratio, for a dataset with m users and n products, we
sample

√
µm users and

√
µn products such that the proportion

of sampled user-product scores is µ of the original dataset.
Figure 16(b) shows that the index building time scales almost

0 50 100 150 200
k

0.00

0.02

0.04

0.06

0.08

Qu
er

y
Ti

m
e

(S
ec

on
d)

QSRP-DT
QSRP

(a) Yelp

0 50 100 150 200
k

0.00

0.05

0.10

Qu
er

y
Ti

m
e

(S
ec

on
d)

QSRP-DT
QSRP

(b) Amazon

Fig. 17: The influence of distribution transformation.

0% 0.5% 1.0% 1.5% 2.0%
Product Update Percentage

0.00

0.05

0.10

0.15

0.20

Qu
er

y
Ti

m
e

(S
ec

on
d)

Delete
Insert

(a) Product updates

0% 0.5% 1.0% 1.5% 2.0%
User Update Percentage

0.00

0.05

0.10

Qu
er

y
Ti

m
e

(S
ec

on
d)

Delete
Insert

(b) User updates

Fig. 18: Query time with updates on Amazon

linearly with the sample ratio. This is because the index-
building time is dominated by score computation, whose cost
is determined by the number of user-product scores. For
the complete Amazon dataset with 3.7TB, QSRP can build
an index with around 25 minutes, which shows reasonable
scalability w.r.t. dataset size.

In regression-based pruning, we introduce a distribution
transformation (i.e., DT) such that the relation between score
and rank can be easily fitted with a linear function. Figure 17
compares QSRP with (called QSRP) and without DT (called
QSRP-DT). The results show that DT reduces query time on
both Amazon and Yelp. This is because the score distribution
of both datasets is a bell-shaped score distribution and thus
the score-rank relation is difficult to fit without DT.

Figure 18 reports how query time changes with user and
product update. The results show that query time increases
quickly with product updates but slowly for user updates. This
is because product updates introduce rank offset to our rank
bounds as discussed in Section VI, and this can cause the
users that initially fail in different score segments to overlap
in their score bounds, which increases the number of users to
refine. Consider an example where the rank bounds of a user
are (1, 5] and the rank offset introduced by product updates
to this user is +2; and the rank bounds of another user are
(5, 10] and the rank offset is −1. The bounds of the two users
do not overlap initially, and thus at most one of them may be
refined; applying the offsets, their bounds become (3, 7] and
(4, 9], which overlap and may require to refine both users to
determine their ranking relation.

Figure 18(b) shows that query time increases with user
deletes but does not increase with user inserts. This is counter-
intuitive because deleting users should reduce query workload
while inserting users does the opposite. We attribute this phe-
nomenon to our query-aware sampling. In particular, query-
aware sampling learns to prune for the top-kidx users. When
deleting users, a user that ranks k′ > kidx initially may become
the top-kidx but query-aware sampling does not learn to prune

11

for such users. In contrast, when inserting users, the users
need to have a smaller rank k̃ < kidx to enter the result set.
As shown in Figure 15(b), query-aware sampling has good
pruning effect when k̃ < kidx. Thus, to accommodate user
updates, we recommend to use a large kidx for index building.

VIII. RELATED WORK

Queries for low-dimensional embeddings. These queries
consider scenarios where (i) each attribute (i.e., feature or
dimensionality of an embedding) indicates a specific feature
of the product, e.g., the price of a restaurant; (ii) all attributes
are non-negative; (iii) the number of attributes is small (e.g.,
dimensionality d < 10). Given a user preference vector, the
top-k query returns the k products having the maximum scores
(e.g., inner product) for the user [52], [53], [54]. To find
potential users for a product, the reverse top-k query returns
all users whose top-k choices contain the query product [55],
[56], [57]. The reverse k-ranks query is proposed in [21],
which builds an R-tree to index the products and group the
users via d-dimensional histograms to facilitate pruning. Grid
index [22] proposes a linear scan-based solution, which uses
dominance, a popular technique in computation geometry,
for product filtering, and computes a cheap score bound by
uniformly quantizing each dimension in an embedding vector.
RADAR [25] proposes an approximate solution for reverse k-
ranks, which guesses the product rank by the ranking situation
in each dimension. The ranked reverse nearest neighbor query
is proposed in [58], which resembles reverse k-ranks but
changes the score function from inner product to Euclidean
distance. The solution uses the perpendicular bisector and
minimum bounding box to partition the space for pruning.

Techniques in these works cannot be applied to the high-
dimensional embeddings generated by embedding models for
two reasons. First, they usually rely on space-partitioning
indexes (e.g., R-tree, X-tree and SR-tree [59]) or dominance-
based filtering (e.g., skyline [26], onion layer [27] and
UTK [28]), which suffer from the curse of dimensionality [32].
For example, in high dimensionality (e.g., d >30), the filtering
power of R-tree vanishes [22], and the skyline contains almost
the entire product set [33]. Index construction for dominance-
based filtering also becomes prohibitively expensive, e.g., it
takes O(nbd/2c) time to compute a convex hull for n vectors
in d dimensionality [60]. Second, they usually require all
elements in the user and product vectors to be non-negative
(e.g., for dominance-based filtering to work) while the vectors
generated by embedding models contain negative elements.

Queries for high-dimensional embeddings. The maximum
inner product search (MIPS) query returns the top-k products
having the maximum inner product for a given user. Exact so-
lutions for MIPS utilize norm-based pruning and angle-based
pruning to filter unpromising products [61], [62], [63]. For
instance, FEXIPRO [43] adopts singular value decomposition
(SVD) to obtain a tight norm bound and leverage fast integer
computation for effective pruning. GPU-IPR [64] process
MIPS in GPU and use norm pruning to save the computation

cost. Approximate solutions for MIPS trade accuracy for
efficiency and representative methods can be classified into
locality-sensitive hashing [17], [20], proximity graph [19],
[65], and vector quantization [18], [66]. The reverse MIPS
query resembles the reverse top-k query and is proposed by
Simpfer [42]. Both Simpfer and Simpfer++ [35] store the top-
k scores of each user to facilitate pruning. SAH [67] proposes
an approximate solution for reverse MIPS and solves reverse
MIPS via MIPS, i.e., by checking if the MIPS result set of a
user contains the query product. It designs a locality-sensitive
hashing scheme for MIPS and proposes a score bound to prune
the users that are checked for MIPS.

To our knowledge, we are the first to study the reverse
k-ranks query for high-dimensional embeddings. Reverse k-
ranks is more challenging than MIPS and reverse MIPS
because it considers the ranks of all users (MIPS considers
a single user), and the query product may not rank top for
the resultant users (reverse MIPS considers top-rank products
for each user). As such, our key designs are fundamentally
different from the solutions for MIPS and reverse MIPS. For
instance, storing only the top-k scores for each user as in
Simpfer and Simpfer++ is insufficient for reverse k-ranks as
the query product may not rank top, and thus we design query-
aware sampling to determine the scores to keep.

IX. CONCLUSIONS

We study the efficient processing of reverse k-ranks query
on the high-dimensional embedding vectors generated by em-
bedding models, which are becoming the common practice for
the recommendation. As the techniques for low dimensionality
(e.g., tree) fail in high dimensionality, we rely on precomputa-
tion to speedup query processing. In particular, we propose a
sampling-based index architecture to facilitate pruning, which
precomputes the score table for all user-product pairs and
samples some columns to fit in memory. We also design
techniques including query-aware sampling and regression-
based pruning to improve the effectiveness of pruning and
reduce the cost of computation. Experimental results show
that QSRP outperforms state-of-the-art baselines by orders of
magnitude and our designs are effective.

ACKNOWLEDGEMENT

This work is supported by grant GRF 152043/23E from
Hong Kong RGC, the Guangdong Basic and Applied Basic
Research Foundation (Grant No.2021A1515110067), Shen-
zhen Fundamental Research Program (Grant No. 2022081511
2848002), the Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001) and a research gift from Huawei Gauss
department. Dr. Bo Tang is also affiliated with the Research
Institute of Trustworthy Autonomous Systems, Southern Uni-
versity of Science and Technology, Shenzhen, China.

REFERENCES

[1] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[2] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo,
“Ripplenet: Propagating user preferences on the knowledge graph for
recommender systems,” in CIKM, 2018, pp. 417–426.

12

[3] T. Chen, L. Hong, Y. Shi, and Y. Sun, “Joint text embedding for per-
sonalized content-based recommendation,” CoRR, vol. abs/1706.01084,
2017.

[4] X. He, H. Zhang, M. Kan, and T. Chua, “Fast matrix factorization for
online recommendation with implicit feedback,” in SIGIR, 2016, pp.
549–558.

[5] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in ICDM, 2008, pp. 263–272.

[6] H. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix
factorization models for recommender systems,” in IJCAI, 2017, pp.
3203–3209.

[7] C. Chen, P. Zhao, L. Li, J. Zhou, X. Li, and M. Qiu, “Locally connected
deep learning framework for industrial-scale recommender systems,” in
WWW, 2017, pp. 769–770.

[8] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in RecSys, 2016, pp. 191–198.

[9] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in SIGKDD, 2018, pp. 974–983.

[10] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion,” in SIGIR, 2020, pp. 639–648.

[11] H. Tang, S. Wu, G. Xu, and Q. Li, “Dynamic graph evolution learning
for recommendation,” in SIGIR, 2023, p. 1589–1598.

[12] R. Guo, X. Luan, L. Xiang, X. Yan, X. Yi, J. Luo, Q. Cheng, W. Xu,
J. Luo, F. Liu et al., “Manu: a cloud native vector database management
system,” PVLDB, vol. 15, no. 12, pp. 3548–3561, 2022.

[13] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li,
X. Xu, K. Yu, Y. Yuan, Y. Zou, J. Long, Y. Cai, Z. Li, Z. Zhang, Y. Mo,
J. Gu, R. Jiang, Y. Wei, and C. Xie, “Milvus: A purpose-built vector
data management system,” in SIGMOD, 2021, pp. 2614–2627.

[14] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee,
“Billion-scale commodity embedding for e-commerce recommendation
in alibaba,” in SIGKDD, 2018, pp. 839–848.

[15] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based
music recommendation,” in NeurIPS, 2013, pp. 2643–2651.

[16] S. Rendle, W. Krichene, L. Zhang, and J. Anderson, “Neural collab-
orative filtering vs. matrix factorization revisited,” in RecSys, 2020, p.
240–248.

[17] A. Shrivastava and P. Li, “Asymmetric LSH (ALSH) for sublinear time
maximum inner product search (MIPS),” in NeurIPS, 2014, pp. 2321–
2329.

[18] X. Dai, X. Yan, K. K. W. Ng, J. Liu, and J. Cheng, “Norm-explicit
quantization: Improving vector quantization for maximum inner product
search,” in AAAI, 2020, pp. 51–58.

[19] J. Liu, X. Yan, X. Dai, Z. Li, J. Cheng, and M. Yang, “Understanding
and improving proximity graph based maximum inner product search,”
in AAAI, 2020, pp. 139–146.

[20] X. Yan, J. Li, X. Dai, H. Chen, and J. Cheng, “Norm-ranging LSH for
maximum inner product search,” in NeurIPS, 2018, pp. 2956–2965.

[21] Z. Zhang, C. Jin, and Q. Kang, “Reverse k-ranks query,” PVLDB, vol. 7,
no. 10, pp. 785–796, 2014.

[22] Y. Dong, H. Chen, J. X. Yu, K. Furuse, and H. Kitagawa, “Grid-index
algorithm for reverse rank queries,” in EDBT, 2017, pp. 306–317.

[23] Y. Qian, H. Li, N. Mamoulis, Y. Liu, and D. W. Cheung, “Reverse
k-ranks queries on large graphs,” in EDBT, 2017, pp. 37–48.

[24] Ç. Aslay, W. Lu, F. Bonchi, A. Goyal, and L. V. S. Lakshmanan, “Viral
marketing meets social advertising: Ad allocation with minimum regret,”
PVLDB, vol. 8, no. 7, pp. 822–833, 2015.

[25] S. Dutta, “RADAR: fast approximate reverse rank queries,” in Intelligent
Systems and Applications, vol. 1252, 2020, pp. 748–757.

[26] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, 2001, pp. 421–430.

[27] Y. Chang, L. D. Bergman, V. Castelli, C. Li, M. Lo, and J. R. Smith,
“The onion technique: Indexing for linear optimization queries,” in
SIGMOD, 2000, pp. 391–402.

[28] K. Mouratidis and B. Tang, “Exact processing of uncertain top-k queries
in multi-criteria settings,” PVLDB, vol. 11, no. 8, pp. 866–879, 2018.

[29] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
An efficient and robust access method for points and rectangles,” in
SIGMOD, 1990, pp. 322–331.

[30] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” in VLDB, 1997, pp. 426–435.

[31] J. Zhang, B. Tang, M. L. Yiu, X. Yan, and K. Li, “T-levelindex: Towards
efficient query processing in continuous preference space,” in SIGMOD,
2022, pp. 2149–2162.

[32] R. Weber, H. Schek, and S. Blott, “A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces,”
in VLDB, 1998, pp. 194–205.

[33] Z. Zhang, X. Guo, H. Lu, A. K. H. Tung, and N. Wang, “Discovering
strong skyline points in high dimensional spaces,” in CIKM, 2005, pp.
247–248.

[34] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in SIGMOD, 2018, pp. 489–504.

[35] D. Amagata and T. Hara, “Reverse maximum inner product search:
Formulation, algorithms, and analysis,” ACM Trans. Web, vol. 17, no. 4,
2023.

[36] Z. Zhou, S. Tan, Z. Xu, and P. Li, “Möbius transformation for fast inner
product search on graph,” in NeurIPS, 2019, pp. 8216–8227.

[37] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,
V. Jain, X. Liu, and H. Shah, “Wide & deep learning for recommender
systems,” in RecSys, 2016, pp. 7–10.

[38] “Dataset source,” https://github.com/RUCAIBox/RecSysDatasets/.
[39] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender

systems handbook,” in Recommender systems handbook. Springer,
2010, pp. 814–816.

[40] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural
collaborative filtering,” in WWW, 2017, pp. 173–182.

[41] J. Zheng, J. Mai, and Y. Wen, “Explainable session-based recommen-
dation with meta-path guided instances and self-attention mechanism,”
in SIGIR, 2022, pp. 2555–2559.

[42] D. Amagata and T. Hara, “Reverse maximum inner product search: How
to efficiently find users who would like to buy my item?” in RecSys,
2021, pp. 273–281.

[43] H. Li, T. N. Chan, M. L. Yiu, and N. Mamoulis, “FEXIPRO: fast and
exact inner product retrieval in recommender systems,” in SIGMOD,
2017, pp. 835–850.

[44] R. Seidel, “Small-dimensional linear programming and convex hulls
made easy,” Discret. Comput. Geom., vol. 6, pp. 423–434, 1991.

[45] C. Hsieh, L. Yang, Y. Cui, T. Lin, S. J. Belongie, and D. Estrin,
“Collaborative metric learning,” in WWW, 2017, pp. 193–201.

[46] T. D. Q. Vinh, Y. Tay, S. Zhang, G. Cong, and X. Li, “Hyperbolic
recommender systems,” CoRR, vol. abs/1809.01703, 2018.

[47] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The yahoo! music
dataset and kdd-cup ’11,” in Proceedings of KDD Cup 2011 competition,
vol. 18, 2012, pp. 8–18.

[48] N. Asghar, “Yelp dataset challenge: Review rating prediction,” CoRR,
2016.

[49] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 19:1–19:19,
2016.

[50] J. Ni, J. Li, and J. J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in EMNLP-IJCNLP,
2019, pp. 188–197.

[51] H. Yu, C. Hsieh, S. Si, and I. S. Dhillon, “Scalable coordinate descent
approaches to parallel matrix factorization for recommender systems,”
in ICDM, 2012, pp. 765–774.

[52] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Computing
Surveys (CSUR), vol. 40, no. 4, pp. 11:1–11:58, 2008.

[53] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas, “Ad-hoc top-k query
answering for data streams,” in PVLDB, 2007, pp. 183–194.

[54] K. Mouratidis, K. Li, and B. Tang, “Marrying top-k with skyline queries:
Relaxing the preference input while producing output of controllable
size,” in SIGMOD, 2021, pp. 1317–1330.

[55] A. Yu, P. K. Agarwal, and J. Yang, “Processing a large number of
continuous preference top-k queries,” in SIGMOD, 2012, pp. 397–408.

[56] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg, “Reverse top-k
queries,” in ICDE, 2010, pp. 365–376.

[57] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis, “Branch-and-
bound algorithm for reverse top-k queries,” in SIGMOD, 2013, pp. 481–
492.

[58] K. C. K. Lee, B. Zheng, and W. Lee, “Ranked reverse nearest neighbor
search,” TKDE, vol. 20, no. 7, pp. 894–910, 2008.

[59] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases,” ACM Computing Surveys (CSUR), vol. 33, no. 3, pp. 322–
373, 2001.

13

https://github.com/RUCAIBox/RecSysDatasets/

[60] A. Yu, P. K. Agarwal, and J. Yang, “Top-k preferences in high dimen-
sions,” TKDE, vol. 28, no. 2, pp. 311–325, 2016.

[61] P. Ram and A. G. Gray, “Maximum inner-product search using cone
trees,” in SIGKDD, 2012, pp. 931–939.

[62] C. Teflioudi, R. Gemulla, and O. Mykytiuk, “LEMP: fast retrieval of
large entries in a matrix product,” in SIGMOD, 2015, pp. 107–122.

[63] C. Teflioudi and R. Gemulla, “Exact and approximate maximum inner
product search with LEMP,” ACM Trans. Database Syst., vol. 42, no. 1,
pp. 5:1–5:49, 2017.

[64] L. Xiang, B. Tang, and C. Yang, “Accelerating exact inner product
retrieval by CPU-GPU systems,” in SIGIR, 2019, pp. 1277–1280.

[65] S. Morozov and A. Babenko, “Non-metric similarity graphs for maxi-
mum inner product search,” in NeurIPS, 2018, pp. 4726–4735.

[66] R. Guo, S. Kumar, K. Choromanski, and D. Simcha, “Quantization based
fast inner product search,” in AISTATS, vol. 51, 2016, pp. 482–490.

[67] Q. Huang, Y. Wang, and A. K. Tung, “Sah: Shifting-aware asymmetric
hashing for reverse k maximum inner product search,” in AAAI, 2023,
pp. 4312–4321.

14

	Introduction
	Problem Definition
	Sampling-based Index
	Index Structure
	Query Processing

	Query-aware Sampling
	Motivation
	Cost Function and Dynamic Programming
	Overall Procedure

	Regression-based Pruning
	Regression-based Rank Bound
	Model Training

	Discussions
	Experimental Evaluation
	Experiment Settings
	Main Results
	Micro Results

	Related Work
	Conclusions
	References

