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Abstract—The outbreak of COVID-19 has dramatically pro-
moted the explosive proliferation of multi-party realtime video
streaming (MRVS) services, represented by Zoom and Microsoft
Teams. Different from Video-on-Demand (VoD) or live streaming,
MRVS enables all-to-all realtime video communication, bringing
significant challenges to service providing. First, unreliable net-
work transmission can cause network loss, resulting in delay in-
crease and visual quality degradation. Second, the transformation
from two-party to multi-party communication makes resource
scheduling much more difficult. Moreover, optimizing the overall
QoE requires a global coordination, which is quite challenging
given the various impact factors such as bitrate and loss.

In this paper, we propose the SJA framework, which is, to
our best knowledge, the first server-driven joint loss and bitrate
adaptation framework in multi-party realtime video streaming
services towards maximized QoE. We comprehensively design
an appropriate QoE model for MRVS services to capture the
interplay among perceptual quality, variations, bitrate mismatch,
loss damage, and streaming delay. We mathematically formulate
the QoE maximization problem in MRVS services. A Lyapunov-
based relaxation and the SJA algorithm are further designed to
address the optimization problem with close-to-optimal perfor-
mance. Evaluations show that our framework can outperform
the SOTA solutions by 18.4% ∼ 46.5%.

Index Terms—Multi-party realtime video streaming, Adaptive
bitrate control, Forward error correction, Quality of Experience
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Fig. 1. The representative applications of realtime streaming services.

I. INTRODUCTION

The outbreak of COVID-19 has dramatically promoted the
explosive proliferation of multi-party realtime video stream-
ing (MRVS) services, which have profoundly affected how
people live and communicate. Such applications represented
by Zoom and Microsoft Teams are playing an indispensable
role in various fields like online education, telemedicine, video
conferencing, etc. Different from Video-on-Demand (VoD)
services [1] represented by YouTube and crowdsourced live
streaming services [2], [3] shown in Fig. 1(a) represented by
Twitch, multi-party realtime video streaming or conferencing
shown in Fig. 1(b) embraces a new form of communication
where each client is able to send its own stream to all other
parties and simultaneously receive streams from others in real
time. In the near foreseeable future, MRVS will continue
to create tremendous revenue. According to the report from
Cisco [4], realtime video streaming traffic has tripled within
the last five years and reached 17% of Internet video traffic
by 2022.

Providing satisfactory quality of experience (QoE) for users
is always the key issue in MRVS, while new challenges arise
in such a particular service. The first one lies in the packet loss
problem caused by the unreliable transmission in MRVS, which
can further lead to delay increase and visual quality degrada-
tion if without careful processing. Unlike TCP-based reliable
transmission (e.g., VoD and live streaming), MRVS usually
employs light-weight yet unreliable transmission protocols



based on UDP (or its variants together with some control
protocols [5]) to keep fast responses. However, once packet
loss occurs, current systems either wait for the re-transmission
with higher delay, or directly deliver the incomplete stream to
upper applications with potential video quality distortion.

The second challenge arises from the difficulty in coordi-
nating the limited network resources given the transformation
from two-party communication to multi-party communication.
Traditional VoD or live streaming usually adopts the client-
server architecture, where each client only needs to deal with
the communication with the other side. MRVS is much more
complex, where a central server node serves as the selective
forwarding unit (SFU), responsible for receiving streams from
different clients, orchestrating streams based on requests, and
sending streams as a group to each destination. Previous works
on bitrate adaptation [6]–[9] can only handle the two-party
communication scenario, while for the multi-party case, there
is still a considerable gap in fine-grained resource allocation
towards higher user QoE.

The third challenge is how to coordinate the transmission
behaviors of different parties so as to maximize the overall
QoE of a communication group. Conventional works [10]–[13]
mostly start from a client-driven perspective and only make
local decisions. Such an independent decision-making strategy
can easily cause poor QoE from a global view. However,
it is not easy to coordinate the interests of multiple parties,
especially when considering a variety of impact factors such
as loss, bitrate, and other network conditions.

Pioneer research works have made efforts toward these
challenges. Sun et al. [14] developed Deep Reinforcement
Learning frameworks to ensure low end-to-end video latency
in live streaming services, but lack consideration for packet
loss problems. Zhang et al. [15] proposed a joint bitrate
and loss adaptation scheme for realtime video streaming,
while they only focused on two-party communication. Mul-
tiLive [16] addressed the bitrate allocation in a multi-party
live streaming scenario, but it only considered reliable trans-
missions. Therefore, existing works only partially tackle the
challenges therein, calling for an integrated solution to address
these crucial problems in delay, multi-stream orchestration,
and multi-party coordination towards QoE maximization.

In this paper, we propose the SJA framework, a server-
driven joint loss and bitrate adaptation framework in multi-
party realtime video streaming services towards maximized
QoE. In our architecture, senders first generate the initial
streaming configurations based on their own policy (e.g.,
the Adaptive Bitrate (ABR) strategy). The central server
then conducts a joint loss and bitrate adaptation decision
with global orchestration based on the network conditions
and viewer requests. Following the server-side decision, the
senders will conduct the globally optimal stream configuration
with scalable video coding (SVC), and the server will forward
the optimal stream layer to the corresponding receivers. In
summary, our contributions are as follows:

• We investigate the problem caused by network loss in
realtime video streaming and highlight the importance of

TABLE I
SERVICE TYPES OF PIONEER RESEARCH

realtime multi-party
loss global

adaption coordination

DRL-Live [14] ✓

Oppugno [15] ✓ ✓

vSkyConf [17] ✓ ✓

AgRank [18] ✓ ✓

MultiLive [16] ✓ ✓ ✓

SJA ✓ ✓ ✓ ✓

joint adaptation of loss and bitrate in MRVS services.
We further demonstrate the necessity of a server-driven
architecture to optimize overall QoE.

• To our best knowledge, our proposed framework is the
first to consider a server-driven joint loss and bitrate
adaptation and multi-party stream coordination in MRVS
services. We comprehensively design an appropriate QoE
model for MRVS services to capture the interplay among
perceptual quality, variations, bitrate mismatch, loss dam-
age, and streaming delay.

• We formulate the QoE maximization problem in MRVS
services, followed by relaxation and the SJA algorithm.

• We conduct extensive realistic trace-driven evaluations.
The results demonstrate that the SJA algorithm can
achieve close-to-optimal performance with superior la-
tency and loss alleviation.

The remainder of the paper is organized as follows. Sec-
tion II introduces the motivation of our framework. Section III
illustrates the framework architecture. Section IV formulates
the problem with the QoE model definition. Section V de-
scribes the design of the SJA algorithm in detail. We present
the simulation results through extensive trace-driven experi-
ments in Section VI. Section VII discusses the related work.
Finally, we conclude the paper in Section VIII.

II. MOTIVATION

Researchers have become increasingly interested in multi-
party realtime video streaming services given their great
market value. Different from VoD or live services, MRVS has
several key features: 1) realtime: an acceptable transmission
delay is usually below 150 ms [19], far less than VoD and
live services; 2) simultaneous transceiving: each node can send
messages while at the same time receive messages from others,
e.g., in a video conference; 3) multi-party: multiple nodes
can have all-to-all communication; 4) unreliable transmission:
existing systems mostly employ UDP-based protocol, which
cannot guarantee the reliability in order to satisfy fast response.

The confluence of these features makes the MRVS service
provision even more challenging towards maximized user
QoE, calling for an integrated framework that jointly considers
realtime, multi-party, loss adaptation, and global coordination
for transmission optimization. Pioneer works [14]–[18] have



(a) 480p video with 1% loss (b) 480p video with 2% loss

(c) 1080p video with 1% loss (d) 1080p video with 2% loss

Fig. 2. Visual effects when multiple viewers experience different loss rates.

made attempts to address this problem. However, as summa-
rized in Table I, they only consider partial factors and fail to
achieve a comprehensive solution. Some other related works
try to minimize the global network cost [20], reduce the end-
to-end delay [21], or meet the fairness constraints [22], which
also only tackle partial problems.

We have closely examined the features of MRVS services
and summarized two insights as follows. Firstly, we argue
that extra bandwidth can be leveraged for redundant coding
such that loss can be corrected without retransmission. As
shown in Fig. 2, even 1% of bit errors in the transmission can
gravely damage viewers’ perceptions. Even worse, in multi-
party conferencing, if bit errors occur during video uploading,
the user experience of its all viewers at different bitrate levels
will be degraded. As a result, the impact of network loss
problems induced by fast yet unreliable UDP should not be
underestimated. Therefore, Forward Error Correction (FEC)
mechanisms can be utilized to mask the effect of loss, where
the extra bandwidth can be leveraged to facilitate loss recovery.

Secondly, we emphasize that the overall QoE maximiza-
tion of MRVS can only be achieved through server-driven
approaches. Studies towards QoE maximization usually fo-
cus on bitrate adaption, where an ABR controller will be
responsible for selecting the most appropriate bitrate based
on the available network throughput [11], [23], [24], receiver
buffer occupancy [25], [26], or utilize reinforcement learning
approaches [10]. These client-driven approaches only utilize
local state information to request their own most suitable
bitrates, while the decisions are usually not globally optimal in
such a non-cooperative way. For example, if multiple viewers
request the same video with different bitrates from a sender,
it will increase the sender encoding time, resulting in higher
latency for all receivers and failing to achieve satisfactory
overall QoE.

Thus, motivated by non-negligible loss damages and the
necessity of server-driven approaches, we take it one step
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Fig. 3. SJA Framework

further and explore, for the first time, the effects of server-
driven joint loss and bitrate adaptation in MRVS.

III. FRAMEWORK OVERVIEW

The SJA framework for joint bitrate and loss adaptation
in MRVS services towards overall QoE maximization. As
illustrated in Fig. 3, SJA follows a server-driven architecture
responsible for coordinating the streaming configuration of all
clients. It mainly consists of four components, i.e., senders,
receivers, video chunk memory and server control unit. It is
worth noting that different from the logical distinction, a client
in MRVS service can serve as both sender and receiver at the
same time. The detailed functionalities are as follows:

• Sender: A sender is responsible for sending out streams
with different bitrates employing scalable video cod-
ing [27]. SVC is an extension to the H.264/AVC [28]
video codec standard, which can encode a video stream
into a base layer and several enhancement layers. Besides,
the sender also leverages redundant coding technique
(i.e., FEC [29]) in our design, aiming to provide error
recovery ability to avoid retransmission.

• Receiver: Since the receiver has all the local updated
information, such as buffer occupancy and throughput
estimation, it first conducts an initial request for bitrate
using ABR algorithms, which have been widely explored
by pioneer works [1], [12]. In order to support the
global coordination, the feedback information such as the
receiver’s QoE, bitrate decision and network conditions
needs to be sent back to the server for further control.

• Server Control Unit: The server control unit is the
core component in the cloud server responsible for
global coordination. It collects the state information from
senders and receivers, as well as the receiver feedback
information. Through our designed SJA algorithm (§V),
it derives the best bitrate and loss adaptation decisions
from a global view, and delivers the control signals to
the senders for the next chunk streaming.

• Video Chunk Memory: Similar to a common selective
forwarding unit (SFU) architecture, the video chunk
memory at the cloud server will collect streams from
multiple senders, conduct stream orchestration, and then



forward corresponding streams with appropriate bitrate to
different receivers based on the decision result. Thanks
to the SVC format, the video chunk memory is able
to conduct light-weight layered streaming without much
transcoding overhead.

Our framework operates every time cycle, which is a short
time slot. The workflow of a decision cycle is demonstrated in
Fig. 3. Every sender (❶) first generates an uplink video stream
(❷) with multiple bitrate layers to the video chunk memory
(❸) in the cloud server. After receiving the control signals
from the server control unit (❹), the downlink streams (❺)
with different layered bitrate and different coding redundancy
will be forwarded to corresponding receivers (❻).

IV. QOE MODEL AND PROBLEM FORMULATION

We mathematically model the problem in this section to
better understand the challenges under MRVS scenarios. To
do so, we introduce our QoE design, which is the ultimate
objective, followed by constructing the primary problem for-
mulation and explaining the network constraints.

We assume that there are I senders and J receivers in
the multi-party realtime video streaming service, where I =
{1, 2, ..., I} represents the set of senders and J = {1, 2, ..., J}
represents the set of receivers. Note that I may not equal
J . Also, there are R = {R1, R2, ..., Rq} types of encod-
ing bitrate levels and C = {C1, C2, ..., Cp} types of FEC
code rate levels. Additionally, there are K timeslots, where
K = {0, 1, 2, ...,K} represents the set of slotted time indexes.

A. QoE Model

Followed by existing works [2], [30], [31], we consider five
QoE metrics, i.e., video rate based perceptual quality, per-
ceptual quality variations, bitrate mismatch level, streaming
delay and loss penalty, where we separate the QoE degradation
caused by bit errors from the original perceptual quality related
to bitrate. Firstly, we can calculate the perceptual quality of
sender i’s video in receiver j at time slot k as follows:

q(ri,jk ) = log(
ri,jk

rmin
) (1)

where ri,jk denotes the bitrate level from sender i to receiver j
at slotted time k, and rmin denotes the minimal bitrate level.
Here we adopt the logarithmic function [26] to represent the
video quality, where the ratio of real bitrate to minimal bitrate
can be utilized to decrease the marginal quality improvement.

Secondly, we take advantage of the perceptual quality vari-
ations to penalize changes in video quality to favor smooth-
ness [1]. In more detail, we adopt the absolute value of the
difference between current video quality and the video quality
of the last moment to represent the variations as follows:

|q(ri,jk )− q(ri,jk−1)| = | log(
ri,jk

rmin
)− log(

ri,jk−1

rmin
)|

= | log(
ri,jk

ri,jk−1

)|
(2)

TABLE II
NOTATIONS USED IN THIS PAPER

Variables Meaning

ri,jk real bitrate from sender i to receiver j at time k

rmin minimal bitrate level

r̂i,jk requested bitrate of sender i from receiver j at time k

di,j(k) streaming delay between sender i and receiver j

cik FEC code rate of sender i at time k

rik the set of all bitrates encoded by sender i at time k

T (rik) encoding time of sender i at time k

Bup
i (k) uplink bandwidth of sender i at time k

Bdown
j (k) downlink bandwidth of receiver j at time k

pi(k) loss rate between client i and the server at time k

ei,j(k) remaining loss rate from sender i to receiver j at time k

T duration of each time slot

Thirdly, we argue that the assigned streaming may differ
from the requested streaming of the receiver’s ABR controller
in practice. Thus, the bitrate mismatch penalty demonstrates
the dissatisfaction between the receivers’ requested bitrate and
the transmitted bitrate. We can calculate it as follows:

B(ri,jk , r̂i,jk ) = log(
r̂i,jk

rmin
)− log(

ri,jk

rmin
) = log(

r̂i,jk

ri,jk

) (3)

The fourth metric denotes streaming delay as follows:

di,j(k) = T (rik) +
maxj{ri,jk }
cik ·Bup

i (k)
+

∑I
i=1

ri,jk

cik

Bdown
j (k)

(4)

whose three components are encoding latency, uploading la-
tency, and downloading latency. Since we adopt one server
model in this paper, we ignore the transmission time among
different servers, the decision-making time, and the feedback
transmission time. In the expression, rik = {ri,jk |ri,jk ∈ R, j ∈
J} represents the set of all bitrates that sender i will encode
at time k. Note that cik is the FEC code rate, equal to k/n,
where an encoder takes a block of k source symbols as inputs
and generates a total of n FEC symbols (n > k) as output.

Lastly, we consider the QoE degradation caused by bit
errors. We denote ei,j(k) = max{pi(k)+pj(k)−(1−cik), 0} to
represent the remaining bit error rate after the FEC recovery,
and we map the bit errors to the QoE degradation penalty
through L(ei,j(k)), which will be analyzed in later section.

Therefore, we have considered all five QoE metrics in multi-
party realtime video streaming. In conclusion, the QoE for
receiver j at slotted time k is defined as:

QoEj(k) =

I∑
i=1

αi
j

{
βjq(r

i,j
k )− γj |q(ri,jk )− q(ri,jk−1)|

− δjB(ri,jk , r̂i,jk )− ϵjdi,j(k)− ζjL(ei,j(k))
} (5)

where αi
j is the importance factor of receiver j towards the

video from sender i, and other Greek letters represent the
receiver’s personalized viewing demand.



B. Problem Formulation

Integrating the viewers’ personalized QoE demands and
overall viewing architecture, we have the following optimiza-
tion objective that aims to maximize the overall QoE driven
by the server end under multi-party realtime video streaming:

max
{ri,jk ,cik}

1

K

K−1∑
k=0

[ J∑
j=1

ηj ·QoEj(k)

]
s.t. max

j
{ ri,jk

cik
}≤ Bup

i (k),∀i ∈ I

I∑
i=1

ri,jk

cik
≤ Bdown

j (k),∀j ∈ J

1
K

K−1∑
k=0

di,j(k)≤ λT, ∀i ∈ I,∀j ∈ J

ri,jk ∈ R, cik ∈ C

(6)

where T is the duration of each time slot, and ηj represents the
importance of receiver j in the meeting room. Our action space
consists of the actual bitrate of each sender-receiver pair and
the FEC code rate of every sender. The first constraint is the
upload bandwidth constraint for each sender, and the second
is the download bandwidth constraint for every receiver. The
third constraint is the time-average expected delay require-
ment, which ensures the low latency of the service. The last
one guarantees the available bitrate and FEC code rates, which
belongs to pre-setted combinations and are non-negative.

V. SJA ALGORITHM FOR JOINT ADAPTATION

In this section, we firstly prove the NP-hardness in Sec-
tion V-A, followed by insights of designing SJA algorithm. We
then introduce several relaxations in Section V-B, converting
the original problem to a one-step joint adaptation problem.
This conversion turns the long-term dependent problem into
a problem that can be solved separately at each period and
allows us to resolve the joint adaptation challenge without
any knowledge of future predictions. Lastly, we propose SJA
algorithm in Section V-C, which takes the coupling constraint
and running speed into full consideration with superiority.

A. NP-hardness and Designing Insights

Theorem 1: The server-driven joint loss and bitrate adapta-
tion problem towards maximized overall QoE is NP-hard.

Proof: As the original problem is complex, we consider
its simplified case. We first assume that each sender has
sufficient encoding ability, i.e., every sender can encode its
video fast enough at all bitrate levels. Next, remove the upload
capacity constraints so the server can forward the video from
any sender at any bitrate level. In this way, we transfer the
original problem to a simplified version, that is, assigning
senders’ video with optimal bitrate (i.e., items) to each receiver
(i.e., knapsack) so that the overall QoE (i.e., the total value of
the items in all knapsacks) is maximized while the total used
bandwidth of each receiver (i.e., the sum of weight for each
knapsack) does not exceed the downlink bandwidth capacity
(i.e., Bdown

j ). Thus, we can reduce the multiple knapsack
(MKP) problem, a known NP-hard problem, to our simplified

problem. As our simplified problem is a special case of the
original problem, the joint adaptation problem is NP-hard. ■

Although we can solve the NP-hard problem with a time-
average objective over a finite horizon by Dynamic Program-
ming (DP) [32] approaches, it is still difficult to achieve
an efficient and effective solution using traditional DP-based
methods for two main reasons. First, the original problem is
much more complex with more constraints. The large state
space under a DP formulation consists not only of the timeslot
index k and network conditions but also of predicted encoding
delay T (rik), bringing significant challenges to achieving fast
or even realtime decisions. Second, the original problem
formulation aims to tackle the time-average joint adaptation
problem, which needs predictions of future dynamics. In order
to overcome the above challenges related to traditional DP-
based approaches, we should take an alternative approach.

B. Problem Relaxation

Considering the original time-average joint adaptation prob-
lem formulation, we start by putting forward three relaxations.
Instead of considering a limited time, we first explore the
joint adaption problem in the limiting regime when the video
meeting becomes long, i.e., K → ∞. Thus, the objective and
the third constraint can be expressed as follows respectively:

max
{ri,jk ,cik}

lim
K→∞

1

K

K−1∑
k=0

[ J∑
j=1

ηj ·QoEj(k)

]
(7)

lim
K→∞

1

K

K−1∑
k=0

di,j(k) ≤ λT, ∀i ∈ I,∀j ∈ J (8)

Next, we simplify the upload bandwidth constraint by
eliminating its maximum operation:

ri,jk

cik
≤ Bup

i (k),∀i ∈ I,∀j ∈ J (9)

We do the third relaxation by constructing rate stable virtual
queues Qi,j(k) for each pair of sender and receiver as follows:

Qi,j(k + 1) = max{Qi,j(k) + di,j(k)− λT, 0} (10)

Lemma 1: If the virtual queue Qi,j(k) is rate stable, i.e.,

lim
K→∞

Qi,j(K)
K ≤ 0, then we have lim

K→∞
1
K

K−1∑
k=0

di,j(k) ≤ λT .

Proof: According to (10), we can get:

Qi,j(k + 1)−Qi,j(k)

= max{di,j(k)− λT,−Qi,j(k)}
≥ di,j(k)− λT

(11)

By taking the average from time index 0 to time index K − 1
on both sides of (11) and letting K goes to infinite, we have

lim
K→∞

Qi,j(K)

K
≥ lim

K→∞

1

K

K−1∑
k=0

di,j(k)− λT (12)

Thus, if the virtual queue Qi,j(K) is rate stable, we have

lim
K→∞

1

K

K−1∑
k=0

di,j(k) ≤ λT (13)



This completes the proof. ■
By introducing the rate stable virtual queue Qi,j(k), the
constraint (8) can be rewritten as:

lim
K→∞

Qi,j(K)

K
≤ 0,∀i ∈ I,∀j ∈ J (14)

Taking advantage of the above relaxations and motivated by
Lyapunov Optimization [33]–[35], we can further transfer the
time-average problem to a one-step optimization problem so
that the joint adaptation challenge can be resolved separately
at each time slot. Before calculating the Lyapunov penalty, we
first introduce a concatenated vector of the virtual queues as:

Θj(k) ≜ [Q1,j(k), Q2,j(k), ..., QI,j(k)] (15)

Thus, the corresponding Lyapunov penalty function for
every receiver can be calculated as:

P (Θj(k)) ≜
1

2

I∑
i=1

Qi,j(k)
2 (16)

With (16), the Lyapunov penalty drift ∆(Θj(k)) is:

∆(Θj(k)) = E{P (Θj(k + 1))− P (Θj(k))|Θj(k)} (17)

Enforcing the virtual queue constraints is equivalent to
minimizing the drift penalty. Thus, we can turn the original
maximization problem into a minimization problem so that
maximizing the overall QoE with virtual queue constraint is
equivalent to minimizing the following drift-plus-penalty term:

J∑
j=1

[
∆(Θj(k)) + Vj(−ηjQoEj(k))

]
(18)

where Vj is a non-negative weight to allow a trade-off
between the virtual queue constraint and the objective of
overall QoE maximization.

Therefore, original problem formulation (6) can be trans-
formed to the one-step problem as follows:

min
{ri,jk ,cik}

J∑
j=1

[
∆(Θj(k))− Vj(ηjQoEj(k))

]
s.t.

ri,jk

cik
≤ Bup

i (k),∀i ∈ I,∀j ∈ J
I∑

i=1

ri,jk

cik
≤ Bdown

j (k),∀j ∈ J

ri,jk ∈ R, cik ∈ C

(19)

Furthermore, we can simplify the formulation of (19) by
finding the upper bound of the penalty drift in (17).

P (Θj(k + 1))− P (Θj(k + 1))

=
1

2

I∑
i=1

[
Qi,j(k + 1)

2 −Qi,j(k)
2

]

≤1

2

I∑
i=1

[
di,j(k)− λT

]2
+

I∑
i=1

Qi,j(k)

[
di,j(k)− λT

] (20)

Substituting (20) to (17), we can get:

∆(Θj(k)) ≤ Cj +

I∑
i=1

Qi,j(k)

[
di,j(k)− λT

]
(21)

where Cj is constant that always satisfies the below condition:

Cj ≥
1

2

I∑
i=1

E

[
(di,j(k)− λT )2|Θj(k)

]
(22)

Thus, after the further Lyapunov optimization and the upper
bound substituting, the original time-average problem is now
simplified to the following one-step joint adaptation problem:

min
{ri,jk ,cik}

J∑
j=1

{ I∑
i=1

Qi,j(k)
[
di,j(k)− λT

]
− Vj(ηjQoEj(k))

}
s.t.

ri,jk

cik
≤ Bup

i (k),∀i ∈ I,∀j ∈ J
I∑

i=1

ri,jk

cik
≤ Bdown

j (k),∀j ∈ J

ri,jk ∈ R, cik ∈ C
(23)

C. SJA Algorithm for Joint Adaptation

The one-step problem in Section V-B still need to make
decisions on the two separated action space, and it still need
to deal with the coupling objective. To tackle these difficulties,
we propose our SJA algorithm based on primal decomposition,
which can obtain the near-optimal solution quickly on the
server. We first rephrase the formula in (23) as follows:



f0(rj , c, k) =

I∑
i=1

Qi,j(k)
[
di,j(k)− λT

]
− Vj(ηjQoEj(k))

f1(rj , c, k) =
ri,jk

cik
−Bup

i (k)

f2(rj , c, k) =

I∑
i=1

ri,jk

cik
−Bdown

j (k)

(24)
where rj = [r1,jk , r2,jk , ..., rI,jk ]T and c = [c1k, c

2
k, ..., c

I
k]

T .
Thus, (23) can be represented in the following format:

min
{rj},ck

J∑
j=1

f0(rj , c, k),

s.t. fn(rj , c, k) ≤ 0, n = 1, 2

ri,jk ∈ R, cik ∈ C

(25)

To cope with the coupling problem, as both bitrate and FEC
code rate determine the delay metric, we transfer the original
problem into one master problem and several subproblems
based on the primal decomposition. We introduce a master
agent to account for the information update and action aggre-
gations as shown in (25). We then introduce J slave agents
to be responsible for subproblem optimization within each



Algorithm 1 SJA Algorithm for joint loss and bitrate adaption
Input:

Total times: K; Clients: I,J;
Bandwidth capacity: Bup

i (k),∀i ∈ I; Bdown
j (k), ∀j ∈ J;

Bitrate requests: r̂i,jk , ∀i ∈ I,∀j ∈ J ;
Channel’s loss rate: pi(k), ∀i ∈ I,J;
Threshold: ζ; Maximum iterations: n;

Output:
Optimal bitrate and FEC code rate: ri,jk , cik;

1: Initialize Qi,j(k), i = 1, 2, ...I , j = 1, 2, ..., J ;
2: for k = 1 to K do
3: Initialize iteration = 0, △ = ∞;
4: while iteration < n and △ > ζ do
5: for all i,∈ I, j ∈ J do
6: ri,jk = inf

r
{f0|fn ≤ 0, n = 1, 2};

7: Update rj to the master agent;
8: end for
9: for all i ∈ I, j ∈ J do

10: ri,jk = argmin
r∈R

|f j
0 (r

i,j
k )− f j

0 (r)|;

11: cik = argmin
c∈C

∑J
j=1 f

j
0 (c);

12: end for
13: △ =

∑J
j=1 f

j
0 (k)− f j

0 (k − 1);
14: iteration++;
15: end while
16: Output joint adaption solutions r and c for time slot k;
17: end for

iteration, and every slave agent simulates a receiver to solve
the following subproblem with only linear constraints:

r∗j = inf{f0|fn ≤ 0, n = 1, 2} (26)

We now design the algorithm for joint loss and bitrate adap-
tation as shown in Algorithm 1, which can be implemented on
the server with slave agents running in parallel. The required
inputs of state information at each time slot include network
conditions such as bandwidth capacity and channels’ loss rates,
as well as receivers’ bitrate requests. Also, the parameters
consist of maximum iteration between master agent and slave
agents at each time slot and the incremental extent of the
objective, which are responsible for the stop criteria.

In each iteration, every slave agent will first perform the
subproblem optimization step in (26) on behalf of the cor-
responding receiver. As only one variable exists in the sub-
problem, every slave agent will roll a one-step optimization.
They first adopt the fixed FEC code rate from the server agent
to obtain the optimal bitrate choices for every receiver. It is
worth noting that the encoding type constraints are omitted
by every slave agent so that the original subproblem can be
relaxed and transformed into a linear constraint problem, thus
reducing the complexity of the solution. After that, every slave
agent will update their optimal solutions to the master agent
responsible for aggregations. Without bitrate clustering, It will
assign the best encoding bitrate type according to the optimal

bitrate solutions from slave agents through minimum objective
sacrifice. Similarly, we can generate an optimal FEC code rate
for each sender by minimizing the overall penalty drift.

The iteration will stop until it reaches the maximum iteration
setting or the extent of the overall performance improvement is
insignificant. Opposite to DP-based approaches, we emphasize
that SJA algorithm has the superiority in processing time with
time complexity of O(nIJ) since it significantly increases
the scalability by translating the original problem to a master
problem and several one-variable subproblems with linear
constraints. Thus, the optimal decisions to encode on senders
and to stream forwarding on the server can be effectively and
efficiently executed to achieve the optimized overall QoE.

VI. PERFORMANCE EVALUATION

In this section, we compare the SJA framework with state-
of-the-art MRVS approaches and evaluate their performance
with extensive trace-driven experiments.

A. Methodology

Network Traces: To evaluate SJA and other state-of-the-
art solutions under realistic network conditions, we create a
corpus of network traces for more than 50 hours by combining
two public datasets: (1) the FCC dataset [36] containing over
1 million throughput traces, each of which logs the average
throughput over 2100 seconds. (2) the HSDPA dataset [37]
on mobile throughput covers multiple usage scenarios such
as buses, trains, and cities. To avoid trivial bitrate and FEC
code rate selection, the synthesized corpus only considers the
original traces with average throughput between 0.3 Mbps
and 5 Mbps. Moreover, we collect the loss rate in two lossy
network channels with an average of 1% and 2% loss rates.
Baselines: We consider the following methods as the baselines
for comparison with SJA in MRVS scenarios:

• MTL: An adaptive bitrate control algorithm of MultiLive
for the multi-party realtime scenarios. It is a server-driven
approach and comprehensively considers the uplink band-
width and downlink bandwidth of all clients.

• OPG: An integrated Oppugno framework that achieves
joint loss and bitrate adaption towards maximized QoE
in realtime streaming services, which employs deep rein-
forcement learning algorithms on the receiver side.

• SS: Adopts SVC for sender-side video encoding and SFU
architecture to select and forward streams with scalability.

• MESH: A simple version of MTL where SVC and SFU
architectures are not applied.

Parameter Setting: Given the bandwidth traces, we set the
available video bitrate as: {0.3, 0.5, 1.0, 2.0, 3.0, 5.0} Mbps.
We also set the available FEC code rates to range from 0.9 to
1.0. For the QoE weight setting, we choose {1, 1, 1, 2.5, 0.1}
and {1, 1, 1, 1.5, 0.25} for perceptual quality, fluctuation, bi-
trate mismatch, loss damage, and streaming delay, respectively.
Note that the loss damage weight 0.25 directly maps to the
degradation of raw video quality after loss recovery, which is
a non-negligible item. In that case, the two QoE preferences
are delay-sensitive and loss-sensitive types. Besides, we set all
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Fig. 4. The overall QoE over synthesized dataset with real-world data

Vj as 1 to allow the balance between the time-average delay
requirement and the objective of overall QoE maximization.
Lastly, we set the maximum iteration in the SJA algorithm as
2 to ensure the fast response of the server-side orchestration.
Experiment Setup: To illustrate how effective our server-
driven approach can achieve when facing multiple clients with
different viewing preferences, we consider two cases with
5 clients. In the first case, every client in the meeting will
request two videos from other clients simultaneously. More
specifically, one video is in loss-sensitive type, and the other
is in delay-sensitive type. Therefore, the client has different
viewing preferences for different videos on its own screen.
The detailed results are demonstrated in Section VI-B. In the
second case, every client in the meeting will request four other
videos; That is, every client can communicate with anyone in
the video conferencing service. Moreover, we set three clients
in the conference as delay-sensitive users, meaning these three
clients will adopt delay-sensitive QoE models wherever the
video is from. The remaining two clients in the meeting are
loss-sensitive users, and they will adopt loss-sensitive QoE
models. The experiment results are revealed in Section VI-C.

B. Performance with Real-world Data

In this section, we compare the performance of the SJA
framework with other baselines. Based on our generated
corpus, we evaluate the performance with two series of
experiments with various loss conditions of 1% and 2%
on average. Note that there are 5 clients and each viewer
request two videos with loss-sensitive and delay-sensitive QoE
preferences. The overall QoE achieved by SJA and other
baselines are illustrated in Fig. 4, and the detailed CDF plots
in Fig. 5. There are three key observations as follows.

Firstly, SJA is able to outperform all other baselines with
higher average QoE, with 33.7% higher QoE than MultiLive in
low loss rate conditions and 39.2% higher QoE than Oppugno
in high loss rate conditions. This result confirms the effective-
ness of SJA by integrating the loss and bitrate adaptation for
overall QoE maximization. An interesting observation is that
both SS and MESH are inefficient in dealing with the multi-
party joint adaptation problem, achieving worse performance
than other three frameworks as they lack server-driven bitrate
orchestration and adaptive loss control mechanisms.

Secondly, SJA can achieve more stable and concentrated
QoE scores than all other baselines. The CDF curves in the
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Fig. 5. CDF of QoE metrics with real-world data

Fig. 5(a) and Fig. 5(b) show a smaller QoE variance of SJA
than MultiLive and Oppugno. Moreover, the QoE scores of Op-
pugno are mainly concentrated within the range of 1.0 to 2.0,
while MultiLive is even lower when the loss rate is relatively
high. Instead, the QoE scores of SJA are mainly concentrated
within the range of 1.5 to 2.5 in different loss conditions,
reflecting that SJA can well mitigate the loss impact and can
better handle the global streams orchestration with various
loss and network throughputs, including the poor network
condition with a large loss. The remaining two frameworks
achieve quite concentrated but poor QoE performance, which
infers that they fail to provide satisfactory QoE in multi-party
realtime video streaming services.

The third observation is that the loss adaption is essential
in multi-party realtime video streaming services. As shown
in Fig. 4(a) and Fig. 4(b), there is a noticeable QoE drop
for MultiLive as the loss rate increased, which indicates that
MultiLive is quite sensitive to packet loss problems and insuf-
ficient to handle the large loss conditions even with server-side
bitrate orchestration. Thus, this observation again confirms the
superiority of our joint adaptation in MRVS services.

C. Performance of Generalization

In the experiments above, SJA performs well on the real-
world data, while the realistic environment could be more
complex with more viewing demands. To evaluate SJA’s ability
to generalize to more demanding conditions, we conduct two
more experiments with various loss rates and more video
requests. To be more specific, we evaluate the SJA framework
and other baselines on the condition that every participant
in the meeting room will request all four videos from other
participants. Moreover, among the five participants, three serve
as delay-sensitive users to attach great importance to streaming
delay, while the other two participants are loss-sensitive and
adopt loss-sensitive QoE models. We demonstrate the overall
QoE achieved by SJA compared with other baseline methods
and the detailed CDF plots in Fig. 6. After the generalization
experiments, we have another two critical observations.

Firstly, the SJA framework performs better than all other
baseline methods with higher average overall QoE scores and
more concentrated QoE distributions in the more generalized
multi-party realtime video streaming scenarios. As shown
in Fig. 6(a) and Fig. 6(c), the average overall QoE of the
SJA framework is at least 18.4% higher than other baseline
methods in low loss rate conditions, and is at least 46.5%



MESH SS MTL OPG SJA
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
A

ve
ra

ge
 Q

oE
MESH
SS
MTL
OPG
SJA

(a) The overall QoE with 1% loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

MESH
SS
MTL
OPG
SJA

(b) CDF of QoE with 1% loss

MESH SS MTL OPG SJA
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
ve

ra
ge

 Q
oE

MESH
SS
MTL
OPG
SJA

(c) The overall QoE with 2% loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

MESH
SS
MTL
OPG
SJA

(d) CDF of QoE with 2% loss

Fig. 6. QoE performance of a more generalized case. There are 5 clients in
the conferencing, each client request all 4 videos from others

higher than others in high loss rate conditions. Moreover, the
QoE scores of SJA are mainly concentrated within the range
of 1.25 to 1.75, reflecting that SJA can better mitigate the loss
impact and solve the more challenging bandwidth allocation
problem as the number of videos increases.

The second observation reveals the superiority of the server-
driven joint adaptation design as the loss rate and the view-
ers’ requested video number increase. Compared with the
experiments in Section VI-B, the average overall QoE of
all frameworks has been reduced. This result indicates that
under the limited upload and download bandwidth, the video
quality of users will decrease with the increase of requested
video numbers. However, server-driven approaches have better
resistance to video quality degradation as the requested video
number rises. Opposite to Fig. 4(a), Fig. 6(a) shows that the
decline of QoE of SJA and MultiLive are less than Oppugno,
which obviously demonstrated the benefits of adopting server-
driven strategies. Furthermore, in the high loss rate group
shown in Fig. 6(c), the MultiLive solution with server-driven
bitrate orchestration achieves similar QoE to the Oppugno
solution with joint loss and bitrate adaption, while the server-
driven SJA framework with joint loss and bitrate adaptation
still performs the best. Thus, we can justify the importance of
both the idea of server-driven and joint adaptation.

VII. RELATED WORK

Previous ABR algorithm mainly studies how to dynamically
adjust the bitrate to utilize the bandwidth of the current
network and improve the QoE. According to the decision basis,
existing ABR algorithms are mainly divided into four cate-
gories: 1) rate-based ABR: rate-based approaches mainly focus
on predicting future throughput and adjusting the bitrate based
on predicted results. For example, Sun et al. [38] leveraged a
data-driven approach to construct a Hidden-Markov-Model-
based midstream predictor to model the stateful evolution of

throughput. 2) buffer-based ABR: buffer-based approaches ad-
just the bitrate by considering the buffer occupancy of clients.
For example, Spiteri et al. [26] formulated bitrate adaptation as
a utility-maximization problem and devised an online control
algorithm called BOLA that uses Lyapunov optimization to
minimize rebuffering and maximize video quality. 3) hybrid
ABR: hybrid methods usually consider multiple factors when
deciding the future bitrate. For example, Yin et al. [30] pro-
pose a model predictive control algorithm that can optimally
combine throughput and buffer occupancy information to
outperform traditional approaches. 4) reinforcement-learning-
based ABR: rl-based methods utilize learning algorithms to
achieve bitrate adaption. Mao et al. [1] pioneering trained a
neural network model named Pensieve that selects bitrates
for future video chunks based on observations collected by
client video players. However, these studies on reliable TCP
transmission do not consider the packet loss problem, which
can cause picture distortion and seriously affect the user QoE.

Some previous studies have put forward efforts on multi-
party realtime video streaming services. Hajiesmaili et
al. [18] cast a joint problem of user-to-agent assignment and
transcoding-agent selection, and devised an adaptive parallel
algorithm to simultaneously minimize the cost of the service
provider and the conferencing delay. Hu et al. [21] considered
the multi-server architecture and formulated server selection as
a geometric problem to propose fast heuristics with theoretical
worst-case guarantees. Wu et al. [17] presented a cloud-
assisted mobile video conferencing system to improve the
quality and scale of multi-party mobile video conferencing,
where the decentralized algorithm can decide the best paths of
streams and the most suitable surrogates for video transcoding
along the paths to utilize the limited bandwidth fully. More-
over, Wang et al. [16] considered global optimization that takes
into consideration of different QoE factors, and designed an
adaptive bitrate control algorithm for the multi-party scenario
by modeling the many-to-many ABR selection problem as
a non-linear programming problem. These MRVS solutions
mainly focus on the optimization problem with cost-efficiency,
service scalability, and low latency. However, they lack the
consideration of the overall orchestration with handling the
potential loss problems, which may lead to severe damage to
perceptual video quality [39].

VIII. CONCLUSION

In this paper, we propose SJA, a server-driven joint loss
and bitrate adaptation framework in multi-party realtime video
streaming services towards maximized overall QoE. We first
explored the importance of loss recovery and server orchestra-
tion in MRVS, and abstracted its service model to better tackle
the challenges of selecting the best bitrate, FEC code rate,
and streaming forwarding choices. Afterwards, we investigated
the QoE model and mathematically formulated the problem,
followed by proposing the SJA algorithm with close-to-optimal
performance. Over a broad set of network conditions and QoE
metrics, the SJA framework outperformed existing advanced
solutions by 18.4% ∼ 46.5%.
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