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Abstract—We are in an age where people are paying increasing
attention to energy conservation around the world. The heating
and air-conditioning systems of buildings introduce one ofthe
largest chunk of energy expenses. In this paper, we make a key
observation that after a meeting or a class ends in a room, the
indoor temperature will not immediately increase to the outdoor
temperature. We call this phenomenonThermal Inertia. Thus, if
we arrange subsequent meetings in the same room; than a room
that has not been used for some time, we can take advantage of
such un-dissipated cool or heated air and conserve energy.

We develop a green room management system with three
main components. First, it has a wireless sensor network to
collect indoor, outdoor temperature and electricity expenses of
the heating or air-conditioning devices. Second, we build an
energy-temperature correlation model for the energy expenses
and the corresponding room temperature. Third, we develop
room scheduling algorithms. In detail, we first extend the current
sensor hardware so that it can record the electricity expenses
in re-heating or re-cooling a room. As the sensor network
needs to work unattendedly, we develop a hardware board
for long range communications so that the Imote2 can send
data to a remote server without a computer-relay close-by. An
efficient two tiered sensor network is developed with our extended
Imote2 and TelosB sensors. We apply laws of thermodynamics
and build a correlation model of the energy needed to re-
cooling a room to a target temperature. Such model requires
parameter calibration, and uses the data collected from the
sensor network for model refinement. Armed with the energy-
temperature correlation model, we formally describe the problem
for finding the minimum energy schedule. We prove our problem
is NP-complete in general case. We develop an optimal algorithm
for special case and two fast heuristics for general cases.

Our system is validated with real deployment of a sensor net-
work for data collection and thermodynamics model calibration.
We conduct a comprehensive evaluation with synthetic room and
meeting configurations; as well as a real class schedules and
classroom topologies of The Hong Kong Polytechnic University,
academic calendar year of Spring 2011. We observe a 20% energy
saving as compared with the current schedules.

I. I NTRODUCTION

There is a huge interest in building a green world recently.
The key focus is energy conservation and energy efficiency.
Computer scientists are actively contributing our effort in two
directions, 1) improve energy efficiency of computing systems,
and 2) apply computing systems (e.g., sensor networks) for
energy conservation in broader disciplines.

For the first category, many studies are working on energy
efficiency for data centers [16][17][19], a top energy consumer
among all computing devices. While the energy expenses
of computing industry is increasing fast in recent years, the
largest portion of energy consumption is still dominated by
such areas as commercial buildings, residential usage, trans-
portation, manufactory industry [22]. Especially, for regions

where the Industrial sector is small, the electricity consump-
tion by commercial buildings can be more dominating; for
example in Hong Kong, 65% of electricity in 2008 goes to
the commercial sector [5].

The heating and air conditioning of commercial buildings
has the largest chunk in energy expenses. In 2008 the Office
Segment of Hong Kong, 54% electricity goes to space condi-
tioning (i.e., air-conditioning), 14% goes to lighting, 13% goes
to office equipments such as computers [5]. Monitoring the
conditions of the buildings and efficient utilization of heating,
ventilation, and air conditioning (HVAC) has been a long time
topic; and advanced commercial buildings can automatically
turn off lights and HVAC systems of rooms when humans
are not in presence. Nevertheless, we notice that even if the
heating or air-conditioning of a room is turned off, the heat
or the cool air will not immediately dissipate. We call this
phenomenonThermal Inertia.1 We consider the un-dissipated
cool or heated air a valuable resource that can be utilized, so
that future usage of this room can take the advantage without
re-heating or re-cooling the room.

Based on this observation, we develop an energy conser-
vation room management system, such that the allocation of
the rooms of a building (or classrooms in campus) is based
not only on a schedule (e.g., meeting time, room capacity),
but also on the existing heating or air-conditioning conditions
of the rooms. In the rest of the paper, we will only use air-
conditioning as an example to ease our presentation.

Clearly, our room management system falls into an opti-
mization problem. It is not straightforward, however to know
how much energy will be saved if a room is scheduled. As
an example, the recommended office temperature in Hong
Kong is 26◦C (79◦F). Assume a room was used 20 minutes
ago, and its current temperature is 29◦C (84◦F). The outdoor
temperature is 37◦C (99◦F). If we schedule a meeting 5
minutes later in this room, how much electricity is needed
to re-cool it to the targeted temperature 26◦C (79◦F)?

This is affected by such factors as the room specifics (size,
wall materials, etc), indoor and outdoor temperature, the tar-
geted temperature etc. A key difficulty is to build a correlation
among these factors. The more accurate this correlation model
is, the better the scheduling algorithm we can run on top of
it. Building this model does not solely fall into the computer
science domain. Advanced thermodynamics theories may be
needed. We believe that in the sensor network research today,

1This name follows a recommendation from a senior practitioner and
researcher from Building and Service Engineering.
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it is very common that cross-discipline understandings are
required; for example, it is shown that knowledge on sensor
placement quality in the sense of civil engineering can make
the structural health monitoring system built by computer sci-
entists more plausible [8]. A careful management on the degree
of understanding on different disciplines is very important.
In our work, we choose to apply rudimental thermodynamics
theory to build a simple initial energy-temperature model.We
then use sensor data to calibrate this model. We validate the
effectiveness of such design by a real experiment.

Another difficulty is that we do not have off-the-shelf
components for our sensor network. We thus extend Imote2 to
an electricity-meter so that it can record electricity usage of
air-conditioners. As we expect that our system should work in
public unattendedly for a period of time, we develop a board
for long range communication so that Imote2 can send data
directly to a remote server. As such, no laptop computer, which
may be easily stolen, needs to be placed as a relay close-
by. We develop a two tier sensor network with TelosB (as
temperature sensor) and Imote2-based electricity-meter.Such
system is flexible and efficient (the Imote2-based electricity-
meter does not have energy constraint).

On top of these, we develop room scheduling algorithms.
We first formally describe the problem for finding a minimum-
energy schedule. We prove that our problem is NP-complete
in general cases. Then we develop an optimal algorithm for a
special case where all rooms are equal. For the general case,
we develop two efficient heuristics.

Besides a real world system deployment for model valida-
tion and data collection, we evaluate our system with compre-
hensive simulations with synthetic room configurations and
meeting schedules. We also evaluate our algorithms with real
class schedules and classroom topologies of The Hong Kong
Polytechnic University, academic calendar year of Spring
2011. We observe that we can save 20% of electricity as
compared to the current room schedules of The Hong Kong
Polytechnic University, and even higher for synthetic data.

II. ROOM MANAGEMENT SYSTEM: AN OVERVIEW

We discuss some high level system choices. As a first
work, we confine our study that given the schedules, how
the classes/meetings should be arranged. We leave a detailed
investigation of online room management as future work.

To accurately schedule rooms and maximally conserve
energy, an important part of our system is that we need to build
an energy-temperature correlation modelso that the room
scheduling algorithm can run on top of it. More specifically,
we need a function such that given the current temperature and
room environment configurations, the energy to be consumed
to achieve the target temperature. There are two extreme
ways for building such model. First we can apply advanced
thermodynamics theories and material sciences to explicitly
compute such function. Second, we can build a database with
entries of the environment parameters (e.g., indoor tempera-
ture, outdoor temperature, and targeted temperature) and the
corresponding energy consumptions. In the room scheduling

Energy-temperature 

correlation model

Room Scheduling Algorithm

Calibrated 

Model

Sensor 

Data

Initial 

Model

Room

Configuration

Meeting

Request

Fig. 1: The framework of the room management system.

algorithm, whenever an estimation on the energy expenses is
needed, an entry in this database that has the most similar
environmental configuration can be extracted.

The first choice falls into the expertise of Building and
Service Engineering. We have consulted experts of BSE from
both academia and industry. While there are sophisticated tools
such as EnergyPlus [2], they admit that it is difficult to build
a model purely from theory. For the second choice, to build
the correlation database, a sensor network can be deployed
to collect such data as temperature and energy expenses. The
accuracy depends on the granularity of the data collection.The
more samples the database has, the more accurate to find the
energy expenses with a similar environmental configuration.
After some studies on physical laws on heat conduction and
some field experimental validation, our choice finally falls
into a mixture of the two extremes. We use an initial model
following rudimental Fourier’s law of heat conduction. In this
model, some parameters are difficult to compute from theory.
These parameters are invariants, however, e.g., only affected
by the materials of the room. Thus we inversely calibrate the
parameters of this model using the data collected by a sensor
network. The high-level framework of our system is in Fig. 1.

We also want to clarify that in this paper, we use electricity
expenses as our optimization objective. For end-users, having
their electricity bills cut directly means money saving.

The remaining part of the paper proceeds as follows. In
section III, we present our design of the sensor network.
Section IV is devoted to our energy-temperature correlation
model and a real world experiment validation. We detail our
room scheduling algorithms in section V. In section VI, we
evaluate our algorithm comprehensively. We present related
work in section VII and section VIII concludes the paper.

III. SENSORNETWORK DESIGN

For a building, or a campus, there are multiple rooms. For
each room, we need to build an energy-temperature correlation
model (detail in Section IV) to be used for the scheduling
algorithm (details in Section V). As such, a sensor network
should be deployed in each room. In this sensor network,
there should be a sensor to record electricity usage to air-
conditioning the room. We also need to record the temperature.
As the temperature in different locations of the room may
not be uniform, a set of temperature sensors is suggested. We
would like to comment that the sensor network is only used for
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the construction of the energy-temperature correlation model
for each room. After the model is built, we can predict the
energy consumption using the model.

Since the sensor network needed in each room is the same,
in practice, we can deploy a sensor network and build the
energy-temperature correlation model room-by-room.

Our system needs to work unattendedly in a building for
a period of time. The sensors can usually be protected by a
cover and placed on walls, roofs etc. However, it is impossible
to place a laptop computer (as a base station) unattendedly.
The rooms are public and the laptop computer can be stolen.
This is in contrast to some smart home systems, where we can
assume that the laptop/desktop computer will work in a private
apartment. As the sensor network is deployed in buildings,
power is not as critical as those applications in the wild.

For some functions we need, there is no off-the-shelf com-
ponents. Before discussing the implementation of our sensor
network, we extend the hardware and build an electricity-meter
and a long-range data communication module as follows.

A. Design of an Electricity-meter
Our system needs to estimate the energy consumption for

air-conditioning the room to a targeted temperature. We extend
Imote2 with a PowerBay SSC VC to record electricity current
(see Fig. 2). PowerBay SSC VC also becomes a power supply
to Imote2. In operation, PowerBay SSC VC will record the
power (in Watt) and such data will be digitized and output to
Imote2. The data can then be transmitted out by Imote2.

B. A Long-range Data Communication Module for Imote2
We develop a long-range high-rate data communication

module (LR-module) for Imote2 (See Fig. 3). This LR-module
performs a series of transformation to convert Imote2 output
data to the Ethernet port. The flow chart of our design is shown
in Fig.4.

LR-module is a separate board which can be connected with
the Imote2 node through the basic-connector, and it is directly
controlled by the Imote2 node. LR-module chooses an SPI
interface as the communication channel with Imote2 node. It
has a bit-rate ranging from 6.3Kbps to 13Mbps. This makes
our design bypass the throughput bottleneck. LR-module has
the following two hardware components:

1) An ethernet module: LR-module applies W5100 as the
network chip. W5100 integrates a hardware network stack,
offering 4 separate socket interfaces. After simple initializa-
tion, developers can use TCP connection or send UDP packet

Fig. 5: The Sensor System. Here we present our enhanced Imote2 node and
3 TelosB temperature sensors.

the same as other applications. This choice avoid the high
complexity of the network stack and network card driver for
the operation system designers, especially for a simple OS like
TinyOS. This makes the system simple and stable.

2) A power adapter module: The power adapter module
change the battery power supply (3.0V - 4.5V) to a stable 3.3V
power supply which is required by our hardware network stack
module. We use LTC3429 Micropower Synchronous Boost
Converter as the kernel chip for this module. LTC3429 has an
up to 96 power conversion efficiency, leading to less power
loss during conversion.

Equipped with the LR-module, the data can be sent to a
remote server, e.g., in practice, we use 3G. Note that the choice
of 3G is not special. It is possible to develop a module that
use GPRS or WiFi for data transmission. We use 3G as it
is more universally applicable than WiFi and has a greater
transmission rate than GPRS. In our experiment, the effective
data stream throughput of our module can reach 520K bps.

C. Development of Sensor Network
We show the design of our sensor network by integrating

these components. We develop a two tiered sensor network.
The first tier is a set of enhanced Imote2-based electricity-
meters. The second tier is a set of TelosB-based temperature
sensors (see Fig. 5). For the first tier, an electricity-meter
monitors the electricity usage of the air-conditioner. It is also
equipped with the LR-module and can communicate with a
remote server. The Imote2-based electricity-meter is powered
by alternating current and is thus not energy constrained.
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For the second tier, we deploy a few indoor and outdoor
temperature sensors. We use TelosB, as it is cheaper. To have
better flexibility, in practice these temperature sensors can use
batteries. TelosB is more energy efficient than Imote2.

The routing architecture of our sensor network is from the
temperature sensors to the electricity-meter (one hop). We
implement our sensor system in TinyOS, and use Collect
Tree Protocol (CTP) [3] for data routing among sensor nodes.
The electricity-meter then send these temperature data andits
electricity readings to a remote server directly (one hop but
long range data communication).

The lifetime of our sensor system is determined by TelosB
nodes if they use battery power. In practice, every node gets
the temperature and transmits 32 bytes every 10 seconds; The
projected lifetime of our sensor network can thus reach 2000
hours. We find that this is far enough for us to collect data
and calibrate the energy-temperature correlation model.

IV. D ESIGN OFENERGY-TEMPERATURECORRELATION

MODEL AND EXPERIMENTAL VALIDATION

In this section, we develop a model where the electricity
is a function of (a room, current indoor/outdoor temperature,
targeted temperature). Our idea is as follows. With our sensor
network, we can measure the electricity usage, the indoor and
outdoor temperatures and we know the targeted temperature
in advance (in Hong Kong, it is 26◦C as recommended by
the administration). If there is an artificial perfect room with
six identical walls with the same conductivity, we can easily
build the energy-temperature correlation model for this room
from Fourier’s law of heat conduction [11]. We do not have
a perfect room, however. Materials, shape and conductivities
of the six walls (i.e., four side walls, a ceiling and a floor)
are all different. Our key observation is that these factorsare
invariants. They are determined by their physical materials and
do not change (or change ignorably) with outside factors.

Therefore, for each real-world room, we can build a virtual
perfect room to mimic it. For this virtual perfect room, we
build an energy-temperature correlation model using Fourier’s
law of heat conduction with the set of invariants undetermined.
To compute these invariants, we collect a set of electricityand
temperature data by our sensor network. We then inversely
derive these invariants. After fitting these invariants back to
the model, we can compute (or predict) electricity usage under
any indoor/outdoor temperature and targeted temperature for
this room. That is, we have our model.

In what follows, we first show the details of the development
of our model. Then we will conduct a real-world experiment
to validate our method.

A. Energy-Temperature Correlation Model
As explained, we use a virtual perfect room where 1) The

room space is enclosed, i.e., no air exchange with other spaces;
2) All walls, ceiling and floor are made of materials with the
same thermal conductivity and have identical thickness; 3)All
outside temperature of the room is same and is constant. We
show that for any real-world room with different shape and

different materials, we can build a virtual perfect room with
uniformed parameters to emulate it.

We also assume 1) the electrical powerP of the air
conditioner is constant when it is in operation, and is zero
if it stops; and 2) the electricity-energy transformation rate r

is a constant; this indicates the energy injected into a roomper
unit time when an air-conditioner is in operation is constant.
We will also calibrate the condition of the air-conditioner.

Notation Definition Unit

T Indoor temperature K or ◦C

P Electrical power of the air conditioner J/s

r Energy transformation ratio of the air-conditioner –
Pe Effective energy injected to the air of the room

per second,Pe = r × P
J/s

To Temperature outside the room K or ◦C

k Thermal conductivity of a material W/(K · m)

L Thickness of a material m

A Total area of six walls m2

m Mass of the air in the room kg

C Specific heat capacity of air J/(kg · K)
Q Heat transfer rate from outdoor to the room J/s

λ Conductivity of the room J/(s · K)

Let T be the indoor temperature. LetTo be the temperature
outside the room. LetQ be the heat transfer rate from outdoor
to the room. Letk be the thermal conductivity of the material.
Let A be the total area of the six walls. LetL be the thickness
of a material. According to Fourier’s law [11], we have

Q =
kA

L
(To − T ) (1)

Eq. 1 basically says that the heat transfer rate is proportional
to thermal conductivity of the material, the size of the walls,
the temperature difference and is inversely proportional to the
thickness of a material.

Let Pe be the effective energy injected to the air of the room
in every second. Letm be the mass of the air of the room. Let
C be the heat capacity of the air of the room. In other words,
C is the energy needed for one kilogram of a specific material
(in our context, the air) to increase one degree of Celsius. The
temperature changing ratedTdt of the room is [18]:

dT

dt
=

Q+ Pe

mC
(2)

Let λ = kA
L . We sayλ as the conductivity of this specific

room. Combining Eq. 1 and Eq. 2, we obtain the following
function for indoor temperature change:

T (t) = To + Pe ×

1

λ
+ C0e

−

λ
mC

t (3)

HereC0 is an initialization parameter determined byT (0),
the temperature at time 0:

C0 =

{

T (0)− To; air-conditioner not in operation
T (0)− To −

Pe

λ
; air-conditioner in operation

(4)

The energy-temperature correlation model is Eq. 3 and Eq.
4. As said, we do not computeλ from theory since this is
difficult. We considerλ as an invariant, because it is related
to the physical properties of the materials. Therefore, we
calibrate this parameter by sensor data. We also calibrateTo.
We emphasize thatTo is artificial that approximates the overall
outdoor situation of all walls. Though one wall may have a
bigger change in outdoor temperature,To does not change
abruptly. We will show that this is true in our experiments.
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Fig. 7: Experiment Results

Besides the room parameters, we also need to knowPe,
or r. It is easy to getP , i.e., the electricity consumption of
the air-conditioner by our electricity-meter.Pe, the effective
energy injected into the room every second, however, depends
on the quality of individual air-conditioner. The effectiveness
of a single air-conditioner will not change abruptly. Therefore,
we calibrater using the data collected by our sensor network.

In summary, we will use the sensor data to inversely
compute the invariantsλ, r and semi-invariantTo. We use
λ̂, T̂o andr̂ to denote them. Then we fit̂λ, T̂o andr̂ back into
Eq. 3 and Eq. 4 (our energy-temperature correlation model).
When future prediction is needed, we use Eq. 3 and Eq. 4
with λ̂, T̂o and r̂. The details of the calibration is as follows.

Algorithm 1 IndividualCal()
Input: 1) 3 (T, t, P ) from VP, 2) 2(T, t, P ) from RP, 3)mC
Output: λ̂i, T̂oi and r̂i for Node i
1: SetPe = 0;
2: Use 3 data points of VP to construct 3 equations according to Eq.3; // We need 3

equations to solve 3 variableŝλi, T̂oi andC0 of VP;
3: Computeλ̂i , T̂oi andC0 of VP;
4: SetPe = r × P ;
5: Use 2 data points of RP and̂λi , T̂oi to construct 2 equations according to Eq.3 //

We need 2 equations to solve 2 variablesr̂ andC0 of RP;
6: Computer̂ andC0 of RP;

The operation of a room can be cut into three periods: 1)
the vacancy period (VP); 2) the re-cooling period (RP); and 3)
the maintaining period (MP). The energy-temperature function
of VP and RP are different (see the two phases of Eq. 3 and
Eq. 4). MP is a combination of short periods of VP and RP.

Through the sensor network, we will collect temperature
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data of Node 5.

sequenceTi1, Ti2, . . . , for each sensor nodei and electricity
sequenceP1, P2, . . . ,. For each of these sequences, we identify
periods of VPs, RPs and MPs. For each nodei, we then apply
Algorithm IndividualCal() to calibratêλi, T̂oi andr̂i. We select
three points in VP and two points in RP. For example in Fig. 8,
we can selectT0, T1 andT2, the start, middle, and end points
of VP and T3 and T4, the start and end points of RP. We
comment that it is not necessary to find the exact start, middle
or end points as this does not greatly affect the accuracy of
model calibration. We need 5 points since we haveλ̂i, T̂oi

and r̂i and twoC0s, a total of 5 variables.
λ̂i, T̂oi and r̂i computed from each sensori are not fully

equal (see Table I). We apply Algorithm ModelCal(see alg.2)
()to get the finalλ̂, T̂o and r̂. The basic idea is to remove
outliers by setting an upper error boundε and compute a
weighted average of all̂λi, T̂oi and r̂i.

We have wrapped up the Energy-Temperature Correlation
Model construction into an open source ModelCalibration
using MatLab. The package is available at [23].

Algorithm 2 ModelCal()
Input: 1) Temperature sequenceT1, T2, . . . for all nodes, 2) Power sequence
P1, P2, . . ., 3) ε
Output: λ̂, T̂o and r̂
1: Determine VP and RP using sequenceP0, P1, . . .
2: for all nodei do
3: Getλi, Toi andri using IndividualCal();
4: Predict temperature sequenceT ′

0
, T ′

1
..., T ′

N ;

5: Wi = 2

√

∑

N

j=1
|Tj − T ′

j
|2 // compute weight of nodei, according to

the accuracy of prediction
6: λ̂ =

∑

Wi<ε
( 1

Wi
× λi)/

∑

Wi<ε
( 1

Wi
)

7: T̂o =
∑

Wi<ε
( 1

Wi
× Toi)/

∑

Wi<ε
( 1

Wi
)

8: r̂ =
∑

Wi<ε
( 1

Wi
× ri)/

∑

Wi<ε
( 1

Wi
)

B. Experiment Validation
We conduct a real experiment to validate our model. It

also serves as a test for our sensor network. Our experiment
was conducted in a hotel room in Shenzhen, China. The
configuration of the room and sensor network is shown in
Fig. 6. There were nine indoor sensors (No. 1 to No. 9),
one outdoor sensor (No. 10) to collect temperature and an
electricity-meter (No. 15) connected to the air-conditioner. Our
experiment lasted one day from March 2nd to 3rd 2011. We
periodically turned on and off the air-conditioner(AC). The
result is shown in Fig. 7. The bottom part of Fig. 7 shows
the temperature of four indoor sensors and the outdoor sensor.
The upper part of Fig. 7 shows the corresponding output power
level of the air-conditioner (in terms of Watt).

Fig. 7 indicates the weak connection between the outdoor
temperature (Node 10) and the indoor temperature. Actually
Node 10 readings were the temperatures of the day. We can
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also see that the air conditioner turned on and off automatically
in the Maintaining Period.

Using Algorithm IndividualCal() we get thêλi, T̂oi, r̂i
for each indoor sensor. Using Algorithm ModelCal() we get
(λ̂, T̂o, r̂). The results are shown in Table I.

TABLE I: Calibrated(λ, To, r)

Node ID λ̂i T̂oi r̂i
1 63.46 26.08 -0.22
2 63.98 25.97 -0.20
3 7.53 24.63 -0.08
4 53.86 25.12 -0.23
5 57.93 26.00 -0.38
6 48.78 25.22 -0.29
7 56.82 25.38 -0.27
8 71.46 25.23 -0.48
9 60.89 24.64 -0.44

λ̂, T̂o, r̂ 58.72 25.38 -0.32

Fitting (λ̂, T̂o, r̂) back to our energy-temperature correlation
model, we draw a predicted temperature curve in Fig. 9 by
applying the same initial temperature, the same time to turn
off the air-conditioner from 16:11pm and 18:10pm. We also
draw the real temperature sequence of Node 5. We see that
the predicted temperature is fairly close to the real temperature
sequence. Thus we conclude that our model can be used to
estimate future room electricity usage.

We want to further emphasize that after we have the energy-
temperature correlation model, we do not need the sensor
network in the room. Our experience shows that to build the
model, it is enough to use the sensor network for a day or
few. In our sensor network, TelosB sensors used batteries and
the electricity-meter uses alternating current. The energy is
not a problem. In addition, though the electricity-meter carries
its own data and the temperature data of TelosB sensors, the
traffic throughput is also not a problem. It is easy to see that
our sensor network can be directly used in other rooms too.

V. ROOM SCHEDULING ALGORITHM

With the energy-temperature correlation model, we are
prepared to develop the room scheduling algorithm. We have
searched existing room scheduling algorithm in literature. To
the best of our knowledge, we did not find any standard
algorithm. We believe ad-hoc scheduling is used because of
two reasons: 1) the number of rooms is not always tight, 2)
there is no optimization objective, only to fit the meetings in.
As such, advanced algorithms might not be necessary.

We would like to comment that by no means our intention
is to conserve energy needed within meetings. Conservationof
such energy is beyond the scope of this paper; but we would
like to admit that if the meeting time is long (e.g., three hours),
the proportion of the energy that we conserve as compared to
the total energy of the meetings can be small. Nevertheless,
we are working on one of the most energy consuming sectors
of our society. The sheer amount of energy we conserve, as
compared to not using our system, is significant.

We formally state the problem. Given a setR of n rooms
and a setM of m meetings to be scheduled. A meeting
Mi ∈ M is associated with a time interval(bi, ei) and a target
temperatureTti, wherebi, ei represent the start time and the

end time of the meeting respectively. Each meetingMi has a
capacity requirementci. Each roomRj ∈ R has a capacity
Cj . For Rj that can holdMi, we must haveci < Cj . Every
roomRj is associated with a functionEj(Tt, t) showing the
energy needed to maintain the target temperatureTt for t and
a functionREj(Tt, t) showing the energy needed to re-cool
the room toTt where last meeting has ended fort. Ej(Tt, t)
andREj(Tt, t) can be computed by our energy-temperature
correlation model (See appendix for details). We assume the
target temperatureTt is a constant. As such, we useE(t) and
RE(t) for short. We want to find a scheduleS consisting a
set of time intervals, one for each meeting. The objective is
to reduce the total energy ofS.

In this section, we first develop an optimal algorithm when
the rooms are uniform. For the general problem with non-
uniform rooms, we develop two fast heuristics for different
scenarios.

We first define a concept of skyline. It indicates the last
time each room is used. Our algorithms will iteratively move
the skyline to the end times of the schedule.

Definition For n room, skyline is a set of numbers
(k1, k2, . . . , kn), wherekj is the last time of roomRj usage.

A. Complexity analysis

Theorem 1:MESP is NP-complete when there are more
than two types of rooms with different energy consumption
ratio.

Proof: It is easy to verify that calculating re-cooling
energy consumption of a schedule is NP. Therefore, MESP
is in NP class. To shown MESP is NP-complete, we reduce a
job schedule problem to it. The former is proven NP-complete
in [4]. The proven theorem is stated as follow:Given a set
J = {J1, J2, . . . , Jn} of n jobs, job Ji has fixed start time
and end time(si, ti). There arek kinds of machines where
k > 2. For each classj = 1 . . . k, the unit time processing
cost isPj wherePj 6= Pl if j 6= l. All jobs can be processed
on any kind of machines. It is NP-complete to schedule all
jobs with minimum cost.

Given an instance(J, U, JU): J = {J1, J2, . . . , Jn} is
the set ofn jobs, U = {U1, U2, . . . , Ul} is the set of l
processors and these processors are grouped intok class-
es JU = {JU1, JU2, . . . , JUk}. The unit time process-
ing cost of classJUj is Pj . We construct a set of meet-
ings M = {M1,M2, . . . ,Mn} and a set of roomsR =
{R1, R2, . . . , Rl}. bi andei for Mi are equal tosi andti of Ji
respectively. All meetings have same capacity requirementc̄,
all rooms have same capacitȳC and c̄ < C̄. Let all meetings
have sameTt and let the outdoor temperature be a constant.
All rooms are grouped intoRG = {RG1, RG2, . . . , RGk}. Ri

is in RGj if and only if Ui is in JUj . For each class of rooms,
we build a simplified energy-temperature correlation model:
All rooms in RGj have same functionEj(Tt, t) = Pj ∗ t to
calculate in-meeting energy consumption andREj(Tt, t

′) = 0.
Next, we show that by finding the minimum energy schedule

S, we can find the minimum cost schedule to process all jobs
in polynomial time. Replacing(Mi, Rj) in S with (Ji, Uj), we
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have a job scheduleS ′ which is a valid schedule for all jobs.
For aMi scheduled to a room inRGj , energy consumption
of Mi is Pj ∗ (ei − bi). And bi and ei for Mi are equal to
si andti of Ji respectively. Thus,S ′ uses minimum cost ifS
consumes minimum energy.

B. Rooms with Uniform Capacity
Our algorithm Energy-Aware Room Scheduling (Uniform),

Energy-RS(Uniform) for short, is a greedy-based algorithm.
We sort the meetings in ascending order based on their starting
times. We then group the meetings with the same starting time.
Our algorithm performs in iterations and in each iteration,we
handle a group of meetings with the current earliest starting
time. We allocate these meetings to the rooms that have ending
times that are closest these meetings.

Lemma 2:Let K be the set of permutations of numbers
k1, k2, . . . , kn. For all Ki ∈ K, different skyline represented
by Ki does not affect later scheduling.

Proof: The rooms are uniform, so exchanging the order
of rooms does not affect later scheduling.

Lemma 3:Let two uniform roomsR1 and R2 have sky-
line (k1, k2). For two unscheduled meetingsM1(b1, e1) and
M2(b2, e2), if k1 < k2 ≤ b1 < b2, the optimal schedule should
put M1 in R2, andM2 in R1.

Proof: The total interval between the scheduled meeting
and unscheduled meeting(b1 + b2 − k1 − k2) is constant. For
two uniform rooms, they have same functionRE(t′). Because
RE(t′) is a concave function oft, we have the following
inequality:RE(b1 − k1) + RE(b2 − k2) > RE(b2 − k1) +
RE(b1 − k2). As the total meeting length ofM1 and M2

is constant, re-cooling energy consumptions determine the
difference of total energy consumptions. We conclude it is
more energy efficient to putM1 in R2 while M2 in R1.

Algorithm 3 Energy-Aware Room Scheduling (Uniform)
1: Sort meetings in start time ascending order;
2: k1, k2, .., km = 0;
3: i = 1;
4: while i! = m do
5: Find Rj andMi wherebi − kj = min∀Rj,bi>kj

{bi − kj};
6: ScheduleMi in Rj ;
7: kj = ei ;
8: i = i+ 1;

Theorem 4:The total energy consumption by Algorithm
Energy-RS(Uniform) is minimum.

Proof: We prove by contradiction. For any skyline
(k1, k2, ..., km) and two unscheduled meetingMi,Mh(bi <

bh), Mi is scheduled toRj wherebi−kj = min∀Rj ,kj≤bi{bi−
kj}. Assume the contrary holds, it is energy efficient to put
Mi in Rl and putMh to Rj . We havekl < kj ≤ bi < bh.
This violates lemma 3 and 2, where it is more energy efficient
to putMi in Rj .

Theorem 5:The total number of rooms scheduled by Al-
gorithm Energy-RS(Uniform) is minimum.

Proof: For any skyline(k1, k2, ..., km), Mi is scheduled
to Rj in Algorithm Energy-RS(Uniform). Assume there is a
minimum room algorithm who putsMh to Rj and putMi

in Rl. We havekl ≤ kj ≤ bi ≤ bh. Thus, the position
of Mh andMi are interchangeable. And according to claim
2, this interchange does not affect the later scheduling. So
the schedule result of Algorithm Energy-RS(Uniform) uses as
many rooms as the minimum room algorithm.

Existing ad-hoc meeting scheduling algorithms usually do
not bother if using more rooms. This theorem indicates that
Algorithm Energy-RS (Uniform) will select the smallest num-
ber of rooms. This is useful for the general algorithm with
non-uniform rooms; since we try not to schedule meetings
with small capacity requirements into oversized rooms.

C. Rooms with Non-Uniform Capacity

1) Energy-RS():We use Algorithm Eenergy-RS (Uniform)
as a building block to develop algorithm Energy-Aware Room
Schedule (Energy-RS()). We outline our basic idea. Assume
the number of different capacities of all rooms isg. We
classify the rooms into different groupsRG1,RG2, . . . ,RGg

according to their capacity. LetGCk be the room capacity
of RGk. We have ∀Rj ∈ RGk, Cj = GCk. Assume
RG1,RG2, . . . ,RGg is sorted in ascending order according
to their capacityGCk. We classify the meeting into different
groupsMG1,MG2, . . . ,MGg according to the capacity re-
quirements of the meetings. For a meetingMi with a capacity
requirementci, it is grouped intoMGk whereGCk−1 < ci ≤
GCk. As an example, assume the room capacities of all rooms
are 20, 40, 60. The meeting requirements are 17, 18, 34. We
thus classify the meetings with capacity requirements of 17
and 18 into the group of 20 and the meeting with capacity
requirement of 34 into the group of 40.

We schedule meetings ofMGk into room groupRGk in
ascending order. For each group pair(MGk,RGk), we apply
Algorithm Energy-RS (Uniform). If there is some meetings
cannot be scheduled, we move these unscheduled meetings
into MGk+1. From Theorem 5, we know that Algorithm
Energy-RS (Uniform) uses the smallest number of rooms.
Thus, the chance that a meeting with small capacity require-
ment is pushed into an oversized room is minimized.

Claim 6: The complexity of Algorithm Energy-RS() is
O(nm).

2) TimeUr-RS(): In our framework, each meeting has a
capacity requirement and a meeting time requirement. This
is the case for many scenarios. For some cases, however,
the meeting time can be determined by the room scheduling
system. For example, when we query the class schedule of
The Hong Kong Polytechnic University, the administrative
personnel could not give out specific reasons why one specific
class must be at a specific time, as long as there is no
conflict. We conjecture this is a general case since there is no
optimization goal for many meeting schedules; only to fit all
the meetings in without meeting-meeting, room-room conflict.

We propose a simple greedy-based algorithm which allows
reassignment of meeting times, we call Time Unrestricted
Energy Aware Room Scheduling (TimeUr-RS()). TimeUr-RS()
is greedy by sorting meeting capacities in descending order
and then fitting into the rooms. This algorithm can be used
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to provide suggestions for the decision makers, in case there
is no compulsory reason to have strict meeting times. In our
simulation, TimeUr-RS() is used as a performance comparison.

VI. PERFORMANCEEVALUATION

A. Simulation setup
We evaluate our system in two settings. The first one is real

class schedules and classroom topologies of The Hong Kong
Polytechnic University (denoted PolyU thereafter), academic
calendar year of Spring 2011. The second is a set of synthetic
room arrangements we generate semi-randomly.

PolyU has 155 classrooms (see Table II for the full config-
urations).λ, mC andP are calculated based on the room size
and the equations in section IV.A. In academic year Spring
2011, there are around 600-700 classes every weekday.

TABLE II: Room configuration of PolyU

Cap Num Size λ mC P
(Seats) (L×W ×H, m) (J/s ·K) (J/K) (kW)
20 8 4× 5× 3 70.5 1200 1.5
40 42 8× 5× 3 118.5 2400 2.4
60 67 6× 10× 3 162 3600 4.7
80 10 8× 10× 3 201 4800 6.2
100 4 10× 10 × 3.3 249 6600 9.4
150 17 10× 15× 4 375 12000 15.6
200 5 15× 14× 5 533 21000 21.9
300 2 15× 20× 6 765 36000 31.3

The second setting is synthetic data. We consider rooms
with uniform capacity and non-uniform capacity separately.
For the uniform case, the default room capacity is 100 seats
and the total number of rooms is 150. The meeting times are
randomly generated in range [8:00, 22:00]. The lengths of the
meetings are randomly chosen from a few fixed options, as we
believe most meetings have semi-fixed length. We have three
options,O1 = [1, 1.5, 2, 2.5, 3], O2 = [1, 2, 3], O3 = [1, 2].
That is, forO1, the meeting lengths are randomly chosen from
one of the five choices, 1, 1.5, 2, 2.5, or 3 hours.

For the non-uniform capacity case, we have eight different
types of rooms with capacities of 20, 40, 60, 80, 100, 150,
200, 300 (similar to PolyU). The numbers of different types
of rooms follow a poisson distribution with a mean of 3.
This indicates that the majority of our rooms are those with
capacity of 60 seats. The total number of rooms is also 150.
The meeting times are randomly generated in range [8:00,
22:00]. The length of the meetings are also from the three
options,O1, O2, andO3. The capacity requirement for the
meetings follows a poisson distribution with a mean of 3.

The default values of our simulation arêTo = 25◦C, r̂ =
−0.32 for all rooms (same to the value in Table I). We set the
target temperatureTt = 20◦C for all meetings.

For the PolyU setting, we directly compare the schedule
computed by our algorithm with the existing schedule. For
synthetic data, we choose to compare our algorithm with an
ad-hoc room scheduling algorithms (denoted asRS) that can
can satisfy the meeting time and room capacity requirements.

We choose our primary performance metric as the total
energy needed to re-cool the rooms to the target temperature
for all rooms and all meetings. Note that we exclude the energy
needed during the classes; which we cannot conserve. This
metric is stable for all room scheduling algorithms.

B. Simulation results
1) Results on Synthetic Data:In Fig. 10, we show the total

energy for re-cooling the rooms for different algorithms. In
Fig. 10 (a), we see that the re-cooling energy needed for ad-
hoc room scheduling RS is always greater than our algorithm
Energy-RS and TimeUr-RS. This is not surprising as the RS
only satisfies the meeting requirements. When the number of
meetings increases, we can see that all three algorithms need
more energy in re-cooling the rooms. This is because there are
more meetings and more rooms to be used. RS increases much
faster than our algorithms, however; as both of our algorithms
have taken the energy conservation into consideration. More
specifically, we can see that if there are 800 meetings to
schedule, the total electricity needed by RS, Energy-RS and
TimeUr-RS is 503 kWh, 214 kWh, and 141 kWh respective.
We can see that we have reduced the electricity consumption
for more than half. If the meeting time is not restricted, we
can make a suggestion on meeting times so as to reduce the
electricity consumption to less than one third.

Consider a regular desktop computer. The electricity con-
sumption per hour is usually less than 0.1 kWh when it
is in full CPU operation. If the computer is in use for 12
hours per day, and in hibernation for the rest time. This
means that the electricity we saved can support more than 300
desktop computers. This reflects that air-conditioning (and also
heating) is indeed a major sector for energy consumption.

We then see Fig. 10 (b) and (c) where the meeting time is
randomly chosen fromO2 andO3. We see similar trend as
that in Fig. 10. We also see that the less number of choice
that we have in meeting time, the greater the benefit of our
algorithms. This is because if there is a smaller number of
meeting length options, there is also a smaller number of small
time segments that we cannot fit the meetings in due to more
irregular meeting time length. On the contrary, we do not see
improve for RS as its schedule is ad-hoc.

This can be more clearly seen from Fig. 11. We call the
re-cooling energy ratio as the re-cooling energy needed by
Energy-RS (or TimeUr-RS) as against to the re-cooling energy
needed by RS. In Fig. 11, we plot the re-cooling energy ratio
for the case where the number of meetings is 800. We can
see when the meeting length become more uniformed, the re-
cooling energy ratio of Energy-RS and TimeUr-RS becomes
smaller. This suggests that to save more energy, it is betterto
have the meeting length more uniform.

Fig. 12 shows re-cooling energy needed when we use
different room capacity (our default is 100 seats). The total
number of meetings is 800 and we chooseO3 as our meeting
length. Clearly, the larger the room capacity, the more re-
cooling energy is needed for all algorithms. Our algorithms
greatly outperforms RS for more than 50%.

The energy consumption is closely related with the target
temperature. We adjust the target temperatureTt from 20◦C
to 24◦C. From Fig. 14, we see that every degree counts! For
example, the re-cooling energy is around half if we increase
our target temperature from 20 to 23. This suggests that the
best way to save energy is to set the temperature bar higher.
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Fig. 10: Total energy expense for re-cooling the rooms as against to the number of meetings; rooms
with uniform capacity. (a) meeting length: optionO1, (b) meeting length: optionO2, (c) meeting length:
option O3.
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Fig. 11: Re-cooling energy ratio.
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Fig. 12: Re-cooling energy as a-
gainst room capacity
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Fig. 13: Total energy expense for re-cooling the rooms as against to the number of meetings; rooms with
non-uniform capacity. (a) meeting length: optionO1, (b) meeting length: optionO2, (c) meeting length:
option O3.
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Fig. 14: Re-cooling energy as a-
gainst target temperature.
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Fig. 15: Re-cooling energy in
weekdays

Our algorithm again significantly outperforms RS.
We then study the general case where rooms are of non-

uniform capacity. We show the results in Fig. 13. We see that
the gain of Energy-RS is smaller. This is because, in each type
of room capacity, we have a much smaller number of meeting
choices. If one takes a closer look at Fig. 10 (a), we can see
that the best performance arrives when the number of meetings
is 800. When the number of meetings is 100, or 50, the gain is
smaller. In our general case, we have 8 different types of rooms
resulting in a smaller number of meetings in each type. Thus,
the gain is smaller. We can summarize that the more meetings,
the more choices; leading to more re-cooling energy needed;
and a better performance of Energy-RS as compared to RS.

2) Results on PolyU Data:We next study a real data set of
PolyU. Note that though the academic calendar year of Spring
2011 spans for an entire semester, the class schedule for each
week is the same. For example, the class schedule of PolyU of
every Monday (or any other weekday) is the same in the entire
semester. As such, we will only schedule for five weekdays
and our schedule can be used in every week of the semester.

Fig. 15 summarizes the results. We can see that every day
the re-cooling energy needed is approximately the same. This
is because the total classes in different weekdays are more
or less the same, which is the usual case of a university. We
also see a general 20% conservation in electricity for each
weekday. If there is less restriction in class time, then we will
achieve higher energy conservation.

VII. R ELATED WORK

We are in an age where people are paying increasing
attention to energy conservation around the world. Com-
puter scientists study energy conservation of data centers
[16][17][19], and backbone routers [24]. The general principle
of these works is to turn off unnecessary usage of machines
and reschedule their load. To assist data center monitoring,
sensor network is used for energy sensing [9].

There are many efforts in developing smart homes and
buildings. In [6][7], an energy auditing network is built.
One main objective is to have a fine-grained granularity on
electricity readings for all equipments. As a continuation, in
[1], sMAP is developed, which can record different physical
readings and provide general interface for different applica-
tions. Motion sensors and door sensors are developed [12] to
model the occupancy pattern of people at home. It turns off
the light, air-conditioning etc when people are not at home.A
similar system [14] analyzes the occupancy against pre-booked
conference rooms, so as to turn off unnecessary energy usage.
A few studies use sensors and actuators to work collaboratively
to monitor buildings [10][13][20].

In building and service engineering, there are mature Cen-
tral Control and Monitoring Systems (CCMS) designed for
high-end commercial buildings. Building Management System
(BMS) is part of CCMS and is responsible for monitor
and control HVAC equipments. There is a standard protocol
BACNet for BMS. The main objective is to have a uniformed
way to connect different direct digital controllers (DDC).
BACNet rides on Ethernet. Recently, there are some studies
try to use wireless networks to carry BACNet [15][21].

Our work is a specific application for sensor networks to
monitor buildings. Our work targets on the heating and air-
conditioning sector for commercial buildings, which is the
largest factor for energy consumption. Our work does not try
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to monitor the presence of people in a room and turn on and
off room functions; a common topic in many studies. We see
many rooms to date have already equipped with this function.
Instead, we reduce unnecessary heating and air-conditioning
by taking advantage of scheduling subsequent meetings or
classes to rooms that have just been used (heated, or air-
conditioned). Our work can become an integrated part for
future smart BMS system for meeting arrangement. Or it can
work individually for class schedules of universities. To the
best of our knowledge, we are the first to study such problem.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we took the advantage ofThermal Inertia;
that is, after a meeting ends in a room, the cool air will not
immediate dissipate. We designed a new room management
system for energy conservation. We extended sensor hardware
(some of which can be used beyond this work) and designed
a two tier sensor network. We develop an energy-temperature
correlation model and validate the model with our sensor net-
work in real-world experiment. We further developed efficient
room scheduling algorithms. Comprehensive simulations on
synthetic data and a real class and room configuration of The
Hong Kong Polytechnic University were conducted.

As a first work in Thermal Inertia, our work has many limi-
tations. First, in our current paper, we assume the meetingsare
determined in advance. This is true for university schedules.
However, many companies/hotels/resturants face online room
booking. Second, in the current schedule, we assume the room
capacity is the only constrain to meetings. We admit that there
are other constraints, such as facilities (e.g., projectors) in the
room, the distance between rooms so that people have enough
time to go from one room to another. To facilitate future
studies, we release an open source for our energy-temperature
correlation model in MatLab. One can use our work to
generate realistic input on energy consumptions for different
room scheduling problems. Third, our electricity-meter can
only measure energy usage of general air-conditioners. We
plan to develop advanced meters for central controlled air-
conditioners. Fourth, we are in collaboration with people from
Building and Service Engineering, to see how our system can
be fitted into general building management systems.
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APPENDIX

Let t be the interval time that the room has not been used.
Let ti be the length ofMi. From our energy-temperature
correlation model, we havêλ, T̂o, r̂. We computeE(Tt, ti)
andRE(Tt, t) as follows:

E(Tt, ti) =

(

(Tt − T̂o)

r̂
× λ̂

)

× ti; (5)

RE(Tt, t) = (P−
(Tt − T̂o)

r̂
×λ̂)×−

mC

λ̂
ln

(

Tt − T̂o − r̂×P

λ̂

(Tt − T̂o)e
−

λ̂
mC

t − r̂×P

λ̂

)

(6)


