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Abstract—We are in an age where people are paying increasing where the Industrial sector is small, the electricity canpu
attention to energy conservation around the world. The heahg tjon by commercial bu||d|ngs can be more dominating; for

and air-conditioning systems of buildings introduce one ofthe example in Hong Kong, 65% of electricity in 2008 goes to
largest chunk of energy expenses. In this paper, we make a key . :
the commercial sector [5].

observation that after a meeting or a class ends in a room, the
indoor temperature will not immediately increase to the outloor The heating and air conditioning of commercial buildings

temperature. We call this phenomenonThermal Inertia. Thus, if has the largest chunk in energy expenses. In 2008 the Office
we arrange subsequent meetings in the same room; than a room segment of Hong Kong, 54% electricity goes to space condi-

that has not been used for some time, we can take advantage of,. ~. . - e 0 s
such un-dissipated cool or heated air and conserve energy. tioning (i.e., air-conditioning), 14% goes to lighting,%3joes

We develop a green room management system with three © office equipments such as computers [5]. Monitoring the
main components. First, it has a wireless sensor network to conditions of the buildings and efficient utilization of tieg,
collect indoor, outdoor temperature and electricity experses of ventilation, and air conditioning (HVAC) has been a longdim
the healting or tair-conditilo?_ing de\éicle?. Stﬁcond, we build @ topjc; and advanced commercial buildings can automagicall
energy-temperature correlation model for the energy expeses .
and %Ke cor;responding room temperature. Third, %/e dgvelop trn off .“ghts and HVAC systems of “’Oms when humf';lns
room scheduling algorithms. In detail, we first extend the carent ~ @re not in presence. Nevertheless, we notice that even if the
sensor hardware so that it can record the electricity experss heating or air-conditioning of a room is turned off, the heat
in re-heating or re-cooling a room. As the sensor network or the cool air will not immediately dissipate. We call this
needs to work unattendedly, we develop a hardware board phenomenohermal Inertia! We consider the un-dissipated
Ijoe:te:otrz)gar?ggitgosrgmgrlsv?tthoonust ;Oc;rr:qa;uigf-nlerlg?/tilzosc;r;y??d cool or heated air a va_lluable resource that can be utilizo?d, s
efficient two tiered sensor network is developed with our exinded  that future usage of this room can take the advantage without
Imote2 and TelosB sensors. We apply laws of thermodynamics re-heating or re-cooling the room.
and build a correlation model of the energy needed to re-  Based on this observation, we develop an energy conser-
cooling a room to a target temperature. Such model requires yaiion room management system, such that the allocation of

parameter calibration, and uses the data collected from the the rooms of a building (or classrooms in campus) is based
sensor network for model refinement. Armed with the energy- g ( pus)

temperature correlation model, we formally describe the poblem  NOt only on a schedule (e.g., meeting time, room capacity),
for finding the minimum energy schedule. We prove our problem but also on the existing heating or air-conditioning coiodis

is NP-complete in general case. We develop an optimal algthim  of the rooms. In the rest of the paper, we will only use air-

for special case and two fast heuristics for general cases. conditioning as an example to ease our presentation.
Our system is validated with real deployment of a sensor net-

work for data collection and thermodynamics model calibraion. Clearly, our room management system falls into an opti-
We conduct a comprehensive evaluation with synthetic roomrad ~ Mization problem. It is not straightforward, however to &no
meeting configurations; as well as a real class schedules andhow much energy will be saved if a room is scheduled. As
classroom topologies of The Hong Kong Polytechnic Univeri,  an example, the recommended office temperature in Hong
academic calendar year of Spring 2011. We observe a 20% engg g s 26C (79°F). Assume a room was used 20 minutes
saving as compared with the current schedules. : .
ago, and its current temperature is°€9(84°F). The outdoor
|. INTRODUCTION temperature is 3T (9PF). If we schedule a meeting 5
There is a huge interest in building a green world recentlyninutes later in this room, how much electricity is needed
The key focus is energy conservation and energy efficiengy.re-cool it to the targeted temperature®@6(79°F)?
Computer scientists are actively contributing our effartWo s is affected by such factors as the room specifics (size,
directions, 1) improve energy efficiency of computing sgse \yall materials, etc), indoor and outdoor temperature, e t
and 2) apply computing systems (e.g., sensor networks) fited temperature etc. A key difficulty is to build a corrielat
energy conservation in broader disciplines. among these factors. The more accurate this correlatioremod
For the first category, many studies are working on energy the petter the scheduling algorithm we can run on top of
efficiency for data centers [16][17][19], a top energy cansu i Byilding this model does not solely fall into the compute
among all computing devices. While the energy expensg§ence domain. Advanced thermodynamics theories may be

of computing industry is increasing fast in recent years, theeded. We believe that in the sensor network research,today
largest portion of energy consumption is still dominated by

such greas as commerqal bUIldIngS, reS|de_nt'a| usagezs-tra 1This name follows a recommendation from a senior practioand
portation, manufactory industry [22]. Especially, for i@mus researcher from Building and Service Engineering.



it is very common that cross-discipline understandings are Energy—temperature
required; for example, it is shown that knowledge on sensor correlation model
placement quality in the sense of civil engineering can make Initial
the structural health monitoring system built by computér s Model
entists more plausible [8]. A careful management on theekegr
of understanding on different disciplines is very impottan
In our work, we choose to apply rudimental thermodynamics
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theory to build a simple initial energy-temperature modléd ! i
then use sensor data to calibrate this model. We validate the [ m . . ]
. . . oom Scheduling Algorithm
effectiveness of such design by a real experiment.
Another difficulty is that we do not have off-the-shelf Fig. 1: The framework of the room management system.

components for our sensor network. We thus extend Imote2 to
an electricity-meter so that it can record electricity wsad algorithm, whenever an estimation on the energy expenses is
air-conditioners. As we expect that our system should work needed, an entry in this database that has the most similar
public unattendedly for a period of time, we develop a boagnhvironmental configuration can be extracted.
for long range communication so that Imote2 can send datalhe first choice falls into the expertise of Building and
directly to a remote server. As such, no laptop computergivhiService Engineering. We have consulted experts of BSE from
may be easily stolen, needs to be placed as a relay cloBeth academia and industry. While there are sophisticatad t
by. We develop a two tier sensor network with TelosB (asuich as EnergyPlus [2], they admit that it is difficult to buil
temperature sensor) and Imote2-based electricity-mtesh a model purely from theory. For the second choice, to build
system is flexible and efficient (the Imote2-based eletyrici the correlation database, a sensor network can be deployed
meter does not have energy constraint). to collect such data as temperature and energy expenses. The
On top of these, we develop room scheduling algorithmgccuracy depends on the granularity of the data collecTiba.
We first formally describe the problem for finding a minimummore samples the database has, the more accurate to find the
energy schedule. We prove that our problem is NP-completeergy expenses with a similar environmental configuration
in general cases. Then we develop an optimal algorithm foAéter some studies on physical laws on heat conduction and
special case where all rooms are equal. For the general c&sene field experimental validation, our choice finally falls
we develop two efficient heuristics. into a mixture of the two extremes. We use an initial model
Besides a real world system deployment for model validfellowing rudimental Fourier’s law of heat conduction. g
tion and data collection, we evaluate our system with compr@odel, some parameters are difficult to compute from theory.
hensive simulations with synthetic room configurations anthese parameters are invariants, however, e.g., onlytaffec
meeting schedules. We also evaluate our algorithms with r& the materials of the room. Thus we inversely calibrate the
class schedules and classroom topologies of The Hong Kdpgjameters of this model using the data collected by a sensor
Polytechnic University, academic calendar year of Sprirftgtwork. The high-level framework of our system is in Fig. 1.
2011. We observe that we can save 20% of electricity as\We also want to clarify that in this paper, we use electricity
compared to the current room schedules of The Hong Koggpenses as our optimization objective. For end-usersngav
Polytechnic University, and even higher for synthetic data their electricity bills cut directly means money saving.
The remaining part of the paper proceeds as follows. In
Il. ROOM MANAGEMENT SYSTEM: AN OVERVIEW section lll, we present our design of the sensor network.
We discuss some high level system choices. As a firSection IV is devoted to our energy-temperature corratatio
work, we confine our study that given the schedules, hawodel and a real world experiment validation. We detail our
the classes/meetings should be arranged. We leave a detait®m scheduling algorithms in section V. In section VI, we
investigation of online room management as future work. evaluate our algorithm comprehensively. We present rlate
To accurately schedule rooms and maximally conserwork in section VII and section VIII concludes the paper.
energy, an important part of our system is that we need tal buil
an energy-temperature correlation modeb that the room I1l. SENSORNETWORK DESIGN
scheduling algorithm can run on top of it. More specifically, For a building, or a campus, there are multiple rooms. For
we need a function such that given the current temperatute aach room, we need to build an energy-temperature coonlati
room environment configurations, the energy to be consumeddel (detail in Section 1V) to be used for the scheduling
to achieve the target temperature. There are two extreadgorithm (details in Section V). As such, a sensor network
ways for building such model. First we can apply advancesthould be deployed in each room. In this sensor network,
thermodynamics theories and material sciences to explicithere should be a sensor to record electricity usage to air-
compute such function. Second, we can build a database witinditioning the room. We also need to record the temperatur
entries of the environment parameters (e.g., indoor tempeAs the temperature in different locations of the room may
ture, outdoor temperature, and targeted temperature) tend ot be uniform, a set of temperature sensors is suggested. We
corresponding energy consumptions. In the room scheduliwguld like to comment that the sensor network is only used for
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Since the sensor network needed in each room is the same, .
in practice, we can deploy a sensor network and build the
energy-temperature correlation model room-by-room.

Our system needs to work unattendedly in a building for
a period of time. The sensors can usually be protected by a
cover and placed on walls, roofs etc. However, it is impdssib
to place a laptop computer (as a base station) unattendedly.
The rooms are public and the laptop computer can be stolen.
This is in contrast to some smart home systems, where we can
assume that the laptop/desktop computer will work in a peiva
apartment. As the sensor network is deployed in buildingSg. 5: The Sensor System. Here we present our enhanced2motie and
power is not as critical as those applications in the wild. 3 TelosB temperature sensors.

For some functions we need, there is no off-the-shelf com-
ponents. Before discussing the implementation of our senso

network, we extend the hardware and build an electricityzelmethe Same as other applications. This choice avoid Fhe high
and a long-range data communication module as follows. complexity of the network stack and network card driver for
the operation system designers, especially for a simplak@sS |

A. Design of an Electricity-meter TinyOS. This makes the system simple and stable.

Our system needs to estimate the energy consumption fo2) A power adapter module: The power adapter module
air-conditioning the room to a targeted temperature. Werekt change the battery power supply (3.0V - 4.5V) to a stable 3.3V
Imote2 with a PowerBay SSC VC to record electricity curremtower supply which is required by our hardware network stack
(see Fig. 2). PowerBay SSC VC also becomes a power supplpdule. We use LTC3429 Micropower Synchronous Boost
to Imote2. In operation, PowerBay SSC VC will record th€onverter as the kernel chip for this module. LTC3429 has an
power (in Watt) and such data will be digitized and output top to 96 power conversion efficiency, leading to less power
Imote2. The data can then be transmitted out by Imote2. loss during conversion.

L Equipped with the LR-module, the data can be sent to a
B. A Long-range Data Communication Module for Imote2 oot server, e.g., in practice, we use 3G. Note that theeho

We develop a long-range high-rate data communicatigf 3G is not special. It is possible to develop a module that
module (LR-module) for Imote2 (See Fig. 3). This LR-modulgse GpRS or WiFi for data transmission. We use 3G as it
performs a series of transformation to convert Imote2 autpld more universally applicable than WiFi and has a greater

data to the Ethernet port. The flow chart of our design is shown ,smission rate than GPRS. In our experiment, the effecti

in Fig.4. ) ) data stream throughput of our module can reach 520K bps.
LR-module is a separate board which can be connected with

the Imote2 node through the basic-connector, and it is tjrecC. Development of Sensor Network
controlled by the Imote2 node. LR-module chooses an SPIWe show the design of our sensor network by integrating
interface as the communication channel with Imote2 node.thtese components. We develop a two tiered sensor network.
has a bit-rate ranging from 6.3Kbps to 13Mbps. This makdde first tier is a set of enhanced Imote2-based electricity-
our design bypass the throughput bottleneck. LR-module hagters. The second tier is a set of TelosB-based temperature
the following two hardware components: sensors (see Fig. 5). For the first tier, an electricity-mete
1) An ethernet module: LR-module applies W5100 as thmonitors the electricity usage of the air-conditionersltaiso
network chip. W5100 integrates a hardware network stadquipped with the LR-module and can communicate with a
offering 4 separate socket interfaces. After simple ilitsea remote server. The Imote2-based electricity-meter is pedve
tion, developers can use TCP connection or send UDP packgt alternating current and is thus not energy constrained.
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For the second tier, we deploy a few indoor and outdodifferent materials, we can build a virtual perfect roomtwit
temperature sensors. We use TelosB, as it is cheaper. To hawdormed parameters to emulate it.
better flexibility, in practice these temperature sensarsuuse =~ We also assume 1) the electrical powg&r of the air
batteries. TelosB is more energy efficient than Imote2. conditioner is constant when it is in operation, and is zero
The routing architecture of our sensor network is from thié it stops; and 2) the electricity-energy transformatiaerr
temperature sensors to the electricity-meter (one hop). \gea constant; this indicates the energy injected into a rpem
implement our sensor system in TinyOS, and use Colleshit time when an air-conditioner is in operation is constan
Tree Protocol (CTP) [3] for data routing among sensor nodé&e will also calibrate the condition of the air-conditioner

The electricity-meter then send these temperature dat#sind—Notation  Definiton Unit
electricity readings to a remote server directly (one hop ba— 7 Indoor temperature Kor°C
long range data communication). P Electrical power of the air conditioner J/s

The lifetime of our sensor system is determined by TelosB—" Energy transformation ratio of the air-conditioner —
Effective energy injected to the air of the room J/s

nodes if they use battery power. In practice, every node gets ° per secondP, = r x P
the temperature and transmits 32 bytes every 10 seconds; The 7, Temperature outside the room Kor°C

projected lifetime of our sensor network can thus reach 2000 Thermal conductivity of a material W/(K - m)
. . L Thickness of a material m
hours. We find that this is far enough for us to collect data—; Total area of six walls pong
and calibrate the energy-temperature correlation model. ™ Mass of the air in the room kg
c Specific heat capacity of air J/(kg - K)
IV. DESIGN OFENERGY-TEMPERATURECORRELATION Q Heat transfer rate from outdoor to the room  J/s
A Conductivity of the room J/(s- K)

MODEL AND EXPERIMENTAL VALIDATION
In this section, we develop a model where the electricitgu
is a function of (a room, current indoor/outdoor tempele,turto the room. Let: be the thermal conductivity of the material.

targeted temperature). Our idea is as follows. With OUFGEN3 ot A be the total area of the six walls. Létbe the thickness
network, we can measure the electricity usage, the indoar at . ; S

Of a material. According to Fourier’s law [11], we have
outdoor temperatures and we know the targeted temperature

kA
in advance (in Hong Kong, it is 2€ as recommended by Q= T(T" =T) @

the administration). If there is an artificial perfect roonthw Eq. 1 basically says that the heat transfer rate is proputio
six identical walls with the same conductivity, we can 8asil, thermal conductivity of the material, the size of the wall

build the energy-temperature correlation model for thismo temperature difference and is inversely proportionahe
from Fourier's law of heat conduction [11]. We do not hav@,i-kness of a material.

a perfegt room, h_owever. M_aterlals, shape.f_;\nd condueviti | o P, be the effective energy injected to the air of the room
of the six walls (i.e., four side walls, a ceiling and a floor)n every second. Let, be the mass of the air of the room. Let

are all different. Our key observation is that these facl®ES - pe the heat capacity of the air of the room. In other words,
invariants. They are determined by their physical mategald  is the energy needed for one kilogram of a specific material

do not change (or change ignorably) with outside. factor.s. (in our context, the air) to increase one degree of Celsibs. T
Therefore, for each real-world room, we can build a V'rt“%mperature changing ra€’§ of the room is [18]:
> :

Let T be the indoor temperature. L&}, be the temperature
tside the room. Lef) be the heat transfer rate from outdoor

perfect room to mimic it. For this virtual perfect room, we ar Q-+ P.
build an energy-temperature correlation model using feoiri dat - mC @
law of heat conduction with the set of invariants undeteedin  Let A = 22, We say\ as the conductivity of this specific

To compute these invariants, we collect a set of electraity room. Combining Eq. 1 and Eq. 2, we obtain the following
temperature data by our sensor network. We then inversélyction for indoor temperature change:
derive these invariants. After flttlng_these |n\_/quantsl‘bm: T(t) =T, + P. x 1 4 Cpe et 3)
the model, we can compute (or predict) electricity usagestind ] ST A )
any indoor/outdoor temperature and targeted temperagure f HereCo is an initialization parameter determined by0),
this room. That is, we have our model. the temperature at time 0:
In what follows, we first show the details of the development, _ { T(0)-T,;  air-conditioner not in operation @)
of our model. Then we will conduct a real-world experiment T(0) =T, — =; air-conditioner in operation
to validate our method. The energy-temperature correlation model is Eq. 3 and Eq.
4. As said, we do not compute from theory since this is
A. Energy-Temperature Correlation Model difficult. We consider\ as an invariant, because it is related
As explained, we use a virtual perfect room where 1) The the physical properties of the materials. Therefore, we
room space is enclosed, i.e., no air exchange with otheespacalibrate this parameter by sensor data. We also califffate
2) All walls, ceiling and floor are made of materials with th&Ve emphasize théf, is artificial that approximates the overall
same thermal conductivity and have identical thicknesgIB) outdoor situation of all walls. Though one wall may have a
outside temperature of the room is same and is constant. ifdgger change in outdoor temperatufg, does not change
show that for any real-world room with different shape andbruptly. We will show that this is true in our experiments.



o

) ea ata] 1 1 1 ;’\ 2 —Nodeb
4600mm RSV
S o i % 24
S izz ‘ i gzzm
<2 < 2
. 1 4 . E 0 20 qu ) 60 . 80) 100 120 0 50 40 (60 80) 100 120
E ime iminutes Time (minutes
(@») Fig. 8: Data selection for Individu-
. 9 5 . S alCall) ZgagofPl\r‘%ﬂgtng vs. temperature
8 sequencd;y, T;s, . .., for each sensor nodeand electricity
®: 6@ sequencé’;, P, .. .,. For each of these sequences, we identify
periods of VPs, RPs and MPs. For each nadee then apply
Electrici ty Temperature AIgorithm In(_jividuaICaI() to calibra_ltai, T,; andr;. We s_ele(_:t
A three points in VP and two points in RP. For example in Fig. 8,
Meter Node Sensor Node we can selecfy, 71 andTs, the start, middle, and end points
Fig. 6: Experiment Environment of VP and T3 and T}, the start and end points of RP. We

comment that it is not necessary to find the exact start, ridd|
or end points as this does not greatly affect the accuracy of
model calibration. We need 5 points since we ha\yeToZ
and7; and two(gs, a total of 5 variables.
i, Tm and7; computed from each sensoérare not fully
equal (see Table 1). We apply Algorithm ModelCal(see alg.2)

Air conditioner
power (KW)

g‘ : f&égé (Oto get the final\, 7, and 7. The basic idea is to remove
o é —Node 9 | outliers by setting an upper error bouadand compute a
= —Hode 10} 2 weighted average of all;, 7,,; and#;.
Z;; m We have wrapped up the Energy-Temperature Correlation
& PR e T Model construction into an open source ModelCalibration
e using MatLab. The package is available at [23].
Fig. 7: Experiment Results AIgorithm 2 ModeICaI()

Besides the room parameters we also need to | m W Ilr;lpu;:32 1-). Tgr)ngerature sequencé;, T», ... for all nodes, 2) Power sequence

or r. It is easy to getP, i.e., the electricity consumption of output: A, 7, and#
the air-conditioner by our electricity-meteP,, the effective % f?)?tzﬁmr;r;?jfdgnd RP using sequeng, P, .
energy injected into the room every second, however, deperg  Get);, 7.; andr; using IndividualCal();

on the quality of individual air-conditioner. The effeativess 4 Predict temperature sequeritg, 77..., Ty;

of a single air-conditioner will not change abruptly. THere, 5 P = \2/2 ., |T; —Tj|2 Il compute weight of node, according to
we calibrater using the data collected by our sensor network, the ® accuracy of Plfedlcﬂon .
In summary, we will use the sensor data to inversely’ w, <e (W7 X Ao/ Zw <l 3

compute the invariants, » and semi-invariant,. We use ' %o = Zw < (w7 X To1)/ Zw <)
A, T, andf to denote them. Then we fit, 7, and# back into & * = 2w, BRC YD DI
Eq. 3 and Eq. 4 (our energy-temperature correlation model).
When future prediction is needed, we use Eq. 3 and Eq. B4 Experiment Validation

with \, 7, and#. The details of the calibration is as follows. We conduct a real experiment to validate our model. It

Algorithm 1 IndvidualCal() also serves as a test for our sensor network. Our experiment
9 was conducted in a hotel room in Shenzhen, China. The

Input: 1) 3 (7, ¢, P) from VP, 2) 2(T, t, P) from RP, 3)ymC . . . .

Output: A;, T, and; for Nodei configuration of the room and sensor network is shown in

1 SetP, =0; _ _ Fig. 6. There were nine indoor sensors (No. 1 to No. 9),

2: Use 3 data points of VR to construct 3 equauons.accordlngth;EI We need 3 one outdoor sensor (NO. 10) to collect temperature and an
equations to solve 3 variables;, T,; and C of VP; .. . ..

3: Compute;, T,; andCy of VP; electricity-meter (No. 15) connected to the air-condiéor©ur

4. SetP, =r x P; H

5: Use 2 data points of RP anki;, T,; to construct 2 equations according to Eq.3 //eXp_er"_‘m:"nt lasted one day from MarPh 2nd. t.O 3rd 2011. We
We need 2 equations to solve 2 variabieand C of RP; periodically turned on and off the air-conditioner(AC). €rh

6: Compute? andCy of RP;

result is shown in Fig. 7. The bottom part of Fig. 7 shows
The operation of a room can be cut into three periods: e temperature of four indoor sensors and the outdoor senso

the vacancy period (VP); 2) the re-cooling period (RP); apd 3he upper part of Fig. 7 shows the corresponding output power

the maintaining period (MP). The energy-temperature fionct level of the air-conditioner (in terms of Watt).

of VP and RP are different (see the two phases of Eq. 3 andrig. 7 indicates the weak connection between the outdoor

Eqg. 4). MP is a combination of short periods of VP and RRemperature (Node 10) and the indoor temperature. Actually
Through the sensor network, we will collect temperatufdode 10 readings were the temperatures of the day. We can



also see that the air conditioner turned on and off automiétic end time of the meeting respectively. Each meetidghas a
in the Maintaining Period. capacity requirement;. Each roomR; € R has a capacity
Using Algorithm IndividualCal() we get the\;, T,;, #: C;. For R; that can holdM;, we must have; < C;. Every
for each indoor sensor. Using Algorithm ModelCal() we gabom R; is associated with a functiof; (T3, ¢) showing the

(X,To,f). The results are shown in Table I. energy needed to maintain the target temperdfyrer ¢t and
TABLE I: Calibrated (\, T,, ) a function RE; (T}, t) showing the energy needed to re-cool
Node D T 7 — the room toT; where last meeting has ended forE; (1%, t)
g o3 Tq
1 63.46 26.08 022 and RE;(T,,t) can be computed by our energy-temperature
2 63.98 2597 -0.20 correlation model (See appendix for details). We assume the
2 A target temperaturg, is a constant. As such, we usgt) and
5 5793 2600 -0.38 RE(t) for short. We want to find a schedul consisting a
g gg.gg gggé -8.557) set of time intervals, one for each meeting. The objective is
8 2146 2593 048 to redu_ce the_ total energy o, _ _
9 60.89 2464 -0.44 In this section, we first develop an optimal algorithm when
\To,7 | 5872 2538 -0.32 the rooms are uniform. For the general problem with non-
Fitting (\, 7, 7) back to our energy-temperature correlatioHngr?;r:;orsooms' we develop two fast heuristics for different

model, we draw a predicted temperature curve in Fig. 9
applying the same initial temperature, the same time to turn
off the air-conditioner from 16:11pm and 18:10pm. We als m
draw the real temperature sequence of Node 5. We see t St
the predicted temperature is fairly close to the real temtpee Definition For n room, skyline is a set of numbers
sequence. Thus we conclude that our model can be usedko k2, - - -, kx), Wherek; is the last time of roonf?; usage.
estimate future room electricity usage. A. Complexity analysis

We want to further emphasize that after we have the energy- h 1-"MESP is NP | h h
temperature correlation model, we do not need the sensop— eorem L. IS -complete when there are more

network in the room. Our experience shows that to build tHQQ” two types of rooms with different energy consumption
model, it is enough to use the sensor network for a day (#Ho-

few. In our sensor network, TelosB sensors used batterigs an Proof: It is (;,\_asy ;O Ve”r':y dthlat_call\lcgla_lt_lgg rfe_coo&rgsp
the electricity-meter uses alternating current. The enésg energy consumption ot a schedule Is INF. - Theretore,

not a problem. In addition, though the electricity-meteries 'S " NP class. To shown MESP is NP-complete, we reduce a

its own data and the temperature data of TelosB sensors jfple schedule problem to it. The former is proven NP-complete
+in [4]. The proven theorem is stated as folloBiven a set

traffic throughput is also not a problem. It is easy to see thi5t . . ) ;
our sensor network can be directly used in other rooms tod. ~ {1, “.72’ --»Jn} Of n jobs, ]Op Ji has f|xed_start time
and end time(s;, t;). There arek kinds of machines where
V. ROOM SCHEDULING ALGORITHM k > 2. For each classj = 1...k, the unit time processing
With the energy-temperature correlation model, we awowst isP; where P; # P, if j # . All jobs can be processed
prepared to develop the room scheduling algorithm. We hawa any kind of machines. It is NP-complete to schedule all
searched existing room scheduling algorithm in literatdi@ jobs with minimum cost.
the best of our knowledge, we did not find any standard Given an instancgJ,U,JU): J = {J1,J2,...,Jn} IS

We first define a concept of skyline. It indicates the last
e each room is used. Our algorithms will iteratively move
skyline to the end times of the schedule.

algorithm. We believe ad-hoc scheduling is used becausetioé set ofn jobs, U = {U;,Us,...,U;} is the set ofl

two reasons: 1) the number of rooms is not always tight, Pyocessors and these processors are groupedkinttass-

there is no optimization objective, only to fit the meetingsies JU = {JU;,JUs,...,JU;}. The unit time process-

As such, advanced algorithms might not be necessary.  ing cost of classJU; is P;. We construct a set of meet-
We would like to comment that by no means our intentiomgs M = {M;, Ms,...,M,} and a set of roomk =

is to conserve energy needed within meetings. Conservation{ Ry, R, ..., R; }. b; ande; for M; are equal tes; andt; of J;

such energy is beyond the scope of this paper; but we woulsspectively. All meetings have same capacity requiremgnt
like to admit that if the meeting time is long (e.g., three iI®)u all rooms have same capacify andé < C. Let all meetings
the proportion of the energy that we conserve as comparedhtive samel; and let the outdoor temperature be a constant.
the total energy of the meetings can be small. NevertheleAd,rooms are grouped int®RG = {RG1, RGs, ..., RG}. R;
we are working on one of the most energy consuming sectissn RG; if and only if U; is in JU,. For each class of rooms,
of our society. The sheer amount of energy we conserve,ws build a simplified energy-temperature correlation model
compared to not using our system, is significant. All rooms in RG; have same functio®’; (73,t) = P; xt to

We formally state the problem. Given a sRtof n rooms calculate in-meeting energy consumption &l (7;,t') = 0.
and a setM of m meetings to be scheduled. A meeting Next, we show that by finding the minimum energy schedule
M; € M is associated with a time intervél;, e;) and a target S, we can find the minimum cost schedule to process all jobs
temperaturel;, whereb;, e; represent the start time and then polynomial time. ReplacingM;, R;) in S with (J;,U;), we



have a job schedul§’ which is a valid schedule for all jobs.in R;. We havek; < k; < b; < by. Thus, the position
For a M; scheduled to a room i®G;, energy consumption of M and M, are interchangeable. And according to claim
of M, is P; = (e; — b;). And b; ande; for M; are equal to 2, this interchange does not affect the later scheduling. So
s; andt; of J; respectively. ThusS’ uses minimum cost i§ the schedule result of Algorithm Energy-RS(Uniform) usss a
consumes minimum energy. E many rooms as the minimum room algorithm. ]

B. Rooms with Uniform Capacity Existing ad-hoc meeting scheduling algorithms usually do
Our algorithm Energy-Aware Room Scheduling (Uniform)pot bother if using more rooms. This theorem indicates that
Energy-RS(Uniform) for short, is a greedy-based algorithrdlgorithm Energy-RS (Uniform) will select the smallest num
We sort the meetings in ascending order based on theimgiartber of rooms. This is useful for the general algorithm with
times. We then group the meetings with the same starting tinf@n-uniform rooms; since we try not to schedule meetings
Our algorithm performs in iterations and in each iteratioe, Wwith small capacity requirements into oversized rooms.
handle a group of meetings with the current earliest s@rti%

X . Rooms with Non-Uniform Capacity
time. We allocate these meetings to the rooms that have gndin ; )
times that are closest these meetings. 1) Energy-RS():We use Algorithm Eenergy-RS (Uniform)

Lemma 2:Let K be the set of permutations of number&S @ building block to develop algorithm Energy-Aware Room

ki, ko, ... k. For all K; € K, different skyline representedSChedUIe (Energy-RS()). We outline our basic idea. Assume
by K; does not affect later scheduling. the number of different capacities of all rooms gs We

Proof: The rooms are uniform, so exchanging the ord&@ssify the rooms into different grougsg, RGz, . .., RG,
of rooms does not affect later scheduling. m according to their capacity. Le&C), be the room capacity

Lemma 3:Let two uniform roomsR; and R, have sky- °f RYxr. We haveVR; e RGy, C; = GCj. Assume
line (ki, k). For two unscheduled meetindd; (b1,e;) and Rgl’Rgz"“’_Rgg is sorted n ascendmg_ or(_jer aqcordmg
Ma(bo, e2), if ki < ks < by < by, the optimal schedule shoulgto their capacityGCy. We classify the_: meeting into dlfferent
put M, in Ro, and Mo in R. grqupsMgl,Mgg, - ,.Mgg according to the capacity re-

Proof: The total interval between the scheduled meetin(%"“:'fments of the meetings. For a meeting with a capacity
and unscheduled meetirfdy; + by — ki — k») is constant. For 'cduirement;, itis grouped intaMgy, whereGCj—; < ¢; <
two uniform rooms, they have same functif (¢'). Because GCj. As an example, assume the room capacities of all rooms
RE(t') is a concave function of, we have the following are 20, 40_, 60. The m_eetmg _requweme_znts are_l?, 18, 34. We
inequality: RE(by — k1) + RE(by — k) > RE(bs — k1) + thus cla_53|fy the meetings with capacity re_quwer_nents of _17
RE(b, — k»). As the total meeting length off, and M and 18 into the group of 20 and the meeting with capacity

is constant, re-cooling energy consumptions determine ffgAuirement of 34 into the group of 40.

difference of total energy consumptions. We conclude it is We s_chedule meetings o¥1gy, into room groupRgy in
more energy efficient to put/; in Ry while Ms in R;. = ascending order. For each group paigy, RGy), we apply
Algorithm Energy-RS (Uniform). If there is some meetings

cannot be scheduled, we move these unscheduled meetings
into MGyg1. From Theorem 5, we know that Algorithm

Algorithm 3 Energy-Aware Room Scheduling (Uniform)

> 2;’?;:???'2?52‘8?” time ascending order; Energy-RS (Uniform) uses the smallest number of rooms.
3i=1; Thus, the chance that a meeting with small capacity require-
g ""h",firfé E.’Zﬂ?m whereb; — k; = minym. b~ {bi — k;}: ment is pushed into an oversized room is minimized.

6. ScheduleM; in R;; ’ T o Claim 6: The complexity of Algorithm Energy-RS() is

g ki = ei; O(nm).

=1+ 1; . .
il 2) TimeUr-RS(): In our framework, each meeting has a

i _ . capacity requirement and a meeting time requirement. This

Theorem 4:The total energy consumption by Algorithmis the case for many scenarios. For some cases, however,
Energy-RS(Uniform) is minimum. . the meeting time can be determined by the room scheduling

Proof: We prove by contradiction. For any skylinegystem. For example, when we query the class schedule of
(k1, k2, ..., k) @and two unscheduled me?t'rMi’Mh(bi < The Hong Kong Polytechnic University, the administrative

bn), M is scheduled tdt; whereb; —k; = minvr; k, <v. {bi—  personnel could not give out specific reasons why one specific

kj}..Assume the contrary holds, it is energy efficient t0 piass must be at a specific time, as long as there is no
M; in R, and putM), to R;. We havek, < k; < bi < bn- conflict. We conjecture this is a general case since there is n
This violates lemma 3 and 2, where it is more energy efficieghimization goal for many meeting schedules; only to fit all

to putM; in R;. ®  the meetings in without meeting-meeting, room-room conflic
Theorem 5:The total number of rooms scheduled by Al- We propose a simple greedy-based algorithm which allows
gorithm Energy-RS(Uniform) is minimum. reassignment of meeting times, we call Time Unrestricted

Proof: For any skylin€k,, ks, ..., k), M; is scheduled Energy Aware Room Scheduling (TimeUr-RS()). TimeUr-RS()
to R; in Algorithm Energy-RS(Uniform). Assume there is ds greedy by sorting meeting capacities in descending order
minimum room algorithm who putd/;, to R; and putM; and then fitting into the rooms. This algorithm can be used



to provide suggestions for the decision makers, in caseth@&. Simulation results .

is no compulsory reason to have strict meeting times. In ourl) Results on Synthetic Datan Fig. 10, we show the total

simulation, TimeUr-RS() is used as a performance comparis@nergy for re-cooling the rooms for different algorithms. |

Fig. 10 (a), we see that the re-cooling energy needed for ad-

VI. PERFORMANCEEVALUATION . . .
hoc room scheduling RS is always greater than our algorithm

A. Simulation setup ; 0 .
We evaluate our system in two settings. The first one is reEamergy-RS and TimeUr-RS. This is not surprising as the RS

class schedules and classroom topologies of The Hong Kl ly satisfies the meeting requirements. When the number of

Polytechnic University (denoted PolyU thereafter), acai meetings increases, we can see that all three algorithnts nee

calendar year of Spring 2011. The second is a set of synthemgre energy in re-cooling the rooms. This is because there ar

. ore meetings and more rooms to be used. RS increases much
room arrangements we generate semi-randomly.

PolyU has 155 classrooms (see Table Il for the full confi%’1Ster than our algorithms, however; as both of our algorith

urations).\, mC and P are calculated based on the room siz ave taken the energy conservation into considerationeMor

and the equations in section IV.A. In academic year Sprir ecifically, we can see_t_hat if there are 800 meetings to
2011, therg are around 600-700 classes every wgekday? sthedule, the total electricity needed by RS, Energy-RS and

TABLE II: Room configuration of PolyU TimeUr-RS is 503 kWh, 214 kWh, and 141 kWh respective_z.
_ We can see that we have reduced the electricity consumption
Cap Num Size A mC P f th half. If th ti ti . t tricted
(Seats) LxWxHm) (J)s-K) (JEK) (kW) or more than half. If the meeting time is not restricted, we
20 8 4X5 X3 70.5 1200 15 can make a suggestion on meeting times so as to reduce the
40 42 8Xx5x3 1185 2400 24 electricity consumption to less than one third.
60 67 6x10x 3 162 3600 4.7 Consid lar deskt ter. The electricit
80 10 8% 10 % 3 201 1800 62 onsider a regular desktop computer. The electricity con-
100 4 10 x 10 x 3.3 249 6600 9.4 sumption per hour is usually less than 0.1 kWh when it
;gg é7 }gx iixg g;g %iggg %i-g is in full CPU operation. If the computer is in use for 12
X X . . . . . .
300 2 15 % 20 % 6 765 36000 313 hours per day, and in hibernation for the rest time. This

The second setting is synthetic data. We consider roof§ans that the electricity we saved can support more than 300
with uniform capacity and non-uniform capacity separatel esktop computers. This reflects that air-conditioningl @so
For the uniform case, the default room capacity is 100 se&@ating) is indeed a major sector for energy consumption.
and the total number of rooms is 150. The meeting times areWVe then see Fig. 10 (b) and (c) where the meeting time is
randomly generated in range [8:00, 22:00]. The lengths ef thendomly chosen fron®, and O3. We see similar trend as
meetings are randomly chosen from a few fixed options, as W@t in Fig. 10. We also see that the less number of choice
believe most meetings have semi-fixed length. We have thigat we have in meeting time, the greater the benefit of our
options, 0y = [1,1.5,2,2.5,3], Oy = [1,2,3], O3 = [1,2]. algorithms. This is because if there is a smaller number of
That is, for©;, the meeting lengths are randomly chosen frofieeting length options, there is also a smaller number ofisma
one of the five choices, 1, 1.5, 2, 2.5, or 3 hours. time segments that we cannot fit the meetings in due to more

For the non-uniform capacity case, we have eight differelitegular meeting time length. On the contrary, we do not see
types of rooms with capacities of 20, 40, 60, 80, 100, 15@nprove for RS as its schedule is ad-hoc.
200, 300 (similar to PolyU). The numbers of different types This can be more clearly seen from Fig. 11. We call the
of rooms follow a poisson distribution with a mean of 3re-cooling energy ratio as the re-cooling energy needed by
This indicates that the majority of our rooms are those withnergy-RS (or TimeUr-RS) as against to the re-cooling gnerg
capacity of 60 seats. The total number of rooms is also 18tgeded by RS. In Fig. 11, we plot the re-cooling energy ratio
The meeting times are randomly generated in range [8:00! the case where the number of meetings is 800. We can
22:00]. The length of the meetings are also from the thr&€e when the meeting length become more uniformed, the re-
options, O1, O,, and Os. The capacity requirement for thecooling energy ratio of Energy-RS and TimeUr-RS becomes
meetings follows a poisson distribution with a mean of 3. Smaller. This suggests that to save more energy, it is bietter

The default values of our simulation a#g = 25°C, # = have the meeting length more uniform.
—0.32 for all rooms (same to the value in Table I). We set the Fig. 12 shows re-cooling energy needed when we use
target temperatur@, = 20°C for all meetings. different room capacity (our default is 100 seats). Theltota

For the PolyU setting, we directly compare the scheduteimber of meetings is 800 and we chod3gas our meeting
computed by our algorithm with the existing schedule. Fdength. Clearly, the larger the room capacity, the more re-
synthetic data, we choose to compare our algorithm with &noling energy is needed for all algorithms. Our algorithms
ad-hoc room scheduling algorithms (denotedi) that can greatly outperforms RS for more than 50%.
can satisfy the meeting time and room capacity requirementsThe energy consumption is closely related with the target

We choose our primary performance metric as the tot@mperature. We adjust the target temperaffjrérom 20°C
energy needed to re-cool the rooms to the target temperatiwr@4°C. From Fig. 14, we see that every degree counts! For
for all rooms and all meetings. Note that we exclude the gnergxample, the re-cooling energy is around half if we increase
needed during the classes; which we cannot conserve. Tois target temperature from 20 to 23. This suggests that the
metric is stable for all room scheduling algorithms. best way to save energy is to set the temperature bar higher.
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We are in an age where people are paying increasing
attention to energy conservation around the world. Com-
puter scientists study energy conservation of data centers
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. Target Temperature{C) _ Weekdays _ [16][17][219], and backbone routers [24]. The general pple
Fig. 14: Re-cooling energy as a-Fig. 15: Re-cooling energy in . .
gainst target temperature. weekdays of these works is to turn off unnecessary usage of machines
and reschedule their load. To assist data center monitoring
Our algorithm again significantly outperforms RS. sensor network is used for energy sensing [9].

We then study the general case where rooms are of nond héré are many efforts in developing smart homes and
uniform capacity. We show the results in Fig. 13. We see tha¢ildings. In [6][7], an energy auditing network is built.
the gain of Energy-RS is smaller. This is because, in eadh tygn€ main objective is to have a fine-grained granularity on
of room capacity, we have a much smaller number of meetiigcmc'ty readings for all equipments. As a continuaion
choices. If one takes a closer look at Fig. 10 (a), we can ddé SMAP is developed, which can record different physical
that the best performance arrives when the number of meetifi§2dings and provide general interface for different aapli
is 800. When the number of meetings is 100, or 50, the gaintigns- Motion sensors and door sensors are developed [12] to
smaller. In our general case, we have 8 different types afiso M0del the occupancy pattern of people at home. It turns off
resulting in a smaller number of meetings in each type. Thie light, air-conditioning etc when people are not at hofe.
the gain is smaller. We can summarize that the more meeting&nilar system [14] analyzes the occupancy against préubo
the more choices: leading to more re-cooling energy need&gnference rooms, so as to turn off unnecessary energy usage
and a better performance of Energy-RS as compared to Rg_few s_tudles use sensors and actuators to work collabetstiv

2) Results on PolyU DataWe next study a real data set ofto monitor buildings [10][13][20].

PolyU. Note that though the academic calendar year of Springln building and service engineering, there are mature Cen-
2011 spans for an entire semester, the class schedule tor deal Control and Monitoring Systems (CCMS) designed for
week is the same. For example, the class schedule of Polylhigh-end commercial buildings. Building Management Syste
every Monday (or any other weekday) is the same in the ent{8MS) is part of CCMS and is responsible for monitor
semester. As such, we will only schedule for five weekdagsd control HVAC equipments. There is a standard protocol
and our schedule can be used in every week of the semedBxCNet for BMS. The main objective is to have a uniformed

Fig. 15 summarizes the results. We can see that every degy to connect different direct digital controllers (DDC).
the re-cooling energy needed is approximately the same. TBACNet rides on Ethernet. Recently, there are some studies
is because the total classes in different weekdays are mupeto use wireless networks to carry BACNet [15][21].
or less the same, which is the usual case of a university. WeOur work is a specific application for sensor networks to
also see a general 20% conservation in electricity for eanfonitor buildings. Our work targets on the heating and air-
weekday. If there is less restriction in class time, then vile wconditioning sector for commercial buildings, which is the
achieve higher energy conservation. largest factor for energy consumption. Our work does not try
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to monitor the presence of people in a room and turn on a B. Li, D. Wang, F. Wang, and Y. Q. Ni, “High Quality SensotaBement for
; . [P : Structural Health Monitoring Systems: Refocusing on Apgiion Demands”, in
off room functions; a common topic in many gtudne_s. We S€ Droc IEEE INFOCOM'10 San Diego, CA, Mar, 2010,
many rooms to date have already equipped with this functiop c. Liang, J. Liu, L. Luo, A. Terzis, and Feng Zhao, “RACNAtHigh-Fidelity Data
H i i~ Center Sensing Network”, in ProACM SenSys’Q%Berkeley, CA. Nov., 2009.
InStea(_j’ we reduce unnecessary_ heatlng and air Cond_lgon 0] K. Lin and R. Gupta, “Towards Automated Building Managnt through
by taking advantage of scheduling subsequent meetings Ofr cooperative Sensor-actuator Networks”, in PridctPower'09 Big Sky, MT, Oct.
; i 2000.
Classgs to rooms that have JUSt been u§ed (heated’ or [‘Fﬂﬁ J. Lienhard IV and J. Lienhard V, “A heat transfer texakgBrd edition”, pp. 12-18,
conditioned). Our work can become an integrated part for 200s.

H H ] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, lanBbvic, E. Field, K.
fUture. Smajrt BMS system for meeting arran_gemg_nt. Orit C&ﬁ Whitehouse, “The smart thermostat: Using Occupancy sertsosave energy in
work individually for class schedules of universities. Tet homes”, in ProcACM SenSys'1(Zurich, Switzerland, Nov. 2010.

1 ] J. Lu, D. Birru, K. Whitehouse , “Using Simple Light Sems to Achieve Smart
best of our knOW|edge’ we are the first to StUdy such prObIeHﬁ Daylight Harvesting”, in ProcACM BuildSys’10 Zurich, Switzerland, Nov. 2010.

[14] K. Padmanabh, A. Malikarjuna, S. Sen, S. Katru, A. Kun®r Pawankumar, S.
Vuppala, and S. Paul, “iSense: A wireless sensor networkdasnference room
VIII. CONCLUSION AND FUTURE WORK management system”, in PraBCM BuildSys’09 Berkeley, CA, Nov. 2009.

In this paper, we took the advantage Bfiermal |nertia [15] S. Park, W. Lee, S. Kim, S. Hong, and P. Palensky, “Im@etation of a BACnet-
. . . . . ZigBee gateway”, in ProdNDIN’'10, Osaka, Japan, July, 2010.
that is, after a meeting ends in a room, the cool air will N@ie) L. Parolini, B. Sinopoli and B. Krogh, “Reducing datanter energy consumption

immediate dissipate. We designed a new room managementvia coordinated cooling and load management”, in PHatPower'0§ San Diego,
. CA, Dec, 2008.
SyStem for energy conservation. We extended sensor hEEEdV\{@;I’] R. Raghavendra, P. Ranganathan, V. Talwar, Z.WanghX, ZNo Power Struggles:

(some of which can be used beyond this WOI’k) and designed Coordinated Multi-level Power Management for the Data €éntin Proc. ACM
. ASPLOS’08 Seattle, USA, Mar, 2008.

a two tier sensor network. We develop an energy-temperatpeg 1. saver, R. Howell, W. Coad, “Principles of heating,ntitating, and air

correlation model and validate the model with our sensor net  conditioning”, Section 2.4, 2001. o _

. . .. [19] Y. Shang, D. Li and M. Xu, “Energy-aware Routing in Datar@er Network”, in
work in real-world experiment. We further developed effitie ™ proc.AcM SIGCOMM Workshop on Green Networking"Mew Delhi, India, Aug.
room scheduling algorithms. Comprehensive simulations gn 2010. o

. . . (a L. Schor, P. Sommer, and R. Wattenhofer, “Towards a Z&wafiguration Wireless
synthetlc data and a real class and room conflguratlon of Sensor Network Architecture for Smart Buildings”, in Pra’CM BuildSys'09

Hong Kong Polytechnic University were conducted. Berkeley, CA, Nov. 2009. S _ _
. . . . . [21] K.Tsang, W. Lee, K. Lam, H. Tung, and X. Kai, “An integedtZigBee automation
As a first work in Thermal Inertia, our work has many limi-" " system: An energy saving solution”, in Prdbe 14th International Conference on
tations. First. in our current paper, we assume the meea'rcgs Mechatronics and Machine Vision in Practicéiamen, China, 2007.

. ! Lo . . EgZ] Energy in the United States, http://en.wikipedia/aigi/Energy_in_the_United_States
determined in advance. This is true for university scheslulg>s; v vuan, D. Pan, D. Wang, X. Xu, Y. Peng, X. Peng, P. Wan
However, many Compan|es/hote|s/resturants face onlinero “Thermal Inertia: Towards An Energy Conservation Room Mgeraent Sys-

. . tem.” Technical report and Matlab package, Jun. 2011. Abtel at
booking. Second, in the current schedule, we assume the FOOMhttp:/fwwwa.comp. polyu.edu.hk/~csyiyuan/projectsFAS. html A
capacity is the only constrain to meetings. We admit thatethg?4] M. Zhang, C. i, B. Liu, and B. Zhang, “GreenTE: Power-#® Traffic

. i oy Engineering”, in ProclEEE ICNP'1Q Kyoto, Japan, Oct. 2010.
are other constraints, such as facilities (e.g., projsgtorthe
room, the distance between rooms so that people have enough APPENDIX

time to go from one room to another. To facilitate future Let¢ be the interval time that the room has not been used.

studies, we release an open source for our energy-tempz@ralrl.?t Li t?e the length ofM;. Ffonl our energy-temperature
orrelation model, we havg, T,, #. We computeE (T}, t;)

correlation m.od.eI. in MatLab. One can use our wqu t nd RE(T},t) as follows:
generate realistic input on energy consumptions for differ T — 7
room scheduling problems. Third, our electricity-meten ca B(Ty, ti) = (% x X) Xt ()
only measure energy usage of general air-conditioners. We

plan to develop advanced meters for central controlled air- (T—F) . mC T, _F, _ PxP
conditioners. Fourth, we are in collaboration with peojpterf RE(Tn,t):(P—T"xA)x—Tln - 7Lt* —
Building and Service Engineering, to see how our system can (Tr = To)e™ mT" — 5=
be fitted into general building management systems.

(6)
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