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ABSTRACT
Embodied carbon is the total amount of carbon released from the
processes associated with a product from cradle to gate. In many
industry sectors, embodied carbon dominates the overall carbon
footprint. Embodied carbon accounting, i.e., to estimate the embodied
carbon of a product, has become an important research topic.

Existing studies derive the embodied carbon through life cy-
cle analysis (LCA) reports. Current LCA reports only provide the
carbon emission of a product class, e.g., 28nm CPU, yet a product in-
stance can bemanufactured from diverse regions and in diverse time
periods, e.g., in the winter in Ireland (Intel). It is known that carbon
emissions depend on the electricity generation process, which has
spatial and temporal dynamics. Therefore, the embodied carbon of
a specific product instance can largely differ from its product class.
In this paper, we present new Spatial-Temporal Embodied Carbon
(STEC) models for embodied carbon accounting. We observe sig-
nificant differences between current embodied carbon models and
STEC models, e.g., for 7nm CPU the difference can be 13.69%. We
further examine the impact of STEC models on existing embodied
carbon accounting schemes on key computer applications, such
as Large Language Model (LLM) inference and LLM training. We
observe that using STEC models leads to much greater differences
in the embodied accounting of certain applications as compared to
others (e.g., 32.26% vs. 6.35%). This is because the hardware require-
ments of certain applications allow for a wider range of hardware
choices, while others have greater restrictions.
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1 INTRODUCTION
In recent years, awareness of the importance of sustainability [10,
16, 17, 31] and carbon reduction [21–23, 38] has been growing.
Embodied carbon is the total amount of carbon released from the
processes associated with a product from cradle to gate [15]. In
many industry sectors, embodied carbon dominates the overall
carbon footprint of a product as compared to its operational carbon
[4]. For example, the embodied carbon of an iPhone 11 accounts
for 79% of its overall carbon footprint [14].

Embodied carbon accounting, i.e., to estimate the embodied car-
bon of a product, has become an important topic [6, 7, 24, 40]. There
are studies on embodied carbon accounting for computer the hard-
ware of processors, memory, and storage [14, 39]. The methodology
is to leverage life cycle analysis (LCA) reports [29]. For example,
in the Environmental, Social, and Governance (ESG) report of SK
hynix, the embodied carbon of memory (LPDDR4) is 48 g/GB [18].

The embodied carbon of a product depends heavily on the car-
bon intensity [26, 41, 43] of the electricity used in the process of
manufacturing this product. Specifically, carbon intensity is the
amount of carbon emitted when generating a unit of electricity;
and different energy sources (e.g., coal or solar) can lead to different
carbon emissions when generating a unit of electricity. The car-
bon intensity of electricity has spatial and temporal dynamics. The
spatial dynamics come from the energy policies of the geographic
locations. For example, the electricity generated in Taiwan has a
higher carbon intensity than that in Ireland, since Taiwan’s energy
policy is to rely on traditional energy sources due to Taiwan’s lack
of renewable energy sources. The temporal dynamics come from
the environmental dynamics, which affect the amount of renewable
energy sources when generating electricity [28, 32]. For example,
the electricity generated in Ireland in the winter has less carbon
intensity than that in the summer, when wind sources are abundant.

None of the existing studies on embodied carbon accounting has
taken spatial and temporal dynamics into consideration. Existing
LCA reports on the embodied carbon of a product represent a
product class (e.g., 28nmCPU) with the samemanufacturing process.
Yet a product instance can be manufactured from diverse regions
and in diverse time periods, e.g., in the winter in Ireland (Intel) or
in the summer in Taiwan (TSMC).

In this paper, we present new embodied carbon models that can
extend existing embodied carbon models to capture the spatial and
temporal dynamics in different granularities.1 Specifically, we ob-
serve that (1) energy policies have granularity at the country-level;
at the treaty-zone-level of multiple countries with energy treaties,
(e.g., the European Union (EU), Association of Southeast Asian Na-
tions (ASEAN), etc.); and at the global-level and (2) environmental
dynamics have granularity at a day-level, at a season-level; and at a
1We make our codes available: https://github.com/stuabc/STEC
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year-level. Embodied carbon models at different granularities will
be useful for different applications. For example, manufacturers
that regularly purchase computer hardware for their assembly lines
may be concerned with embodied carbon at a year-level, while
consumers with relatively flexible needs may be more concerned
about embodied carbon with finer granularity at a season-level
or even a day-level (e.g., individuals with environmentally aware
individuals [30]).

Existing models can be considered spatial-temporal embodied
carbon (STEC) models of a global-level and a year-level (STEC-GY).
In this paper, we also study (1) an STEC model of a country-level
and a day-level (STEC-CD), (2) an STEC model of a country-level
and a season-level (STEC-CS), and (3) an STEC model of a zone-
treaty-level and a year-level (STEC-ZY). We study these models due
to the availability of data. Note that one challenge to developing our
models is the need to collect public data, which is spread throughout
various reports. We have made and effort to collect and organize
data. We plan to make the data available through an open-source
format when this paper goes public.

We compare our models with ACT [14], a state-of-the-art embod-
ied carbon model. We observe significant differences in the embod-
ied carbon accounting when the spatial-temporal factors are taken
into consideration and when they are not. First, the differences
are significant at any granularity (e.g., 13.69% for 7nm CPU at the
country-level and season-level). Second, we find greater dynamics
on finer granularity. For example, the average maximum difference
in STEC-CD is greater than in STEC-ZY (40.54% vs. 19.29%). Last,
we observe that the embodied carbon in some countries has sea-
sonal patterns and can be significantly affected by certain types of
weather.

There are an increasing number of studies on embodied carbon
accounting for key computer applications, such as Large Language
Model (LLM) inference (e.g., CarbonMin [7]) and LLM training (e.g.,
LLMCarbon [13]). We further examine the impact of STEC models
on these embodied carbon accounting schemes. Note that, different
applications require different kinds of supporting hardware. We
observe that STEC models affect applications differently from other
models. For example, the embodied carbon of LLM inference ac-
counted for by STEC-CS can be 0.21g to 0.35g, as compared to 0.31g
by CarbonMin; a difference of 32.26%. This is because CarbonMin
requires ordinary hardware with a wide range of manufacturing
choices across locations and time periods. Yet, LLMCarbon has
restrictions on their hardware choices (e.g., Samsung 20nm SSD),
and the difference is only 6.35%.

The contributions of the paper can be summarized as follows:

• We observe that the embodied carbon accounting for com-
puter systems can be affected by spatial-temporal factors.
Existing embodied carbon models have yet to take these
factors into consideration; thus, they can have inaccuracies.

• We develop new STEC models by leveraging two existing
models: the ACTmodel for the embodied carbon of computer
components and the electricity carbon intensity model for
the spatial-temporal carbon intensity in electricity.

• We evaluate STEC at both the hardware level and the applica-
tion level. Our evaluations show that there can be non-trivial

inaccuracies if the spatial-temporal factors are not taken into
account.

2 SPATIAL-TEMPORAL EMBODIED CARBON
(STEC) MODELS

2.1 A Framework for STEC Models
We can classify embodied carbon models according to different
spatial and temporal granularities (see Table 1). Along the spatial di-
mension, there is granularity at the country-level, treaty-zone-level,
and global-level. Along the temporal dimension, there is granularity
at the day-level, season-level, and year-level.

The key difficulty is to collect data on renewable energy sources
at different granularities. We made an effort to collect data in or-
der to study STEC-CD/CS/ZY; and we omitted STEC-CY due to
space limitations. Current data cannot support us in studying STEC-
TD/TS/GD/GS. For clarity, we summarize key acronyms in Table
13 in Appendix A.4.

Table 1: Classification of embodied carbon models based on
different spatial and temporal granularity

Spatial
Temporal Day-level Season-level Year-level

Country-level STEC-CD STEC-CS -
Treaty-zone-level × × STEC-ZY

Global-level × × [14][20][39]

2.2 Spatial-Temporal Carbon Intensity
We first present a state-of-the-art embodied carbon model, the
Architectural CO2 Tool (ACT) Model [14]. It is developed for three
kinds of fundamental computer hardware: processors (e.g., CPU,
GPU), memory (e.g., DRAM), and storage (e.g., SSD, HDD). ACT
estimates the embodied carbon of memory and storage by directly
applying the embodied carbon from a corporate annual ESG report.
For processors, ACT estimates the embodied carbon by modeling
the carbon emitted during manufacturing as three components:
(1) the carbon released by the gas (e.g., fluorinated compounds)
in the manufacturing process, denoted as 𝐺𝑃𝑆 (gas per-size); (2)
the carbon released by procuring raw materials, denoted as𝑀𝑃𝑆

(material per-size); and (3) the carbon released by the electricity
consumed during the manufacturing process. This is calculated by
the electricity consumption per unit of size, denoted as 𝐸𝑃𝑆 , and
by the carbon intensity of a power grid, denoted by 𝐶𝐼 . 𝐶𝐼 is the
amount of carbon emitted when generating a unit of electricity and
it can be obtained from the reports on a power grid [12, 27]. Both
GPS and EPS can be obtained from a related research paper [3], and
MPS can be obtained from industrial research reports [5].

The key to developing an STEC model is to study the three
carbon emission components in the manufacturing process in the
spatial and temporal dimensions. For GPS and MPS, we conjecture
that they are less dynamic in the spatial and temporal dimensions
since they are less related to renewable energy, although we admit
that further investigation should be carried out.
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A greater contribution comes from the carbon emissions from
the electricity component. For example, for a 7nm CPU, the car-
bon emission contributions are GPS 11%, MPS 28%, and EPS 61%.
Carbon emissions in electricity depend on the energy sources used
to generate a unit of electricity (e.g., solar or coal), as well as on
the amount of renewable energy available for use (e.g., solar). The
former is diverse in terms of locations, while the latter is diverse
in terms of weather and seasons. There have been studies on the
spatial and temporal carbon emissions in electricity and we adopt
the model in [25].

Here, the carbon intensity 𝐶𝐼 (𝑠, 𝑡) is calculated according to a
specific time 𝑡 and location 𝑠 . Let E be the set of energy sources.
Let 𝐸𝑘 (𝑠, 𝑡) be the electricity generated by source 𝑘 at time 𝑡 and
location 𝑠 . Clearly 𝐸 (𝑠, 𝑡) = ∑

𝑘∈E 𝐸𝑘 (𝑠, 𝑡). The carbon emitted by
each type of energy source in electricity generation differs. Let 𝑒 𝑓 𝑘
be the carbon emission factor of an energy source 𝑘 . We show the
carbon emission factors in Table 9 in Appendix A.2. Finally, the
carbon intensity of electricity is the ratio of the total amount of
carbon emitted against the total amount of electricity generated
(𝐸 (𝑠, 𝑡)).

𝐶𝐼 (𝑠, 𝑡) =
∑
𝑘∈E 𝑒 𝑓 𝑘 × 𝐸𝑘 (𝑠, 𝑡)

𝐸 (𝑠, 𝑡) (1)

2.3 Spatial-Temporal Embodied Carbon Models
We now present our models. We capture the spatial and temporal
dynamics in the carbon intensity𝐶𝐼 (𝑠, 𝑡), and the embodied carbon
can be calculated using 𝐶𝐼 (𝑠, 𝑡) with the electricity consumption.
To develop our spatial and temporal models, we need electricity
consumption data; which is difficult to find in these annual reports
on memory and storage. Therefore, we first reversely compute the
electricity consumption from the information on the embodied
carbon.

We first develop basic models for the memory, storage, and pro-
cessor (𝐸𝐶𝑀 (𝑠, 𝑡), 𝐸𝐶𝑆 (𝑠, 𝑡), 𝐸𝐶𝑃 (𝑠, 𝑡)). The embodied carbon is es-
timated according to the per-unit size of the respective computer
hardware; specifically, the per-unit die size (in cm2) for proces-
sors and the per-unit storage size (in Gigabytes/GB) for memory
and storage. We then develop STEC-CD, STEC-CS, and STEC-ZY,
where we differentiate between different granularities on 𝑠 (e.g.,
country-level, treaty-zone-level of multiple countries) and 𝑡 (e.g.,
day, season).

2.3.1 Basic models. The three models are illustrated as follows:
Memory: The spatial-temporal embodied carbon of the memory

(𝐸𝐶𝑀 (𝑠, 𝑡)) contains two components: (1) the carbon released by
the electricity consumed during the process of manufacturing the
memory. This is calculated by multiplying the electricity consump-
tion per unit of size (𝐸𝑃𝑆) by the carbon intensity of a power grid
(𝐶𝐼 (𝑠, 𝑡)); and (2) the carbon released independent of electricity,
such as raw materials, distribution, and packaging, denoted as 𝛼𝑀 .
The calculation of 𝛼𝑀 involves yearly 𝐸𝐶𝑀 , 𝐸𝑃𝑆 , and 𝐵𝐷 (bit den-
sity), along with the annual carbon intensity 𝐶𝐼 , all of which can
be obtained from the reports. This relationship is depicted in Eq. 2.

𝛼𝑀 = 𝐸𝐶𝑀 −𝐶𝐼 × 𝐸𝑃𝑆 ÷ 𝐵𝐷 (2)

As such, 𝐸𝐶𝑀 (𝑠, 𝑡) is calculated using Eq. 3.

𝐸𝐶𝑀 (𝑠, 𝑡) = 𝐶𝐼 (𝑠, 𝑡) × 𝐸𝑃𝑆 ÷ 𝐵𝐷 + 𝛼𝑀 (3)
Storage: The spatial-temporal embodied carbon of the storage

(𝐸𝐶𝑆 (𝑠, 𝑡)) contains two components: (1) the carbon emissions from
the process of manufacturing the storage, which is determined
by multiplying the electricity consumed during the manufactur-
ing process (𝐸𝑃𝐺) by the annual carbon intensity 𝐶𝐼 ; and (2) the
carbon released independent of electricity such as raw materials,
distribution, and packaging, denoted as 𝛼𝑆 . 𝛼𝑆 can be found in the
industry reports. 𝐸𝑃𝐺 can be calculated through the annual 𝐸𝐶𝑆 in
the reports and the annual carbon intensity 𝐶𝐼 , which is shown in
Eq. 4.

𝐸𝑃𝐺 = (𝐸𝐶𝑆 − 𝛼𝑆 )/𝐶𝐼 (4)
As such, 𝐸𝐶𝑆 (𝑠, 𝑡) can be calculated using Eq. 5.

𝐸𝐶𝑆 (𝑠, 𝑡) = 𝐶𝐼 (𝑠, 𝑡) × 𝐸𝑃𝐺 + 𝛼𝑆 (5)

Processor: The spatial-temporal embodied carbon of processor
(𝐸𝑀𝑃 (𝑠, 𝑡)) contains three components as shown in Eq. 6: (1) the
carbon released by the electricity consumed during manufacturing,
which is calculated by multiplying (𝐸𝑃𝑆) by 𝐶𝐼 (𝑠, 𝑡); (2) the carbon
released by raw materials (𝑀𝑃𝑆); and (3) the carbon released by gas
(𝐺𝑃𝑆). All of the parameters are shown in Appendix A.1.

𝐸𝐶𝑃 (𝑠, 𝑡) = 𝐺𝑃𝑆 +𝑀𝑃𝑆 +𝐶𝐼 (𝑠, 𝑡) × 𝐸𝑃𝑆 (6)

2.3.2 STEC-CD, STEC-CS, and STEC-ZY. In the STEC-CD model,
𝑡 ∈ {𝑑𝑎𝑦𝑖 ,∀𝑖 ∈ [1, 365] }, 𝑠 ∈ {𝑐𝑜𝑢𝑛𝑡𝑟𝑦}. {𝑐𝑜𝑢𝑛𝑡𝑟𝑦} is the set of all
of the CPU production places, e.g., China, Korea, USA, etc.

In the STEC-CS model, 𝑡 ∈ {𝑠𝑝𝑟𝑖𝑛𝑔, 𝑠𝑢𝑚𝑚𝑒𝑟, 𝑓 𝑎𝑙𝑙,𝑤𝑖𝑛𝑡𝑒𝑟 }, 𝑠 ∈
{𝑐𝑜𝑢𝑛𝑡𝑟𝑦}. {𝑐𝑜𝑢𝑛𝑡𝑟𝑦} is the set of all of the CPU production places.

In the STEC-ZY model, 𝑡 ∈ {𝑦𝑒𝑎𝑟 }, 𝑠 ∈ {𝑧𝑜𝑛𝑒}. {𝑦𝑒𝑎𝑟 } is the
set of production years. {𝑧𝑜𝑛𝑒} is the set of the treaty-zone-level
of multiple countries with energy treaties, e.g., ASEAN, EU, etc.
Intrinsically, ACT can be considered an STEC-GY model.

2.4 Evaluation
In this section, we compare STEC models with STEC-GY (the ACT
model), and we compare them in terms of three types of hardware:
CPU, Memory, and Storage.

Table 7 (a) shows the data sources for the carbon emissions of
electricity; and (b) shows the data sources for the carbon emis-
sions of other components. From the temporal perspective, we
have yearly-level, monthly-level, and daily-level. From the spatial
perspective, we have two zones (EU and ASEAN) and countries.
Note that we study the regions with semiconductor industry. We
select the top regions according to their scales, i.e., the annual semi-
conductor production. This is the total production of the leading
semiconductor companies in the region; and according to the rank
in [42], the top companies are Samsung, Intel, TSMC, SK Hynix, Mi-
cron, Seagate. The result is {Taiwan, the USA, China, South Korea,
Ireland, Italy}. ElectricityMaps lists data for Taiwan, the USA, South
Korea, Ireland, and Italy. Data for China were drawn from EMBIR.
The data granularity in ElectricityMaps is daily and that in EMBIR
is monthly. We evaluate our STEC-CD model using five regions
{Taiwan, USA, South Korea, Ireland, and Italy} and STEC-CS using
six regions {Taiwan, USA, China, South Korea, Ireland, Italy}.
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Table 2: The comparison between STEC-CD and STEC-GY on
CPU (7nm), memory (10nm DDR4), SSD [36], and HDD [35].

Hardware Ave. Difference (%) Max. Difference (%)
CPU 11.29 42.05
SSD 13.22 49.24
HDD 8.52 31.75

Memory 10.50 39.12
Average 10.88 40.54
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Figure 1: The comparison between STEC-CD and STEC-GY.

2.4.1 Evaluation of STEC-CD. Table 2 presents a comparison be-
tween STEC-CD and STEC-GY (baseline). We find the following.
(1) The difference in performance between STEC-CD and STEC-GY
is significant. Specifically, the average difference is 10.88%, and
the average maximum difference is 40.54%. (2) The SSD [36] has a
greater difference than the HDD [35] (13.22% vs. 8.52%). The reason
for this is that SSD is manufactured using a more advanced pro-
cess than HDD, resulting in the consumption of more electricity
and leading to more dynamics. Therefore, advanced processes will
amplify the difference in embodied carbon. (3) The proportion of
variable renewable energy sources (VRE) in electricity can affect
the dynamics of the embodied carbon. For example, there is more
VRE in the grids of Ireland (31.45%) than in the grids of Taiwan
(6.44%). This brings more dynamics for the embodied carbon of the
memory manufactured in Ireland (with a variance of 63.63) than in
Taiwan (with a variance of 2.74), as shown in Fig. 1.

2.4.2 Evaluation of STEC-CS. Table 3 compares STEC-CS and
STEC-GY (baseline) in the six major IC manufacturing regions.
Fig. 2 visually shows the embodied carbon (𝑔/𝑐𝑚2) output by the
STEC-CD and STEC-GY in the CPU in Ireland and Italy from 2019
to 2022. We find the following. (1) The difference is significant
(the average difference: 13.33%, the average maximum difference:
27.50%). For each type of hardware, the average difference is 13.69%
(CPU), 16.51% (SSD), 10.36% (HDD), and 12.74% (Memory). (2) The
embodied carbon has seasonal patterns in some regions. As Fig.
2 shows, the embodied carbon is higher in summer and lower in
winter in Ireland, while, the opposite trend is true in Italy. The
pattern depends on the climate and on the composition of energy
sources in the grids of a region. Specifically, wind power dominates
in the variable renewable energy sources in Ireland, while, solar

Table 3: The comparison between STEC-CS and STEC-GY on
CPU (7nm), memorgy (10nmDDR4), SSD [36], and HDD [35].

Hardware Ave. Difference (%) Max. Difference (%)
CPU 13.69 27.32
SSD 16.51 34.46
HDD 10.36 21.63

Memory 12.74 26.60
Average 13.33 27.50

Table 4: The comparison between STEC-ZY and STEC-GY on
CPU (7nm), memory (10nm DDR4), SSD [36], and HDD [35].

Hardware STEC-ZY STEC-GY Ave.
difference

(%)

Max.
difference

(%)
Emb.carbon

in EU
Emb.carbon
in ASEAN Emb.carbon

CPU 1266.88 1848.10 1557.49 18.65 19.99
SSD 4.77 7.41 6.09 21.64 23.19
HDD 4.36 5.81 5.08 14.28 15.3

Memory 70.72 49.72 60.22 17.42 18.67
Average / / / 18.00 19.29

power dominates in the variable renewable energy sources in Italy.
In addition, wind is abundant in the winter in Ireland, while solar
power is abundant in the summer in Italy. These together lead to
different patterns in the two countries.
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Figure 2: The comparison between STEC-CS and STEC-GY.

2.4.3 Evaluation of STEC-ZY. Table 4 presents a comparison be-
tween STEC-ZY and STEC-GY (baseline) in the two treaty zones
(ASEAN and EU). Overall, the average difference is 18.00%, and
the average maximum difference is 19.29%. We find that (1) the
STEC-CD/CS/ZY models all have significant differences with the
STEC-GY (baseline) model. (2) Finer granularity can bring more
dynamics. For example, the average maximum difference between
STEC-CD and STEC-GY is greater than that between STEC-CS and
STEC-GY, STEC-ZY and STEC-GY (40.54% compared to 27.50%,
40.54% compared to 19.29%).

2.4.4 A Case on Storm Malik Effect. Fig. 3 visually presents dynam-
ics in the embodied carbon of the CPU and the energy sources in
grids in Ireland during the period of Storm Malik. For example, the
embodied carbon reaches the maximum value (1276.87 𝑔/𝑐𝑚2) at 2
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a.m. on the day before Storm Malik arrives. When Storm Malik ar-
rives, the embodied carbon decreases rapidly, reaching a minimum
(894.01 𝑔/𝑐𝑚2) at 5 p.m. The reason for this decline is that wind
power increases rapidly under the influence of the storm. We can
find that the embodied carbon has more variance in hourly time
scale affected by weather.
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Figure 3: A case on storm Malik effect in Ireland.

3 STEC ACCOUNTING FOR APPLICATIONS
Embodied Carbon Accounting for Computer Applications:
Nowadays, there are studies on embodied carbon accounting and
optimization on computer applications, such as CarbonMin for
LLM inference [7], LLMCarbon for LLM training [13], Carbond for
operating systems [33], and others. The embodied carbon of these
applications is accounted for by the hardware that they require,
which differs across applications to meet their performance require-
ments. For example, LLMCarbon performs carbon accounting on
LLM training and requires more high-end memory and storage
(e.g., 64×256GB Mircron 18nm, 64×32TB Samsung 20nm), whereas
CarbonMin performs LLM inference and requires ordinary memory
and storage (e.g., 900GB memory, 6000GB SSD).

Existing studies have estimated the carbon of specific hardware
from ESG reports, which have been selected an ad hoc manner.
Due to space limitations, in this paper we examine the embodied
carbon accounting of two applications, LLM inference (CarbonMin)
and LLM training (LLMCarbon) under the STEC-CS model, i.e., we
recalculate CarbonMin and LLMCarbon using the STEC-CS model.
Details of the calculation are given in Appendix A.3.

Results: The main criterion for CarbonMin is embodied carbon
(gram) per 1000 inference requests (specifically, ChatGPT-3 infer-
ence). The main criterion of LLMCarbon is the embodied carbon
(ton) of the training of a large language model (specifically, the
XLM model [9] with 570M parameters).

The hardware of CarbonMin and LLMCarbon is listed in Table 5
(a) and Table 6 (a). The embodied carbon is listed in Table 5 (b) and
Table 6 (b), respectively. We develop algorithms to find the location
and time period with the minimum amount of embodied carbon to
manufacture the hardware, as well as with the 20th percentile, me-
dian, 80 percentile, and maximum amount (see Table 5 (b) and Table
6 (b)). We observe that STEC-CS leads to great differences for the
LLM inference. Specifically, the embodied carbon of the ChatGPT-3
inference accounted for by CarbonMin is the 0.31g/1K inference.

Table 5: The comparison between CarbonMin and STEC.

Table (a) Hardware Number/Size Technology Nodes Die Size
CPU 1 7nm 74 mm2
GPU 8 7nm 826 mm2

Memory 900GB / /
Storage 6000GB / /

Table (b) Embodied carbon (g)/1k inference requests
Min. 20th percentile Median 80th percentile Max.

CarbonMin 0.31
STEC-CS 0.21 0.25 0.28 0.33 0.35
Dif. (%) 32.26% 19.35% 9.68% 6.45% 12.90%

Table 6: The comparison between LLMCarbon and STEC.

Table (a) Hardware Description Unit Number
GPU V100 TSMC 12nm 815 mm2 512
CPU TSMC 16nm 147 mm2 64
SSD Samsung 20nm 32TB 64

DRAM Micron 18nm 256GB 64
Other / / 64

Table (b) Embodied carbon (t)
Min. 20th percentile Median 80th percentile Max.

LLMCarbon 0.63
STEC-CS 0.61 0.62 0.64 0.66 0.67
Dif. (%) 3.17% 1.59% 1.59% 4.76% 6.35%

Under STEC-CS, the embodied carbon can be the 0.21g/1K inference
(or the 0.25g/1K inference under the 20th percentile), a difference of
32.26% (or 19.35%). As a comparison, STEC-CS leads to small differ-
ences for LLM training, e.g., the differences between LLMCarbon
and STEC-CS is 3.17% (or 1.59% under the 20th percentile). This is
because the LLM inference requires ordinary hardware with great
spatial-temporal choices in manufacturing, whereas the hardware
for LLM training, to the best of our knowledge, is more restricted.

4 CONCLUSION AND DISCUSSIONS
This paper observes that for the same product class of computer
hardware, e.g., 28nm CPU, the carbon emissions of its product
instances (e.g., made in the summer in Taiwan or in the winter
in Ireland) can differ. We present new spatial-temporal embodied
carbon (STEC) models by extending the embodied carbon model in
the spatial-temporal dimension. We evaluated STEC with a state-of-
the-art embodied carbon accounting model, and also applied STEC
for embodied carbon accounting for two computer applications.
The results showed that significant differences can exist; in other
words, neglecting the spatial and temporal factors may lead to
non-trivial inaccuracies in embodied carbon accounting.

We would comment that STEC also has inaccuracies. Inaccu-
racy comes from using averaged/aggregated data in various aspects.
There is an industry value-chain, and our calculation of the carbon
emissions in the upstream industry value-chain uses industry av-
erages. As one example, when we estimate the embodied carbon
of processors, we use the value of 500𝑔/𝑐𝑚2 for MPS (material per
size). This is the carbon released from upstream raw materials, and
this is an average value which has inaccuracies.
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A APPENDIX
To enable further investigation into the spatial-temporal aspects
of embodied carbon, we provide detailed sources of data for the
STEC models and describe the configurable parameters within the
proposed STEC models. Finally, we present detailed calculations of
the STEC models of applications.

A.1 Data sources for STEC Models
Table 7 presents the data sources for STECmodels. All of the data are
public. Table 7(a) shows the sources for the data on electricity data,
including the carbon intensity (yearly and monthly) and energy
sources (hourly). Table 7(b) shows the sources for the hardware-
related parameters.
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Table 7: The Data Sources for the STEC models

(a) Data Sources for the Carbon Emissions of Electricity Energy
EU ASEAN China Taiwan South Korea USA Ireland Italy Source

Yearly [2019-2022] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Our World in Data [19]
Monthly [2019-2022] - - ✓ ✓ ✓ ✓ ✓ ✓ EMBIR [11]

Daily [2021] - - - ✓ ✓ ✓ ✓ ✓ ENTSOE [12] ElectricityMaps [27]
(b) Data Sources for Other Types of Carbon Emission

Parameter Description Unit Source
EPS Electricity consumed per die Size kWh/cm2 Research paper [3]
GPS Carbon emission from Gas used per die Size g/cm2 Research paper [3]
MPS Carbon emission from Material used per die Size g/cm2 Industrial research reports [5]
BD Bit density for memory GB/cm2 Industrial research reports [8]

EPG Electricity consumed per GB kWh/GB Industrial environmental
reports of manufacturers [18, 37]

Table 8: Carbon intensity of electricity in six major IC pro-
duction regions in 2022.

Countriy/Region
Carbon intensity of electricity

(g/kWh)
(Date Sources: Our World in Data [19])

Taiwan 561
China 531

South Korea 436
United States 367

Italy 372
Ireland 346

Table 9: Carbon emission factors (g/kWh) for different energy
sources

Energy sources Direct Emission Factors
(Data Source: Research Paper [25])

Oil 406
Coal 760
Natural gas 370
Nuclear 0
Wind 0
Solar 0
Hydro 0
Geothermal 0
Biomass 0
Other 575

A.2 Embodied Carbon Parameters
Table 8 presents the annual average carbon intensity of electricity
in six major IC production regions in 2022. Due to space limitations,
we do not present monthly and daily data here. We make all the
organized data that we have collected available in our public codes.
Table 9 summarizes the direct carbon emissions factors for each
energy source. Tables 10, 11, and 12 summarize the related embodied
carbon data for processors, memory, and storage, respectively.

Table 10: Embodied carbon parameters in semiconductor
manufacturing

Process Node
EPS (kWh/cm2)
(Data Source:

Research Paper [3])

GPS (g/cm2)
(Data Source:

Research Paper [3])

MPS (g/cm2)
(Data Source:

Environmental Report [5])
28 0.9 100 500
20 1.2 110 500
14 1.2 125 500
10 1.475 150 500
7 1.52 200 500

7-EUV 2.15 200 500
7-EUV-DP 2.15 200 500

5nm 2.75 225 500
3nm 2.75 275 500

Table 11: Embodied carbon, bit density, and carbon emissions
from electricity consumption of memory [8, 14].

Technology Embodied Carbon
(g/GB)

Bit Density
(G/mm2)

Carbon Emissions from
Electricity Consumption

(g/GB)
30nm LPDDR3 230 0.06 67.50
20nm LPDDR3 184 0.11 51.43
10nm DDR4 65 0.19 35.74
LPDDR4 48 0.17 39.04

A.3 The STEC Model of Applications
The embodied carbon of applications (𝐸𝐶𝑎𝑝𝑝 ) run on computing
systems can be calculated using 𝐸𝐶𝑎𝑝𝑝 = 𝐸𝐶𝑠𝑦𝑠 ×𝑇𝑆 × 𝑅𝑆 , where
𝐸𝐶𝑠𝑦𝑠 is the total embodied carbon of the system that the applica-
tion run on, 𝑇𝑆 is the time-share (the fraction of the total lifetime
of the system used by the application), and 𝑅𝑆 is the resource-share
(the fraction of the total available hardware resources reserved by
the application) [33]. The STEC models of applications differ from
the previous model in that 𝐸𝐶𝑠𝑦𝑠 is not simply an average value
accounted by ACT, but rather a range determined by the hardware
range (HR) with spatial-temporal dynamics that make up the sys-
tem. The suppliers of computing systems usually provide the basic
𝐻𝑅, such as Microsoft [2] and AWS [1]. Therefore, 𝐸𝐶𝑠𝑦𝑠 can be
calculated as follows:
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Table 12: The summary of the embodied carbon of storage from product reports [34]

Types Technology Embodied Carbon (g/GB) Manufacturing Energy Carbon (g/GB) Other Carbon (g/GB)

Enterprise SSD

Nytro 3530 6.27 4.25 2.02
Nytro 1551 3.91 1.53 2.38
Nytro 3331 5.48 0.92 4.56
Nytro 3332 2.42 0.78 1.64

Consumer SSD BarraCuda 120 SSD 26.28 23.85 2.43

Enterprise HDD

EXOS X20 0.88 0.36 0.52
EXOS X18 0.88 0.39 0.49
Exos 2X14 1.28 0.51 0.78
Exos 7E8 5.28 2.34 2.94
Exos 5E8 2.54 1.14 1.40

Exos 10E2400 10.75 6.94 3.81
EXOS 15E900 21.62 10.65 10.97
Exos X16 1.46 0.77 0.69
Exos X12 1.32 0.53 0.79

Consumer HDD

BarraCuda 3.5 9.40 4.84 4.56
BarraCuda 4.25 2.08 2.17

BarraCuda Pro 2.62 1.22 1.40
FireCuda 5.16 3.81 1.35
IronWolf 5.28 2.22 3.06

IronWolf Pro 3.80 1.33 2.47
Skyhawk 3 TB 9.85 2.17 7.68

Skyhawk Surveillance HDD 4.37 1.54 2.83
Skyhawk 6 TB 4.18 1.09 3.09
Video 3.5 HDD 8.20 3.22 4.98

Video 3.5 HDD (Pipeline HDD) 9.54 3.23 6.31

External HDD ULTRA TOUCH 5.54 3.40 2.13
Rugged Mini 4.22 2.98 1.25

𝐸𝐶𝑠𝑦𝑠 = 𝑆𝑇𝐸𝐶 (𝐻𝑅𝑠𝑦𝑠 ) =
∑︁

𝑖∈𝐻𝑅𝑠𝑦𝑠

𝐸𝐶𝑖 (𝑠𝑖 , 𝑡𝑖 ) + 𝑁𝑠𝑦𝑠 × 𝑃 (7)

where 𝐸𝐶𝑖 (𝑠𝑖 , 𝑡𝑖 ) is the embodied carbon of hardware 𝑖 with
production location 𝑠𝑖 and time 𝑡𝑖 , 𝑃 is the packaging footprint
(0.15kg [14]), and 𝑁𝑠𝑦𝑠 is the number of the hardware.

A.3.1 The Carbon Footprint of LLM Inference. CarbonMin [7] is a
model for estimating and reducing the carbon footprint of LLMs
inference. CarbonMin estimates the carbon footprint of ChatGPT
inference on Azure ND A100 v4-series instances [2]. We reestimate
the embodied carbon based on the data in CarbonMin. Specifically,
we assume that the overall lifetime of the hardware is 3 years,
and that the 𝑅𝑆 is 1. According to the experimental result of Car-
bonMin, the average computation per inference request is 2.07
GPU-sec/request. Thus, the 𝑇𝑆 of one request is 2.07 sec/3 years.
Then, the embodied carbon of one ChatGPT-3 inference can be
obtained by 𝐸𝐶𝑖𝑛𝑓 𝑒𝑟 = 𝐸𝐶𝑠𝑦𝑠 ×𝑇𝑆 × 𝑅𝑆 = 𝐸𝐶𝑠𝑦𝑠 × 2.07𝑠𝑒𝑐/3𝑦𝑒𝑎𝑟𝑠 .
Table 5 (a) presents the 𝐻𝑅 of the Azure ND A100 v4-series used
in CarbonMin. The 𝐻𝑅 of CPU and GPU are restricted to TSMC in
Taiwan, while the 𝐻𝑅 of storage and memory contains six major
IC-producing regions (see Table 8).

A.3.2 The Carbon Footprint of LLM Training. We reestimate the
embodied carbon of training the LLM [9] using STEC models based
on the data in LLMCarbon. Specifically, the training duration of the
LLM is 20.4 days, the lifetime of hardware is 5 years, and 𝑅𝑆 is 1.
Consequently, the embodied carbon can be obtained by 𝐸𝐶𝑡𝑟𝑎𝑖𝑛 =

Table 13: The summary of acronyms.

Acronyms Descriptions
CPU Central Processing Unit
GPU Graphics processing unit
SSD Solid-state drive
HDD Hard disk drive
DRAM Dynamic random access memory
STEC Spatial-Temporal Embodied Carbon

STEC-CD Spatial-Temporal Embodied Carbon in Country and Day level
STEC-CS Spatial-Temporal Embodied Carbon in Country and Season level
STEC-GY Spatial-Temporal Embodied Carbon in Gobal and Year level
STEC-ZY Spatial-Temporal Embodied Carbon in Zone and Year level

GPS Gas per size
EPS Energy per size
MPS Material per size
CI Carbon intensity

𝐸𝐶𝑠𝑦𝑠 ×𝑇𝑆×𝑅𝑆 = 𝐸𝐶𝑠𝑦𝑠 ×20.4𝑑𝑎𝑦𝑠/5𝑦𝑒𝑎𝑟𝑠 . Table 6 (a) presents the
𝐻𝑅 in LLMCarbon, where the 𝐻𝑅 of each component is restricted
to a specific type. Therefore, the dynamics of𝐻𝑅 mainly come from
production time.

A.4 The summary of acronyms
Here, we summarize the acronyms in Table 13.

471


	Abstract
	1 Introduction
	2 Spatial-Temporal Embodied Carbon (STEC) Models
	2.1 A Framework for STEC Models
	2.2 Spatial-Temporal Carbon Intensity
	2.3 Spatial-Temporal Embodied Carbon Models
	2.4 Evaluation

	3 STEC Accounting for Applications
	4 Conclusion and Discussions
	Acknowledgments
	References
	A Appendix
	A.1 Data sources for STEC Models
	A.2 Embodied Carbon Parameters
	A.3 The STEC Model of Applications
	A.4 The summary of acronyms


