
Two Dimensional Router: Design and Implementation

Shu Yang∗ Mingwei Xu∗ Dan Wang† Dan Li∗ Jianping Wu∗
∗Tsinghua University †The Hong Kong Polytechnic University

Abstract
Packet classification has attracted research attentions
along with the increasing demands for more flexible ser-
vices in the Internet today. Among different design ap-
proaches, hardware based classification is attractive as
it can achieve very fast performance. We present our
design and implementation of a two dimensional router
(TwoD router). It makes forwarding decisions, in hard-
ware level, based on both destination and source ad-
dresses. This can fundamentally increase routing seman-
tics to support services beyond destination-based rout-
ing. Our TwoD router is also motivated by our effort
towards developing two dimensional IP routing.

With one more dimension, the forwarding table grows
explosively. Theoretically, the storage footprint in-
creases fromO(N) (the number of destination prefixes)
to O(N2). It is no longer possible to fit such forwarding
table into TCAM, the de facto router standard. In this pa-
per, we propose a new forwarding table structure through
a neat separation of TCAM and SRAM where we harvest
the speed of TCAM and the storage/flexibility of SRAM.
Under this structure, we first develop schemes to main-
tain forwarding correctness. We then develop algorithms
to further compress TCAM and SRAM storage. With a
pipelining scheme, we show that the lookup speed of our
TwoD router is the same to the conventional routers. We
also develop algorithms that minimize memory rewrites
during update operations. We evaluate our design with
an implementation on a commercial router, Bit-Engine
12004, using real data sets to support two practical ser-
vices, policy routing and load balancing of CERNET2.
Our design does not need new hardware. The evaluation
results show that our TwoD router can be practical for
ISPs like CERNET2.

1 Introduction
To provide reachability service, conventional Internet
routers classify packets based on destination address.
Such one dimensional router is adequate for destination-

based packet delivery. Nevertheless, there are increas-
ing demands for such services as policy routing, security,
traffic engineering, quality of service, etc. The paucity of
routing semantics makes innovation in developing higher
level services more difficult or restricted to limited scope,
e.g., on edge routers only.

There are many studies on packet classification,
among which 5-tuple (destination and source addresses,
destination and source ports, transport layer protocol)
[17] and 2-tuple (destination and source addresses)
[5][38][22] have attracted most attention. Many studies
are software-based solutions. It has limitation to scale to
network wide deployment and support services with high
performance requirements.

In this paper, we develop routers that have the 2-tuple
packet classification in hardware level. More specifi-
cally, the forwarding decision is based not only on the
destination address, but also on the source address. We
choose to develop such router because 1) 2-tuple packet
classification is easier to start; 2) destination address pro-
vides reachability information, and source address pro-
vides identity information. We believe that destination
and source addresses have a higher priority in routing
semantics. We show that our TwoD router achieves the
same lookup speed as conventional routers. We further
show examples, where TwoD router can be used to easily
support services as policy routing and load balancing.

This router is also motivated by our on-going work on
deploying Two Dimensional-IP (TwoD-IP) routing for
China Education and Research Network 2 (CERNET2)
[45], which is the largest IPv6 network worldwide. With
TwoD-IP routing, we can easily deploy policy routing,
security services, traffic engineering, which have been
looking forwarded by CERNET2 for a long time [46].

There are many challenges to make this router real.
For hardware-based forwarding, the de facto standard of
the routers is TCAM-based forwarding. It achieves fast
and constant lookup time. TCAM, however, has low ca-
pacity, large power consumption and high cost [26]. The

largest TCAM chip in market can only accommodate 1
million IPv4 prefixes [27].

When designing a TwoD router, the immediate change
it brings about is the forwarding table size. More specif-
ically, the Forwarding Information Base (FIB) stored
in TCAM will tremendously increase. This is because
a straightforward implementation, i.e., using the tradi-
tional Cisco Access Control List (ACL) structure (we
call it ACL-like structure thereafter), means that the
FIB table changes from{destination} → {action} to
{(destination, source)} → {action}. Let N be the num-
ber of destination prefixes andM be the number of source
prefixes. In the worst case, the number of TCAM entries
can beO(N×M). This structure increases TCAM size
by an order and a practical consequence is that TCAM
cannot hold entries of such scale. Note that the num-
ber of destination prefixes in current backbone routers
is 400,000 [1]. If a TwoD router is implemented by an
ACL-like structure, it is beyond the TCAM storage even
with a few tens of source prefixes.

In this paper, we design a new forwarding table struc-
ture called FIST (FIB Structure forTwoD-IP). The key
of FIST is a neat separation of TCAM and SRAM.
SRAM has larger memory and it is 10 times cheaper and
consumes 100 times less energy than TCAM. In FIST,
TCAM contributes fast lookup and SRAM contributes a
large memory space for nexthop storage. This separation
reduces the TCAM storage fromO(N×M) to O(N+M).

We solve many challenges under this new FIST struc-
ture. First, a straight-forward implementation of this
separation will leave empty cells in SRAM table. We
develop a scheme to saturate the table and prove the
correctness of FIST in handling forwarding operations.
Second, we develop algorithms for further TCAM and
SRAM storage compression. Especially, SRAM is flexi-
ble and we develop deduplication schemes that substan-
tially reduce SRAM footprint. Third, we develop effi-
cient pipeline schemes for nexthop lookup operation that
achieves the same performance to conventional routers.
We further propose a color tree structure to organize the
entries and develop algorithms to minimize the number
of rewrites on SRAM in an update operation.

Besides the architecture choice and algorithmic de-
signs, we tune the TwoD router with important im-
plementation designs. More specifically, we present a
non-homogeneous FIST structure, a special treatment
for default source prefix, and some important parameter
choices. These further improve TwoD router in practice.

We implement the FIST on a commercial router, Bit-
Engine 12004. We only need to redesign the hardware
logic, and we do not need new hardware. We carry out
comprehensive evaluations using the real topology, FIB
prefix and traffic data from CERNET2, in two practical
scenarios, policy routing and load balancing. The results

show that our TwoD router can achieve linecard speeds,
with very small TCAM and SRAM footprint.

The paper is organized as follows: We present back-
ground and related work in Section 2. Section 3 is de-
voted to TwoD router storage design. We introduce the
FIST structure and we prove its correctness for the for-
warding operation. We further present our TCAM and
SRAM compression schemes. Section 4 is devoted to
TwoD router operation designs: the nexthop lookup and
update operations. We present our implementation de-
signs in Section 5, which improve TwoD router in prac-
tical situations. Section 6 show our implementation on a
commercial router. We evaluate the TwoD router in Sec-
tion 7. In Section 8 we discuss some current limitations.
Finally, we conclude our paper in Section 9.

2 Background and Related Work
We first present some background on hardware packet
processing in a router. We show a common implemen-
tation in Fig. 1. After a packet arrives on a router, it
will traverse the datapath on a linecard, which include
ACL (Access Control List), PBR (Policy Based Routing)
and finally FIB. ACL and PBR are used for different lev-
els of packet classification, and mostly implemented at
powerful edge routers. In some implementations, ACL
and PBR are merged into one module [11] and some
simple routers only have FIB. The key that there are
so many separated modules instead of one FIB is that
we do need packet classification, yet the complexity of
packet classification makes it difficult for FIB to support
them directly. Therefore, the FIB is made up with only
destination-based prefixes, and ACL and PBR contains
necessary classification rules. If a packet matches the
rules in ACL or PBR, they will be filtered (or handed in
to control plane for further processing) and forwarded.
Otherwise, it goes to the FIB for destination-based for-
warding. The conventional FIB structure is shown in Fig.
2(a). The prefixes are stored in TCAM and the nexthop
actions are stored in SRAM.

Clearly, if we may build more routing semantics into
FIB itself, it makes the router logically more sound, and
possibly less messier of the rules in the ACL/PBR mod-
ules. In this paper, we show a first step by including
source address (which we think contains the richest in-
formation besides destination address) in the FIB.

��� ���
��	
��

	
�
���

Line Card

��������

�������

��������

�������

��������

�������

Figure 1: The datapath that packets traverse

Packet classification is an important topic throughout
the Internet history [37][13][40][41]. For software-based
solutions, the simplest solution is linear search. Others

2

�������

�������

�������

�������

. .

. .

. .

� !"#$% &'"($)

���*

���*

���*
.

.

.

+," -. /(!

(a) FIB

0121213

0121214

0121210

0121212

. .

. .

. .

56789:; <=8>:?

000@

00@@

@@@@
.

.

.

@@@@

AB8 CD6E>7

FGHI

JKHI

@@@@

002@

002@

020@
.

.

.

JD= CD6E>7

(b) ACL-like
Figure 2: Conventional FIB and ACL-like structures

can be classified into decision tree, tuple search and de-
composition based solutions. Decision tree techniques
[11][34] use tree structure to prune the search space and
find a single rule. In [42], a novel structure for cutting the
address space is proposed to efficiently construct a tree.
Tuple search techniques [36][35][5] exploit that the num-
ber of unique prefix length is much smaller than prefix
number. These techniques thus set up hashing structure
in each space partitioned based on the prefix length. De-
composition techniques [19][12][43] break the classifi-
cation process into several parallel searches on single di-
mensions. In [19], each dimension is matched separately
and returns a bit vector, that will be ANDed together. In
[43], each single dimension is searched in SRAM using a
novel encoding mechanism, and concatenation of the en-
coded results in single dimensions is searched in TCAM.
In [39], optimized data structures such as Bloom Filter
Arrays are used to improve the lookup efficiency. Soft-
ware based solutions suffer from performance and are
less popular than hardware-based solutions.

For hardware (TCAM) based solutions, they can
achieve constant lookup time, yet they are limited by
the TCAM capacity [27][26]. Various compression or
aggregation schemes have been proposed [21][38][25].
Most studies are based on the ACL-like structure. For ex-
ample, an encoding algorithm is proposed to reduce the
width of TCAM [20]. In [25], a non-prefix approach to
compress TCAM is studied. Intrinsically, conventional
FIB structure suffers from multiplicative effect [43], and
this leads to storage explosion [40][39]. For example,
a straightforward TwoD router design using ACL-like
structure is in Fig. 2(b). We observe that conventional
FIB structure leads to a ‘fat’ TCAM and a ‘thin’ SRAM.

There are studies proposing more compact structures
to reduce the multiplicative effect [26]. For example,
in [27], it first lookups in a one dimensional table stor-
ing destination prefixes, and outputs a sub-table storing
source prefixes, where the actions can be found. Thus,
it can merge different sub-tables if they are the same.
In [28], SPliT is proposed which exploits SRAM. The
width of SRAM is extended such that each prefix points
to multiple actions. Thus sub-tables can be merged with-
out having their actions the same. It still does not intrin-
sically solve the multiplicative effect. There is a recent
work that focuses on reducing the power consumption
[23]. The TCAM size is not reduced. Our work specifi-
cally considers source address, which we believe can be

put in a higher priority in packet classification and we
fully eliminate the multiplicative effect in TCAM.

Our work is also inline with our on-going effort in de-
veloping Two Dimensional IP Routing for CERNET2
[46]. We have already deployed source functions on
some edge routers [44] to achieve better security. We
look forward for a network wide deployment of two di-
mensional routers. It makes design and development of
a wider range of services much easier with such support.

#
Destination
prefix

Source
prefix

Nexthop
action

1 **** **** 1.0.0.1
2 **** 101* 1.0.0.0
3 **** 11** 1.0.0.2
4 **** 01** 1.0.0.0
5 011* **** 1.0.0.2
6 110* **** 1.0.0.1
7 110* 111* 1.0.0.2
8 110* 101* 1.0.0.0
9 110* 100* 1.0.0.2
10 110* 11** 1.0.0.3

#
Destination
prefix

Source
prefix

Nexthop
action

11 110* 01** 1.0.0.2
12 101* **** 1.0.0.1
13 101* 101* 1.0.0.0
14 101* 11** 1.0.0.2
15 101* 01** 1.0.0.0
16 11** **** 1.0.0.2
17 11** 11** 1.0.0.3
18 10** **** 1.0.0.2
19 10** 100* 1.0.0.2
20 10** 11** 1.0.0.3

Table 1: A Two Dimensional Forwarding Example

3 FIST: the TwoD Routing Table

3.1 The TwoD Forwarding Rule
In conventional router, longest matched first (LMF)
rule is used to decide which destination prefix will be
matched. Here, we first present the definition of the for-
warding rules that is used in two dimensional routing.
Let d ands denote the destination and source addresses,
pd andps denote the destination and source prefixes ford
ands. Let a denote an action, more specifically, the nex-
thop corresponding topd andps. The storage structure of
a TwoD router is a table of entries of 3-tuple(pd, ps,a).

Definition 1. TwoD forwarding rule: Assume a packet
with s and d arrives at a router. The destination ad-
dress d should first match pd according to the LMF rule.
The source address s should then match ps according
to the LMF rule among all the 3-tuples given that pd is
matched. The packet is then forwarded to next hop a.

Our rule is defined based on the following princi-
ples: 1) conflict avoidance: it has been shown [22] that
if matching the source and destination addresses at the
same priority, LMF rule cannot decide. Even using the
first-matching-in-table tie breaker still results in loops,
and resolving the conflicts is NP-hard. 2) compatibility:
matching destination prefixes first emphasizes on con-
nectivity and is compatible with the current destination-
based architecture. If no source prefix is involved, our
rule naturally regresses to traditional forwarding rule.

3.2 FIST Basics and Correctness
3.2.1 FIST Basics

The key idea is a separation of TCAM and SRAM (see
Fig. 3). In this separation, the destination and source

3

LMNOP
QR

S
S
S
T

S
U
S
T

S
U
U
T

S
S
TT

U S V W X

YZZ[

ZZY[

ZYZ[

ZZ[[

ZY[[

Z

\

]

^

_

Source Table

TD-table

3

1

2

3

`

a

b

c

ad`d`d`

ad`d`da

ad`d`db

ad`d`dc

efghijk lmhfnopqf

2

1

2

3

2

Mapping Table

rstuvww

efghijk lmxfg

yz{|uv }~�v�

D
e
s
tin

a
tio

n

T
a
b
le

sv���~���z~

}~�v�

U
S
TT

�

2

02 2 2

0 0

Y������� 1 0 2

����

����

0

Figure 3: FIST: A forwarding table structure for TwoD-IP

prefixes are stored in TCAM, with an offset table point-
ing to the nexthop table stored in SRAM. As the nexthop
information is long, we have another mapping table so
that the main SRAM nexthop table only stores an index.

Formally, we design Forwarding Information Base
Structure for Two Dimensional Router (FIST). FIST has
two tables stored in TCAM and two tables stored in
SRAM. In TCAM, one table stores the destination pre-
fixes mapping to adestination index(we call the table
destination tablethereafter), and one table stores the
source prefixes mapping to asource index(we call the
tablesource tablethereafter). One table in SRAM is a
two dimensional table that stores the indexed nexthop of
each rule (we call itTD-tablethereafter) and we call each
cell in the arrayTD-cell. The destination and source in-
dexes in TCAM point to a TD-cell in SRAM. The other
table in SRAM stores the mapping relations of index val-
ues and next hops (we call itmapping-tablethereafter).

For each rule(pd, ps,a), pd is stored in the destination
table, andps is stored in the source table. For the(pd, ps)
cell in the TD-table, there stores an index value. From
this index value,a is stored in the corresponding position
of the mapping table. Note that the index value is much
shorter than the nexthop informationa.

We show an example in Fig. 3. For(110*,11**,
1.0.0.3), 110* is stored in the destination table and points
to destination index 2, that is associated with the 2nd row;
and 11** is stored in the source table and points to source
index 4, that is associated with the 4th column. In the TD-
table, the cell(110*,11**) that corresponds to 2nd row
and 4th column has index value 3. In the mapping table,
the next hop with index value 3 is 1.0.0.3.

With FIST, The FIST TCAM storage isO(N+M) bits.
The FIST SRAM storage isO(N×M) bits.

Clearly, FIST migrates the “multiplication” factor into
SRAM, rather than eliminate it. Such migration is based
on the following facts: 1) TCAM storage capacity is
much smaller than SRAM; 2) TCAM is 10-100 times
more expensive than SRAM; 3) TCAM consumes 100+
times more power than SRAM [21][9][4].

This migration does not slow down the forwarding
speed. The dominant factor for forwarding speed is
TCAM lookup, which FIST maintains. In FIST, there
are additional SRAM accesses. We discuss this shortly

and develop a pipelining scheme so that the router per-
formance is the same with that of conventional routers.

SRAM is more flexible than TCAM. We will show that
we can develop compression algorithms in SRAM to fur-
ther reduce TD-table storage. Before all these, we first
discuss FIST correctness.

3.2.2 FIST Correctness: FIST Establishment and
TD-cell Saturation

For the sake of conciseness, we only focus on TD-table
establishment. We establish a TD-table by inserting the
entries (e.g., Table 1) into an empty TD-table. Fig. 3
shows the TD-table after inserting the entries in Table. 1.

Note that after insertion, there will be empty cells.
Consider a packet with destination address 1011 and
source address 1111 arrives at the router. According to
TwoD forwarding rule, the destination prefix 101* will
first be matched. There are four rules (including the de-
fault rule) associated with the destination prefix 101*.
Source prefix 11** will then be matched. This leads
to rule (101*,11** ,1.0.0.2). With the new structure,
however, destination prefix 101* will be matched and
source prefix 111* will be matched. Unfortunately, cell
(101*,111*) (3rd row and 1st column) in TD-Table does
not have any index value. Intrinsically, for prefix pairs
(pd, ps), if there exists a source prefixp′s that is longer
thanps, cell (pd, p′s) rather than(pd, ps) will be matched.

Definition 2. Conflicted cell: For a TD-cell (pd, p′s), if
there is rule(pd, ps,a) where ps is a prefix p′s, and we
cannot find an action b such that(pd, p′s,b) itself is a
rule, we call(pd, p′s) a conflicted cell.

To address the problem, we develop algorithm TD-
Saturation() to saturate the conflicted cells with appro-
priate index value. As an example, using this algorithm,
the TD-table of Fig. 3 becomes Fig. 4(a).

Algorithm 1: TD-Saturation(R)

1 begin
// R is the set of TwoD forwarding rules

2 foreach pd, ps do
3 if 6 ∃(pd, ps,a) ∈ R then
4 S= {(p̄s, p̄d, ā) ∈ R|p̄d = pd}
5 S

′ = {(p̃s, p̃d, ã) ∈ S|p̃s is a prefix ofps}
6 Find (p̂s, p̂d, â) ∈ S′,∀(p′d, p

′
s,a

′) ∈ S′, p′s is a
prefix of p̂s

7 Fill the cell (pd, ps) with index value of ˆa.

Theorem 1. FIST (withTD-Saturation()) correctly han-
dles the rule defined in Definition 1.

Proof. If a packet matches a conflicted cell(pd, ps). S

contains all rules givenpd is matched. ˜ps is a prefix of
ps, thus the packet also matches rules inS

′. According
to Line 6,(p̂s, p̂d, â) is the longest match in source given
pd is matched. So(pd, ps) should be set with the index
of â according to Definition 1.

4

TD-
Saturation()

�
�
��
�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
��

� � � � �

 ¡¡¢

¡¡ ¢

¡ ¡¢

¡¡¢¢

¡ ¢¢

¡

£

¤

¥

¦

3

1

2

3

2

1

2

3

2

�
�
��

§

2

0

2

2 2 2

0 0

 ¨©ª«¬­® 1 0 22

2

1 0

2 2 2 2

2 1

3 2 2

3 2 2

(a) Apply TD-Saturation()

TCAM
Com pres s ion

¯
°
±²
³
µ́

¶
¶
¶
·

¶
¸
¶
·

¶
¸
¸
·

¶
¶
··

¸ ¶ ¹ º »

¼½½¾

½½¼¾

½¼½¾

½¾¾¾

½

¿

À

Á 3

1

2

2

1

3

2

¸
¶
··

Â

0

2

2 2 2

0 0

¼ÃÄÅÆÇÈÉ 1 0 22

2

1 0

2 2 2 2

2 1

3 2 2

(b) TCAM compression

TD-table
Com pres s ion

Ê
Ë
ÌÍ
Î
ÏÐ

Ñ
Ñ
Ñ
Ò

Ñ
Ó
Ñ
Ò

Ñ
Ó
Ó
Ò

Ñ
Ñ
ÒÒ

Ó Ñ Ô Õ Ö

×ØØÙ

ØØ×Ù

Ø×ØÙ

ØÙÙÙ

Ø

Ú

×

Û
3

1

2

2

3

Ó
Ñ
ÒÒ

Ü

0

2

2 2 2

×ÝÞßàáâã
1 0 22

2

1 0

2 2 2 2

3 2 2

(c) SRAM - optimal TD-table

0

1

0

1

2

2

0

1

2

2 2

0

1

2

äåæåçèé æåêçë ìíîæíèïåðñ æåêçë

2 0

2 2

3 2

Fix ed Bloc k

Deduplic ation

òóóô

óóòô

óòóô

óôôô

ó

õ

ò

ö

ò÷ëøåùçæ

úûüýþÿ�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
��

�
�
��

(d) SRAM - fixed block deduplication
Figure 4: FIST forwarding table storage

3.3 Forwarding Table Compression
The FIST structure provides us a framework that main-
tains the processing speed in TCAM and migrates the
storage to SRAM. Under this framework, we further
minimize both the TCAM tables and SRAM tables. We
first formally define equivalence class of TwoD tables.
As such, we can select a TwoD table in the equivalence
class that has the minimum size.

Let Pd, Ps be the set of destination, source prefixes re-
spectively. Letfr(pd), pd ∈ Pd (or fc(ps), ps ∈ Ps) be a
mapping function that maps a destination (or source) pre-
fix pd (or ps) to a destination index (or source index).
Let TD(x,y) denote the cell inxth row andyth column of
TD-table. We use a 5-tuple{Pd,Ps, fr(·), fc(·),TD(·, ·)}
to denote a TwoD forwarding table.

Definition 3. {P′
d,P

′
s, f ′r (·), f ′c(·),TD′(·, ·)} is equivalent

to {Pd,Ps, fr(·), fc(·),TD(·, ·)}, if for any destination ad-
dress d and source address s, d matches pd in Pd and p′d
in P′

d, s matches ps in Ps and p′s in P′
s according to LMF

rule, then TD(fr(pd), fc(ps)) = TD′(f ′r (p
′
d), f ′c(p

′
s)).

For a given forwarding table, our objective is to find
an equivalent forwarding table with the minimum storage
space. We discuss TCAM and SRAM separately.

3.3.1 TCAM Compression

For TCAM compression, there exists a dynamic pro-
gramming based algorithm Optimal Routing Table Con-
structor (ORTC) [10], which computes the minimized
TCAM for a set of prefixes in one dimensional router.

In our scenario, we apply ORTC separately to desti-
nation and source tables in TCAM. There are two prob-
lems. First, in a one dimensional routing table, a prefix
leads to a scaler (the nexthop), yet in a TwoD routing ta-
ble, a prefix leads to a vector. Second, we need to study
the quality of application of ORTC, i.e., we show that it
also leads to minimum storage in TCAM.

To map this vector to a scaler, we preprocess the vector
with a collision-resistant hash function. We use SHA-11.
ORTC is then applied.

1Here, with SHA-1, the collision probability is many orders of mag-
nitude smaller than hardware error rate [32].

Theorem 2. Applying ORTC twice on FIST, one on des-
tination table and the other on source table, leads to the
minimum combined TCAM storage.

Proof. We give the algorithm and proof in [47].

For example, after TCAM compression, the forward-
ing table in Fig. 4(a) becomes Fig. 4(b).

3.3.2 SRAM Compression

There are two tables in SRAM, where the TD-table dom-
inates. We thus focus on minimizing the TD-table.
Problem 1. Optimal TD-table Compression:Given
{Pd,Ps, fr(·), fc(·),TD(·, ·)}, find an equivalent forward-
ing table{P′

d,P
′
s, f ′r (·), f ′c(·),TD′(·, ·)} such that the stor-

age space in the TD-table, i.e.,|{ f ′r (p
′
d)|p

′
d ∈ P′

d}| ×
|{ f ′c(p

′
s)|p

′
s ∈ P′

s}| is minimized.

To find the optimal TD-table compression, we sim-
ply compress the TD-table by merging duplicated rows
(columns). In a one dimensional router, merging two en-
tries requires two destination prefixes to be aggregatable.
It is not necessary in FIST structure since we can merge
the rows (columns) as long as we make their destination
(source) indexes the same.

We call two rows (columns) in TD-tabledupli-

catedrows (columns) if
−−−−−−−−−→
TD(fr(pd), ·) =

−−−−−−−−−→
TD(fr(p

′
d), ·)

(
−−−−−−−−→
TD(·, fc(ps)) =

−−−−−−−−→
TD(·, fc(p

′
s))).

Theorem 3. Eliminating the duplicated rows and
columns computes the optimal TD-table compression.
Proof. We give the proof in [47].

For example, after eliminating duplicated rows
(columns), the table in Fig. 4(b) becomes Fig. 4(c).

Although we can find the optimal TD-table compres-
sion, rows that are entirely duplicated are rare, as such,
this alone has a very small compression ratio. Note that
SRAM is much more flexible than TCAM. We can take
this advantage to develop improvement schemes. We ob-
serve there are abundant duplications if we only extract a
sub-chunk of a row. Intuitively, we can compress them.
Our goal is therefore to search the TD-table to find re-
dundant patterns, extract them, and use single pointers to
replace them. Similar methods in data compression for
disk and file systems can be found in [24].

5

Problem 2. Optimal SRAM Compression:Given a TD-
table, find a minimized representation of it such that 1) it
only contains nexthop index and pointers to other posi-
tions in itself; 2) we can find a TD-cell in constant time.

This problem is NP-complete (see proof in [47]).
Due to the complexity of the problem, we solve it with

a heuristic -fixed block deduplication. The basic idea is
to cut a full row into sub rows and merge them. The
probability of duplicated sub rows becomes high.

Merging sub rows requires some modification on TD-
table. Fortunately, SRAM is much more flexible than
TCAM to incorporate changes.

A sub-rowis a continuous group of cells in a row. Let
w̃ (0< w̃< M) be the length (number of cells) of a sub-
row. This w̃ is predetermined (we will analyze ˜w later)
for a TD-table. We separate the TD-table into acata-
log tableand adictionary table(see an example in Fig.
4(d) where ˜w= 3). The TD-table is divided into sub-row
chunks. The dictionary table contains all unique chunks.
The catalog table maps every chunk of sub-rows of the
TD-table into a single cell, where the value in the cell is
the index to the dictionary table. Note that TD-table and
catalog table-dictionary table is a one-one mapping.

We develop a deduplication procedure to construct the
new catalog-dictionary tables from a TD-table. A formal
flow chart is in [47]. Basically, we scan the TD-table,
and extract all sub-rows. For each sub-row, we first com-
pute itsfingerprint, using SHA-1 function. With bloom
filter [8], we can judge whether the sub-row is a dupli-
cated one or not. If bloom filter judges it is, we search
in a data structure calledfingerprint store, which orga-
nizes all detected fingerprints with< f ingerprint,r, k>
triples, wherer is the sub-row index in the dictionary ta-
ble, andk is the number of sub-rows that are hashed to
f ingerprint. If we can not find it in fingerprint store (due
to the false positive probability of bloom filter) or bloom
filter judges it is not duplicated, then we insert the sub-
row into the dictionary table, and a new triple into the
fingerprint store. Using the search result, we fill the cor-
responding cell of catalog table with the sub-row index.
We explain how bloom filter and fingerprint store can be
implemented in practice in Section 5.3.

Theoretical Analysis: Let pr (pc) be the probability
that two cells in the same row (or column) are identi-
cal. Let pu be the probability that two cells in different
rows and different columns are identical. We assume that
p= pr = pc ≫ pu, andN > M ≫ 1. We present formal
analysis on the catalog-dictionary table structure in [47].
Two main analytical results can be summarized as: 1) we
should cut rows rather than columns and 2) for a sparser
TD-table, the block length should be larger; For a denser
TD-table, the block length should be smaller.

As an example, in Fig. 5(a), we show the storage size
as a function of block length andp, with N = 100,000,

M = 10,000 and the size of each cell in catalog and dic-
tionary tables to be one unit. We can see that at a fixed
p, storage size first decreases with block length, because
of deflation of catalog table; and then increases, because
of inflation of dictionary table. In Fig. 5(b), we show
the block length that minimizes the storage size. We can
see that ifp is large, i.e., TD-table is sparse, the block
length should be large. This is because for sparse TD-
table, larger block length reduces the catalog table while
increasing dictionary table a little.

0
200

400

0.95

1

0
2
4

6
8

x 10
8

Block lengthProbability

S
to

ra
ge

 s
iz

e

(a) Storage size

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

B
lo

ck
 le

ng
th

p

Block length that minimizes storage

(b) Optimal block length
Figure 5: Relation between storage size and block length,p

4 TwoD Routing Table Operations
We investigate two operations of the TwoD routing table,
forwarding lookup and routing table update.

4.1 FIST Lookup
We first present the basic lookup steps and then show
a pipeline lookup. We will show that the pipeline
lookup achieves the same performance as the conven-
tional routers for each lookup operation.

���	
�

��

��

���
��� ��

��

��

�����

���	
�

�����������

���
��� ��

�����������

�����

������ � ! "!## $%

%&' (�)* +&' "�#�+%

$% ,-.�/0#!

�����������

1���2 3 �

��

��

1���2 3 4

5 6��	��

5

�7��

���	
� 7 ��

4�����8

�����

9�2�:��

1���2 3 7

;����� �:�

��2� :��

��<�
4�����
=>=?

@�AA!(

=!�"

B!C�$%/�$�%

/%B C��("!

$%B!D

������ � !

!%�(E $% %&' (�)*

F+GHI&' "�#�+%

$% "/�/#�J

K�0 (�)

%�+0!(L (
������ � ! !%�(E $%

(&' (�)* F+MHI&'
"�#�+% $% B$"�$�%/(E

�/0#!

�
�N
�
���� <�
 �:� <�2�� ����	 ���
���������

Figure 6: Lookup action in FIST

The lookup action is shown in Fig. 6. When a packet
arrives, the router matches the destination and source
prefixes in parallel in the destination and source tables
in TCAM. This parallelism is possible since we have
a saturated TD-table. The destination table and source
table then each outputs the SRAM addresses that point
to the destination index and source index. The SRAM
addresses are passed to an FIFO buffer, which resolves
the un-matching clock-rates between TCAM and SRAM.
The router then obtains the destination index and source
index. The router can thus identify the cell in the TD-
table, and return the index value. Using this index, the

Source and
destination table

TD-table

Mapping
table

Source and
destination index

Space

Time1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

(a) Without fixed block deduplication

Source and
destination table

Catalog
table

Mapping
table

Source and
destination index

Space

Time1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

1 2 3 4
Dictionary

table

(b) Within fixed block deduplication
Figure 7: Space-time diagram of the lookup process pipeline

6

router looks up the mapping table, and returns the nex-
thop information.

After applying the fixed block deduplication, the TD-
table is separated into a catalog table and a dictionary
table. Thus, we replace the TD-table lookup step with
a new sub-routine. After obtaining the destination index
and source index, the router can find an entry in the cat-
alog table, and return a sub row index in the dictionary
table. Using the sub-row and original source index, the
router returns the nexthop index to the mapping table.

Theorem 4. The lookup speed of FIST is one TCAM plus
three SRAM clock cycles. Within fixed block deduplica-
tion, the speed increases by one SRAM clock cycle.

Proof. The theorem is true because source and destina-
tion tables (indexes) can be accessed in parallel.

As a comparison, the conventional destination-based
routing stores destination prefixes in one TCAM, and ac-
cesses both TCAM and SRAM once during a lookup.

We develop a pipeline lookup process (see Fig. 7)
for further amortizing each individual lookup operation.
Pipelining itself is not new and almost all routers imple-
ment it today. Using the pipeline, the lookup speed of
FIST can achieve one packet per clock rate.

Observation 1. The lookup speed of the FIST routers
(with pipelining) is the same as conventional routers.

In practice, SRAM clock cycle is smaller than TCAM
cycle [18].2 Also, the bottleneck of a router is normally
during delivering packets through the FIFO. These facts
further validate that FIST lookup speed is comparable to
conventional routers.

4.2 FIST Update
An update in routing table includes insertion, deletion
and update. A big difference in TwoD router from one
dimensional router, is that an update will no longer be a
rewrite on a single value, but on multiple values that can
even be a full row or column.

We consider three update actions: 1) insertion:
Insert(pd, fr(pd)), Insert(ps, fc(ps)) and Insert(pd, ps,a),
2) deletion: Delete(pd, fr(pd)), Delete(ps, fc(ps)) and
Delete(pd, ps,a), 3) update: Update(pd, ps,a). To ease
composition, we use Action(pd, fr(pd)), Action(ps,
fc(ps)) and Action(pd, ps,a) to denote them.

Action(pd, fr(pd)) happens when the reachability in-
formation ofpd changes, e.g., BGP messages announce
or withdrawpd. Action(ps, fc(ps)) happens when router
updates the policy of a source prefix. Action(pd, fr(pd))
updates a full row and Action(ps, fc(ps)) updates a full
column in TD-table. The complexity cannot be reduced.
We discuss solutions in practice in Section 5.

2TCAM is fast as it has extraordinary parallel process, yet also due
to such parallelism, each individual access is slower than SRAM.

Action(pd, ps,a) means a rule uponpd, ps is changed.
It can also incur changes in multiple values. For ex-
ample, if we execute Update(101*,11** ,1.0.0.3), both
(101*,11**) and(101*,111*) have to change.

We develop an algorithm to find the minimum num-
ber of updates of TD-cells for Action(pd, ps,a). Note
that running this algorithm also needs time. From an
architecture point of view, it is important to clarify the
bottleneck: the rewrites on hardware or the update algo-
rithm in CPU. The update algorithm are performed in the
control plane. The access time of TD-cells (rewrite) is of
the order of tens of nanoseconds (including the transition
time on bus). If the running time of the algorithm does
not match such speed, or there is a bottleneck on the bus
between data and control planes, such algorithm should
not be chosen. Nevertheless, from the design point of
view, we present this algorithm. Our algorithm has the
following properties: 1) it is optimal and 2) it can output
the TD-cells to be rewritten one by one during the com-
putation; this makes it possible that cell rewrites in the
linecard and algorithm computation in the control plane
to be pipelined. We first formally present the problem.
Problem 3. Optimal transformation: Given a TD-
table TD(·, ·) andAction(pd, ps,a), find a new TD-table
TD′(·, ·), such that |{(pd, ps)|TD(fr(pd), fc(ps)) 6=
TD′(fr(pd), fc(ps))}| is minimized.

The key insight of our solution is that the cells asso-
ciated with a destination prefix can be divided into two
different groups. One is the conflicted cells and one is
the rest. As such, we will first build color tree data struc-
ture to organize the cells. With this color tree, we will
develop algorithms for insertion and deletion where only
part of the nodes will be updated. Intrinsically, updates
can be done only for a few nodes between confliction
nodes. This color tree is also stored in the router con-
trol plane (more specifically in DRAM). Note that con-
ventional router also stores data structure such as tries to
organize prefixes. DRAM is much larger and cheaper,
so the extra burden for our algorithms is acceptable. We
will prove that our algorithms indeed minimize the com-
putation cost and the number of cell rewrites.

A Color Tree Structure and Update Algorithm
We build a color treeCT(pd) for each destination pre-

fix pd. The tree includes all source prefixes in source
table as nodesNode(ps). Node(ps) is an ancestor of
Node(p′s) if ps is also a prefix ofp′s. The nodes are
marked with two colors, black and white, where white
nodes are those conflicted nodes in Definition 2 and the
rests are black nodes. An example is shown in Fig. 8.

LetB(pd) = {Node(ps)|∃(pd, ps,a)∈R} be the set of
black nodes, letW(pd) = {Node(ps)|¬∃(pd, ps,a)∈R}
be the set of white nodes. For example, in Fig.
8, we show a color treeCT(101*) for destina-
tion prefix 101* where B(101*) = {Node(****),

7

Node(01**), Node(101*), Node(11**)} and
W(101*) = {Node(100*),Node(111*)}.

To compute optimal transformation of an update, we
definedomainof of a black node in color trees.

Definition 4. In CT(pd), domain of Node(ps) ∈ B(pd)
is D(pd, ps) = {Node(ps)} ∪ N, where N ⊆ W(pd)
and Node(p′s) ∈ N satisfies: 1) Node(p′s) is a child of
Node(ps); 2) ¬∃Node(p̂s) ∈ B(pd), where Node(p̂s) is
an ancestor of Node(p′s) and a child of Node(ps).

Intuitively, the domain of a black node is the
largest sub-tree that roots at itself and does not con-
tain any other black nodes. For example, in Fig.
8, the domain ofNode(****) is D(101*,****) =
{Node(****),Node(100*)}.

Lemma 1. For Action(pd, ps,a), changing cell set{(pd,

p′s)|Node(p′s)∈D(pd, ps)} to index of a is the minimum.

OOOO

PPOO

PPPO

QPOO PQQO PQPO

Figure 8: Color treeCT(101*) for Fig. 3

From Lemma 1, we know that it is enough to find the
domain that need to be updated. We develop update al-
gorithms using depth-first search on the domain. The
details of the algorithms is in [47]. Note that the com-
plexity of the algorithms is the size of the domain to be
updated. Our algorithms can be pipelined. Using dual-
port SRAM [29] 3, TD-table update also does not need
to interrupt the lookup process.

5 Implementation Design

We further improve the memory footprint and update op-
erations for practical situations.

5.1 A Non-Homogeneous FIST Structure
We expect that in practice, only a few prefixes, e.g., the
prefixes that belong to famous web servers and data cen-
ters, have more next hops than the default ones. It is thus
wasteful to leave a row for every destination prefix. To
become more compatible to the current router structure
and further reduce the SRAM space, we divide the for-
warding table into two parts. In the first part each prefix
points to a row in TD-table, and in the second part each
prefix points directly to an index value. For example, in
Fig. 3, destination prefix 011* does not need any specific
source prefix, so it is stored in the second part.

In our implementation, we logically divide the table
into two parts using a indicator bit in destination index.
With this structure, Action(pd, fr(pd)) does not update a
full row in TD-table if pd only needs default nexthop.

3Current dual-port SRAM can resolve the read-write collision, i.e.,
read during write operation at the same cell [2].

5.2 Updates on Source Default Prefix
We find that the updates on default entries of the source
table, i.e., Action(pd, *, a), can cause a large number of
rewrites. This is because source default prefix resides at
the root node of the color trees. This means that once
it is updated, it may cause a lot of subsequent updates.
Unfortunately, the default entry changes more frequently
than others, because it has to change when connectivity
information ofpd changes. For example, nowadays, the
update frequency on connectivity information can reach
tens of thousands per second [29].

We propose to isolate default entry from the source
table. We remove this entry from source table and rather
than being matched explicitly when the full wildcard is
hit, the default nexthop is matched when none entry in
the source table is matched. We put the default entry in
destination index. In Fig. 9, we show the transformation.

Note that with this improvement, some cells in TD-
table may be empty. For example, after isolating,
node(100*) does not belong to the domain of any black
node in Figure 8, thus cell (101*, 100*) becomes invalid
in Fig. 9. When a packet matches an empty cell, the
packet will be forwarded to the nexthop of the default
entry in the corresponding destination prefix.

After removing the default entries from the source ta-
ble, updating on the default nexthop of a destination pre-
fix does not influence TD-table. For example, in Fig. 9,
Update(101*,**** ,3) only needs to change the default
nexthop index in the destination index to be 3. After iso-
lating, we believe the update frequency of TD-table will
be low, with the following two facts: 1) the update of
non-connectivity rules will be slow, and it does not have
to respond instantly to the changes of network topology;
2) most prefixes in the current forwarding tables are near
leaf nodes in color trees [6], so we only need to update a
few cells during most updates.

R
S
TU
V
WX

Y
Y
Y
Z

Y
[
Y
Z

Y
[
[
Z

Y
Y
ZZ

[Y \] ^

_``a

``_a

`_`a

``aa

`_aa

`

b

c

d

e

3

1

2

3

2

1

2

3

2

[
Y
ZZ

f

2

0

2

2 2 2

0 0

_ghijklm 1 0 22

2

1 0

2 2 2 2

2 1

3 2 2

3 2 2

Y
Y
Y
Z

Y
[
Y
Z

Y
[
[
Z

Y
Y
ZZ

[Y \]

_``a

``_a

`_`a

``aa

`_aa

b

`

`

b

b

[
Y
ZZ

^

`ghijklm

`

b

c

d

e

_

3

3

3

2

2

02 2 2

0 0

0 22

2

3

3

0

Figure 9: Isolate default entry from source table

5.3 Parameter Selection: Fixed Block
Deduplication of SRAM Compression

In our fix block deduplication procedure design (Section
3.3.2), two important parameters need to be settled dur-
ing implementation. We discuss them in detail.

Bloom filter: We use the basic bloom filter to accel-
erate the full storage deduplication process. To avoid un-

8

necessary lookups in the fingerprint store, there exists
a summary vector [48], which uses a vector ofm bits.
The bloom filter usesk independent hash functions, each
mapping a fingerprint randomly to a bit in the summary
vector. To keep the false positive rate below 2%, we set
m= 256K andk= 4.

Fingerprint store: The fingerprint store organizes all
detected fingerprints. To achieve fast searching, we im-
plement it with 256 buckets. The last byte is used to map
each fingerprint to a bucket. We then search in a bucket
using binary search.

We set the size of a cell in the catalog table to be 32
bits, the size of a cell in dictionary table to be 8 bits,
which is also the size of a TD-cell.

We generate the fingerprints using the SHA-1 function
of OpenSSL crypto library [3]. It can process over 2.5Gb
SRAM per second when a sub-row has 500 cells. It can
even be accelerated by 6+ times if implemented in hard-
ware [16]. Because deduplication overheads are mostly
due to computations of fingerprints [31], so 1Gb SRAM
can be deduplicated within about 1 second.

6 Implementation
We implement the TwoD routing table on a commercial
router, Bit-Engine 12004, which supports 4 linecards. In
each linecard, there are a CPU board (BitWay CPU8240
with clock rate 100MHz), two TCAM chips (IDT
75K62100), an FPGA chip (Altera EP1S25-780), and
several cascaded SRAM chips (IDT 71T75602). Inside
the FPGA chip, there exists internal SRAM memory.

Our implementation is based on existing hardware,
and does not need any new hardware. We re-design the
original destination-based router through rewriting about
1500 lines of VHDL codes with some additional C codes.

The logical implementation is shown in Fig. 10 and a
picture of our hardware is shown in Fig. 11.

In data plane, due to our resource limit, we place
destination and source tables in different blocks of one
TCAM chip. Consequently, the FPGA has to access the
TCAM twice for one lookup. Clearly this increases per
lookup delay. Note that many hardware support multi-
ple lookups in parallel, e.g., Cisco’s TCAM4 that allows
four in parallel [23]. The TCAM memory is structured
according to L-algorithm [33]. More specifically, pre-
fixes of the same length are clustered together and free
space between different clusters is reserved to guarantee
fast updates in TCAM.

In Fig. 10, the packet first arrives at the Interface
module. After matching, the TCAM module will out-
put the matched prefix, and through the TCAM associ-
ated SRAM, FPGA will get the destination and source
indexes. Then FPGA accesses the internal SRAM block
for the TD-cell. After obtaining the nexthop index,
FPGA accesses the mapping table, which resides in an-

other internal SRAM block. Then FPGA gets the next
hop information, and delivers the packet to the next pro-
cessing module - switch co-process module, which will
switch the packet to the right interface.

7 Performance Evaluation and Simulation

We evaluate our TwoD router through experiments us-
ing real data sets. We also conduct simulations to assist
evaluation of SRAM compression under various settings.
Due to page limitation, our simulation results are in [47].

7.1 Evaluation Environment
Our evaluation environment is shown in Fig. 12. There
are three components: 1) a PC host with a CPU of Intel
Core2 Duo T6570 acting as the control plane, 2) a 4GE
linecard equipped with both ACL-like and FIST struc-
tures for TwoD router, and 3) a traffic generator (IXIA
1600T) with speed of 4Gbps. The traffic generator is
connected to the linecard through optical fibers and the
linecard is connected to the PC host through serial ca-
bles. The traffic generator sends packets of 64 bytes (in-
cluding 18 bytes Ethernet Header) at full 4Gbps speeds.
The linecard receives the packets, performs lookups and
sends the packets back to the traffic generator.

We evaluate the storage footprint for TCAM and
SRAM, and the lookup and update processing speed.

7.2 Data Sets
We study two practical scenarios: policy routing and load
balancing. Both scenarios are based on true demands of
CERNET2, which provides access services for universi-
ties/institutions in more than 22 major cities of China.

Within each scenario, we generate data sets of 1)
TwoD rules that need to be stored in the forwarding table,
2) packets flows for lookup and 3) update sequence.

7.2.1 Scenario 1: Policy Routing in CERNET2
CERNET2 has two international exchange centers con-
necting to the Internet: Beijing (CNGI-6IX) and Shang-
hai (CNGI-SHIX). During operations, we found that
CNGI-6IX is very congested with an average throughput
of 1.18Gbps (February 2011); and CNGI-SHIX is much
more spared with a maximal throughput of 8.3Mbps at
the same time. CERNET2 wants to divert out-going In-
ternational traffic to CNGI-SHIX (Shanghai portal).

We collect the prefix and FIB information from CER-
NET2. There are 6973 prefixes in the FIB, and 6406
are foreign prefixes. At the initial stage, we select three
universities: Tsinghua University (in Beijing), HUST (in
Wuhan) and SCUT (in Guangzhou) to forward their traf-
fic to CNGI-SHIX. We thus simulate three FIBs on three
routers, Beijing, Wuhan and Guangzhou (we call each
FIB PR-BJ, PR-WH, and PR-GZ).

The traffic flow is generated as follows: Using the real
traffic data of the related router, we choose 255 unique

9

nopq
nrns

tuvw

xyqz

{|}~����~

w����~

Control Plane ������

r��������

���}��

u��

����~��
w����~

u����

w����~

� �

��

��� ¡¢£¤¥¢£¦¤ ¢¥§¨

©�ª¦«¬­ ¢¥§¨

®�¯�°¢¥§¨

±�²¥³³£¤´°¢¥§¨

Data Plane

Figure 10: The framework of router design
Figure 11: Implementation of FIST on the

linecard of Bit-Engine 12004 Figure 12: Evaluation environment

macro flows, which are identified by their source and des-
tination prefixes. They dominate over 85% of the total
traffic. For each macro flow, we obtain its flow rate, and
scale it such that the total rate is 4Gbps. We then generate
255 unique packet streams (upper limit of IXIA 1600T),
each bound with a macro flow. The IP addresses of each
packet are randomly distributed in the address spaces of
the prefixes of the related macro flow.

We generate the update sequence on the router of
Wuhan as follows: the initial forwarding table only con-
tains destination prefixes, and we add all rules into the
forwarding table all at once. In this way, we simulate a
common scenario, where ISPs decide to carry out a pol-
icy at some time point.

PR-BJ PR-GZ PR-WH LB-MO LB-AF LB-NI

Rules # 250366 186306 365674 7118 7342 7410
Updates # / / 365674 / / 475773

Table 2: Data sets overview

7.2.2 Scenario 2: Load Balancing in CERNET2

Fig. 13 (Y-axis is anonymized) shows the bandwidth
utilization of CNGI-6IX and CNGI-SHIX. The traffic is
quite dynamic, thus policy routing itself may not fully
solve the load unbalance problem of CERNET2, though
it can give higher priority to certain prefixes like Ts-
inghua University. To have a more thorough solution, we
need dynamic load balancing mechanisms in future. As
a case study, we collect one Tera-Bytes of NetFlow traf-
fic data during Jan, 2012 on routers of Beijing, Shanghai
and Wuhan. We will redistribute the traffic flows.

0 10 20 30
x

2x

3x

4x

5x

Time (day)

U
til

iz
at

io
n

(%
)

CNGI−SHIX
CNGI−6IX

Figure 13: Utilization of
CNGI-6IX and CNGI-SHIX

0 10 20 30
0

500

1000

Time (day)

N
um

be
r

of
 u

pd
at

es

LB

Figure 14: Number of updates for
load balancing

We try to redistribute each macro flow to different ex-
change centers, such that load is optimally balanced. The
problem can be reduced to Multi-Processor Scheduling
problem [7] which is NP-hard. Thus we use the greedy
first-fit algorithm, which greedily assigns each macro

flow to the least utilized exchange center. The algorithm
achieves an approximation factor of 2.

We construct three forwarding tables, each at differ-
ent time points, i.e., 6:00, 14:00 and 22:00 during Jan
15, 2012 on the router of Wuhan (we call each forward-
ing table LB-MO, LB-AF, and LB-EV). Among them,
LB-EV is the largest one, because more traffic should be
moved when 22:00 is the peak traffic point during a day.

The traffic flow is generated using the same way as
Scenario 1. The update sequence is generated as follows:
we compute a new load balancing forwarding table every
hour, and compare it with that of the previous hour. Ac-
cording to the difference between them, we obtain the
update sequence of each hour. Fig. 14 shows the number
of updates per hour in this scenario.

Table 2 summarize the number of rules and updates
(PR: policy routing LB: load balancing). For compari-
son, we use the ACL-like structure as a benchmark.

7.3 Evaluation Results
7.3.1 Storage of Basic FIST Structure

In Fig. 15(a), we can see that the TCAM space in FIST
can be 1/50 as compared to ACL-like structure. For ex-
ample, in PR-WH, FIST consumes 1Mb TCAM storage,
while ACL-like structure consumes more than 72Mb. In
the LB scenarios, FIST gain is smaller. This is because
in the PR scenario, many rules share the same destination
or source prefixes yet in the LB scenario, there are much
less two dimensional rules.

In Fig. 15(b), we can see that, in the PR scenario, the
SRAM space in FIST can be 1/40 as compared to ACL-
like structure. For example, in PR-WH, FIST consumes
3Mb SRAM storage, while ACL-like structure consumes
125Mb. In the LB scenario, FIST consumes more SRAM
storage. This is because in the PR scenario, although
there are many rules, the TD-table is very dense, and nex-
thop index further condenses the nexthop information. In
the LB scenario, the TD-table is much sparser. In Sec-
tion 7.3.3, we show that the SRAM storage of FIST can
be greatly reduced, due to the flexibility of SRAM.

To give an overview on the benefits we can achieve
from FIST, we estimate the cost and power consump-
tion of FIST and ACL-like structures. We set the price,
and power consumption of one MB SRAM to be $27 and

10

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FIST
ACL−like

(a) TCAM storage space

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FIST
ACL−like

(b) SRAM storage space
Figure 15: Size of each forwarding table with basic structure

0.12 Watt, one MB TCAM to be $200 and 15 Watt [30].
We use the simple linear model to estimate them [23]. In
Table. 3, we can see that the cost and power consumption
of FIST are far less than those of ACL-like structure. For
example, to accommodate PR-WH, the FIST costs $36.2
and consumes 1.94 Watts while ACL-like structure costs
$3057.4 and consumes 199.35 Watts. This is because
FIST moves the storage from expensive and high power
consuming TCAM to SRAM.

Cost($) Power (Watt)

FIST
ACL-
like

FIST
ACL-
like

PR-BJ 32.7 2093.3 1.92 136.49
PR-GZ 30.8 1557.7 1.91 101.57

PR-WH 36.2 3057.4 1.94 199.35
LB-MO 41.5 59.5 1.97 3.88
LM-AF 50.3 61.4 2.02 4.00
LM-EV 49.3 62.0 2.01 4.04

Table 3: Estimated price and power
consumption of each forwarding table

0 100 200 300
3.0475

3.0475

3.0475

3.0476

3.0476

3.0476

Time (sec)

R
at

e
(G

bp
s)

Receiving rate
Sending rate

Figure 16: Lookup speed
without update

7.3.2 Lookup and Update Operations
Lookup Speed: In Fig. 16, we show the lookup speed
without updates. We can see that without updates, both
sending and receiving rates reach line speeds (Ethernet
frame contains 8 bytes preamble and 12 bytes gap, thus
the maximum rate is 4× 64

64+20 ≈ 3.0476Gbps). We also
look into the data traces, and find none packet loss. Note
that the speed reaches the upper limit of the linecard we
use, and it can be higher with better linecards.

TCAM Accesses During Update: We evaluate the
number of accesses to TCAM because updates in TCAM
will interrupt the lookup. In Fig. 17, we show the num-
ber of TCAM accesses per 100 updates in PR and LB
scenarios. We can see that the number of TCAM ac-
cesses that FIST causes can be three orders of magnitude
less than ACL-like structure. For example, in the PR sce-
nario, FIST causes 2-3 TCAM accesses per 100 updates
while ACL-like structure causes several thousands. This
is because FIST stores much less information in TCAM.

In Fig. 18, we show the lookup speeds of FIST, with
different update frequencies, i.e., 500, 5000, and 50000
updates/sec, during 5 minutes. In Fig. 18(a), we can see
that in the PR scenario, FIST has no influence on lookup
while ACL-like structure degrades the lookup speeds by
7% in the worst case. This is because FIST causes much
less accesses to TCAM. In Fig. 18(b), we can see that in
the LB scenario, FIST does influence the lookup speeds
when there are 50,000 updates per second, however, the

influence is still much smaller than ACL-like structure.
We conclude that FIST structure will not impose high

update burden on lookup. In the PR scenario, all updates
can be finished in less than 10 seconds without influenc-
ing lookup, which is fast enough for installing a policy.
In the LB scenario, the maximum number of updates per
hour is 1,301, that can be finished within 1 second with-
out influencing lookup.

SRAM Accesses During Update:FIST causes more
accesses to SRAM. Although it does not interrupt the
lookup with dual-port SRAM, it is limited by hardware
capacities and computing resources. In Fig. 19, we show
the number of accesses to SRAM per 100 updates. We
can see that the number of SRAM accesses in FIST is
one order less than ACL-like structure. For example, in
the PR scenario, each update causes only 1 SRAM ac-
cess in FIST, and tens of SRAM accesses in ACL-like
structure. This is because in FIST, an update only needs
to rewrite part of the conflicted TD-cells. In ACL-like
structure, frequent moves in TCAM lead to subsequent
moves in SRAM.

7.3.3 Storage of FIST with Improvements
Except the basic setting, we evaluate in other two settings
– after compression, with non-homogeneous structure.

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

TCAM−Compress
SRAM−Compress
ACL−like

(a) TCAM-compression

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

TCAM−Compress
SRAM−Compress
ACL−like

(b) SRAM-compression

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FIST
ACL−like

(c) TCAM-non-homogeneous

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FIST
ACL−like

(d) SRAM-non-homogeneous

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FIST
ACL−like

(e) TCAM-compression&non-homo

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FIST
ACL−like

(f) SRAM-compression&non-homo
Figure 20: Size of each forwarding table

Compression: In Fig. 20(a), we show the TCAM
space after compression. We also compress ACL-like
structure by minimizing the number of TowD rules. We
can see that, after TCAM compression, FIST still con-
sumes much less TCAM storage than ACL-like structure.
In Fig. 20(b), we show the SRAM space after compres-
sion. We can see that FIST can further compress SRAM
after TCAM compression. For example, SRAM storage

11

0 500 1000 1500 2000 2500
10

0

10
2

10
4

10
6

N
um

be
r

of
 a

cc
es

se
s

to
 T

C
A

M

Update sequence number (x 100)

LB−FIST
LB−ACL−LIKE

PR−FIST
PR−ACL−LIKE

Figure 17: TCAM accesses

2.8

2.9

3

Time (sec)

FIST

0 100 200 300
2.8

2.9

3

Seconds

R
ec

ei
vi

ng
 r

at
e

(G
bp

s)

ACL−like
PR−50000
PR−5000
PR−500

(a) Policy routing scenario

2.8

2.9

3

Time (sec)

FIST

0 100 200 300
2.8

2.9

3

Seconds

R
ec

ei
vi

ng
 r

at
e

(G
bp

s)

ACL−like
LB−50000
LB−5000
LB−500

(b) Load balancing scenario
Figure 18: Lookup speeds with updates

0 500 1000 1500 2000 2500
10

1

10
2

10
3

10
4

N
um

be
r

of
 a

cc
es

se
s

to
 S

R
A

M

Update sequence number (x 100)

LB−FIST
LB−ACL−LIKE

PR−FIST
PR−ACL−LIKE

Figure 19: SRAM accesses

of PR-WH is compressed to be less than 90K bits. This is
because 1) the flexible mapping structure of FIST; 2) data
redundancies in TD-table. However, in the ACL-like for-
warding tables, the SRAM storage is proportional to the
TCAM storage, and can not be further compressed.

Non-Homogeneous Structure: In Fig. 20(c), we
show the TCAM space with non-homogeneous structure.
Non-homogeneous structure does not save TCAM stor-
age in FIST but saves TCAM storage in ACL-like struc-
ture. However, to support non-homogeneous structure,
ACL-like structure must be physically divided, because
most TCAM chips only support uniform entry width. In
contrast, with FIST, we can flexibility and logically di-
vide the table into two parts. In Fig. 20(d), we show
the SRAM space with non-homogeneous structure. We
can see that, with non-homogeneousstructure, FIST con-
sumes much less SRAM storage than ACL-like structure
in all forwarding tables.

Combine Non-Homogeneous Structure with Com-
pression: In Fig. 20(e) and 20(f), we apply non-
homogeneous structure and compression techniques to
all forwarding tables. We can see that TCAM and SRAM
spaces in FIST are much less than ACL-like structure.

7.3.4 Evaluation Summary
Our evaluation shows that FIST can well accommodate
365674 rules (PR-WH). For all scenarios, FIST con-
sumes at most 1Mb TCAM and 7Mb SRAM space. Such
excellent performance is because we fully eliminate the
multiplicative effect in TCAM and we can take advan-
tage of the flexibility of SRAM to design advanced com-
pression schemes. As a matter of fact, we believe that our
limited scenarios from CERNET2 cannot fully illustrate
the potential of FIST. Our experience shows FIST can
easily accommodate more than 1 million TwoD rules.
Our TwoD router achieves constant lookup time and
works well with 50000 updates per second and we be-
lieve these do not hit the limit of FIST potential as well.

8 Discussion and Current Limitations
The current TCAM chip in market has a storage space
of 36Mb, and SRAM chip in the market has 144Mb
(72Mb TCAM and 288Mb SRAM are on the roadmap
of major vendors) [14]. Other memory products such as
RLDRAM can provide similar performance to SRAM,
having 16 bytes reading with random access time of 15
ns with memory denominations of 576 Mbits/chip [15].
Multiple chips can be used, e.g., linecards of Bit-Engine

12004 support 4 SRAM chips. The Juniper MX960 is
estimated to use 32 SRAM chips in 2007 [4].

The current number of destination prefixes in back-
bone ISP routers is 400,000. Given IPv4, this transfers
into 400,000×36= 14.4Mb (the common TCAM width
for IPv4 is 36 bits). We expect that source prefixes (rep-
resenting rules) are much smaller than destination pre-
fixes. Suppose that there are 10,000 source prefixes,
which transfer into 0.36Mb. Overall, this scenario re-
quires 14.4 + 0.36 = 14.76Mb TCAM and 400,000×
10,000× 8 = 32Gb SRAM. We can see that TCAM is
far enough. Yet for SRAM, assume there is a FIST com-
pression ratio of one-third, and 8 or 12 SRAM chips are
used (capable for most routers nowadays), there is still a
gap around a factor of 4. Note that 400,000 destination
prefixes and 10,000 source prefixes can mean millions of
rules.

For mid or small scale ISPs such as CERNET2, the
TwoD router is already applicable. We admit that there
is still storage limitation for large scale ISPs. Note that
this limitation is on SRAM, not TCAM. As SRAM is
flexible, we believe better data structure and compres-
sion schemes can be developed in future studies. From
past experience in memory/storage development, and the
fact that SRAM cheaper so it may be easier to add more
chips, we are optimistic that such gap can be overcame.
9 Conclusion
We presented a design and implementation of a two di-
mensional router, where forwarding decisions are based
on both destination and source addresses. The moti-
vation was to expand routing semantics to support in-
creasing demands of differentiate services from ISPs like
CERNET2. Adding source prefixes into FIB leads to
TCAM storage explosion. We thus made a neat separa-
tion of TCAM and SRAM, where we maintained the fast
lookup of TCAM and took advantage of the large stor-
age space/flexibility of SRAM. We proved the correct-
ness of our design and proposed algorithms for further
TCAM/SRAM compression. We developed algorithms
for routing operations of lookup and updates. We imple-
mented the TwoD router on the linecard of a commer-
cial router. Our design does not need any new devices.
We conducted comprehensive experiments and simula-
tions with the real data sets from CERNET2. The results
showed that our TwoD router can be used for ISPs like
CERNET2 to support practical services such as policy
routing or load balancing.

12

References

[1] Bgp routing table analysis reports.http://bgp.potaroo.net.

[2] Cyclone handbook.www.altera.com/literature/hb/cyc/
cyc_c51007.pdf.

[3] Openssl.http://www.openssl.org.

[4] Router fib technology. http://www.firstpr.com.au/ip/

sramip-forwarding/router-fib/.

[5] F. Baboescu, P. Warkhede, S. Suri, and G. Varghese. Fast packet
classification for two-dimensional conflict-free filters.Comput.
Netw., 50(11):1831–1842, 2006.

[6] A. Basu and G. Narlikar. Fast incremental updates for pipelined
forwarding engines.IEEE/ACM Trans. Netw., 13:690–703, 2005.

[7] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling multi-
processor tasks to minimize schedule length.IEEE Trans. Com-
put., 35(5):389–393, 1986.

[8] A. Broder and M. Mitzenmacher. Network applications of bloom
filters: A survey.Internet Mathematics, pages 636–646, 2003.

[9] Y. Chiba, Y. Shinohara, and H. Shimonishi. Source flow: han-
dling millions of flows on flow-based nodes. InProc. ACM SIG-
COMM’10, New Delhi, India, Sep 2010.

[10] R. P. Draves, C. King, S. Venkatachary, and B. N. Zill. Construct-
ing optimal ip routing tables. InProc. IEEE INFOCOM’99, New
York, NY, March 1999.

[11] P. Gupta.Algorithms for Routing Lookups and Packet Classifica-
tion. PhD thesis, Stanford University, Dec 2000.

[12] P. Gupta and N. McKeown. Packet classification on multiple
fields. InProc. ACM SIGCOMM’99, Cambridge, Massachusetts,
United States, Aug 1999.

[13] P. Gupta and N. McKeown. Algorithms for packet classification.
Network, IEEE, 15(2):24 –32, 2001.

[14] C. Hermsmeyer, H. Song, R. Schlenk, R. Gemelli, and S. Bunse.
Towards 100g packet processing: Challenges and technologies.
Bell Lab. Tech. J., 14(2):57–79, 2009.

[15] K.Fall, G.Iannaccone, S.Ratnasamy, and P.Godfrey. Routing ta-
bles: Is smaller really much better?BT Technology Journal,
24:119–129, 2006.

[16] M. Khalil-Hani, V. P. Nambiar, and M. N. Marsono. Hard-
ware acceleration of openssl cryptographic functions for high-
performance internet security. InProc. International Conference
on Intelligent Systems, Modelling and Simulation, Liverpool, UK,
Jan 2010.

[17] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos,and
K. Lee. Internet traffic classification demystified: myths, caveats,
and the best practices. InPorc. ACM CoNEXT’08, Madrid, Spain,
Dec 2008.

[18] J. Kim, M.-C. Ko, H.-K. Kang, and J. Kim. A hybrid ip for-
warding engine with high performance and low power. InProc.
ICCSA’09, Seoul, Korea, Jun 2009.

[19] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet
forwarding using efficient multi-dimensional range matching.
SIGCOMM Comput. Commun. Rev., 28(4):203–214, 1998.

[20] C.-L. Lee and P.-C. Wang. Scalable packet classification by tcam
entry encryption algorithm.J. High Speed Netw., 16(3):275–283,
2007.

[21] A. Liu, C. Meiners, and E. Torng. Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams.Net-
working, IEEE/ACM Transactions on, 18(2):490 –500, 2010.

[22] H. Lu and S. Sahni. Conflict detection and resolution in two-
dimensional prefix router tables. IEEE/ACM Trans. Netw.,
13(6):1353–1363, 2005.

[23] Y. Ma and S. Banerjee. A smart pre-classifier to reduce power
consumption of tcams for multi-dimensional packet classifica-
tion. In Proc ACM SIGCOMM’12, Helsinki, Finland, Aug 2012.

[24] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani.
Demystifying data deduplication. InProc. ACM/IFIP/USENIX
Companion’08, Leuven, Belgium, Dec 2008.

[25] C. Meiners, A. Liu, and E. Torng. Bit weaving: A non-prefix
approach to compressing packet classifiers in tcams. InProc.
IEEE ICNP’09, Orlando, Florida, Oct 2009.

[26] C. Meiners, A. Liu, and E. Torng.Hardware Based Packet Clas-
sification for High Speed Internet Routers. Springer, 2010.

[27] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel. Split: Optimizing
space, power, and throughput for tcam-based classification. In
Proc. ACM/IEEE ANCS’11, Brooklyn, NY, Oct 2011.

[28] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu. Fast
regular expression matching using small tcams for network intru-
sion detection and prevention systems. InProc. USENIX Secu-
rity’10, Washington, DC, Aug 2010.

[29] T. Mishra and S. Sahni. Duos - simple dual tcam architecture for
routing tables with incremental update. InProc. IEEE ISCC’10,
Riccione, Italy, Jun 2010.

[30] D. Perino and M. Varvello. A reality check for content centric net-
working. InProc. ACM SIGCOMM Workshop ICN’11, Toronto,
Ontario, Canada, Aug 2011.

[31] C. Policroniades and I. Pratt. Alternatives for detecting redun-
dancy in storage systems data. InProc. USENIX ATEC’04, Jun
2004.

[32] S. Quinlan and S. Dorward. Venti: A new approach to archival
data storage. InProc. USENIX FAST’02, Monterey, CA, Jan
2002.

[33] D. Shah and P. Gupta. Fast updating algorithms for tcams. IEEE
Micro, 21(1):36–47, 2001.

[34] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet clas-
sification using multidimensional cutting. InProc. ACM SIG-
COMM’03, Karlsruhe, Germany, Aug 2003.

[35] H. Song, J. Turner, and S. Dharmapurikar. Packet classification
using coarse-grained tuple spaces. InProc. ACM/IEEE ANCS’06,
San Jose, California, USA, Dec 2006.

[36] V. Srinivasan, S. Suri, and G. Varghese. Packet classification us-
ing tuple space search. InProc. ACM SIGCOMM’99, Cambridge,
Massachusetts, United States, Aug 1999.

[37] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and
scalable layer four switching. InProc. ACM SIGCOMM’98, Van-
couver, British Columbia, Canada, Aug 1998.

[38] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-
dimensional routing tables.Algorithmica, 35:287–300, 2003.

[39] D. Taylor and J. Turner. Scalable packet classificationusing dis-
tributed crossproducing of field labels. InProc. IEEE INFO-
COM’05, Miami, FL, Mar 2005.

[40] D. E. Taylor. Survey and taxonomy of packet classification tech-
niques.ACM Comput. Surv., 37(3):238–275, 2005.

[41] D. E. Taylor and J. S. Turner. Classbench: a packet classification
benchmark.IEEE/ACM Trans. Netw., 15(3):499–511, 2007.

[42] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. Efficuts: opti-
mizing packet classification for memory and throughput. InProc.
ACM SIGCOM’10, New Delhi, India, Aug 2010.

[43] J. van Lunteren and T. Engbersen. Fast and scalable packet clas-
sification. Selected Areas in Communications, IEEE Journal on,
21(4):560 – 571, 2003.

13

[44] J. Wu, J. Bi, M. Bagnulo, F. Baker, and C. Vogt. Source address
validation improvement framework. Internet Draft, Mar 2011.
draft-ietf-savi-framework-04.txt.

[45] M. Xu, J. Wu, S. Yang, and D. Wang. Two dimensional ip routing
architecture. Internet Draft, Mar 2012. draft-xu-rtgwg-twod-ip-
routing-00.txt.

[46] M. Xu, S. Yang, D. Wang, and J. Wu. Two dimensional-ip rout-
ing. In Proc. IEEE ICNC’13, San Diego, USA, Jan 2013.

[47] S. Yang, D. Wang, M. Xu, and J. Wu. Two dimensional router:
Design and implementation. Technical report, Tsinghua Univer-
sity, Aug 2012.http://www.wdklife.com/tech.pdf.

[48] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. InProc. USENIX
FAST’08, San Jose, California, Feb 2008.

14

