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1. INTRODUCTION

A wireless sensor network consists of a large number of sensor nodes that perform
sensing, computation, and communication. It has become an attractive modern tool
for surveillance and protection applications, such as museum monitoring, military
surveillance, object tracking, and intrusion detection. A key objective here is to
provide enough coverage for the monitored entities; which range from individual
objects to an entire area.

Obviously, the denser and more active the sensors are, the better the coverage
quality we can expect, and hence, the better protection for the objects. Sensors,
however, are small and uni-functional devices which are tightly constrained by non-
rechargeable batteries. Sensors will die after the depletion of their energy resource
and the quality of protection will thus be damaged. Many research activities on
sensor networks are focusing on how to balance the quality of protection and energy
consumption of the sensors.

Sensors may also die due to attacks. By sneakily dismantle a few sensors, the
quality of coverage/protection can also be significantly affected. We study an ex-
ample in Fig. 1 of a maximal breach path in a sensor network [Meguerdichian et al.
2001]. Intuitively, the maximal breach path is a path traveling through the sensor
network that has the least probability of being detected. More formally, define the
weight of a path as the minimum distance from this path to any sensor in the net-
work; a maximal breach path is the maximum weight path from the source to the
destination, as illustrated in Fig. 1 (b). Intuitively, when deploying the sensors, we
should minimize the weight of the maximal breach path. While elegant solutions
have been devised in this context to provide quality coverage for the area, they
generally assume that the sensors are not the target of attacks. This, however,
creates a severe backdoor that can be explored by intruders. As shown in Fig 1
(c), if removing two sensors A, B in Fig 1 (b), the weight of the maximal breach
path can be substantially increased. Our simulations verifies that, by removing
approximately 1% of the carefully chosen sensors the weight of the maximal breach
path will increase over 40%. Note that, in the attack, it is not necessary to physi-
cally remove a sensor, a simple interference would work, and a smart intruder may
strategically select weak sensors to amplify the effect.

Given the sensors themselves are important and critical objects in the network,
we argue that they also need certain level of coverage and hence protection. We refer
to the above problem as self-protection, as we believe the sensors themselves are the
best (and often the only) candidate to provide protection. In simple form, a sensor
network is self-protected if all sensors are monitored/covered by at least one other
active sensor. The challenges remain in three aspects: 1) We need to identify the
requirements and constraints for self-protections; 2) We need efficient and preferably
distributed algorithms to accommodate the self-protection demands; and 3) Self-
protection itself is never the ultimate objective in system design – sensor network
serves field/object protection applications, e.g., monitoring international borders
or protecting valuable art collections, to which we refer as the main objective(s) of
the system. An effective integration of self-protection with the protection of main
objectives is necessary.

In this paper, we for the first time present a formal study on the self-protection
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 09 2001.
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Fig. 1. (a) A sensor network. (b) The maximal breach path in the network. The minimum weights
are at (B, C) and (A, D). (c) By removing A and B, the weight of the maximal breach path is
significantly increased. The weight of the maximal break path is remarked between lines of E, G
and F, G.

problem in wireless sensor networks. We show that, if we simply focus on enhancing
the quality of field or object covering, the sensors might not necessarily be self-
protected, which in turn makes the system vulnerable. We then investigate different
levels of self-protections, and show that the problems are generally NP-complete.
We develop efficient approximation algorithms for centrally-controlled sensors. For
large sensor networks deployed in open areas, we present fully randomized and
distributed implementations. Finally, we developed a two-tier architecture, which
seamlessly integrates self-protection with the main objectives of the sensor network.
Extensive simulations are conducted to illustrate the necessity of self-protection and
the performance of our algorithms.

The reminder of this paper is organized as follows: We discuss related work
in Section 2. The self-protection problem is formally presented in Section 3. In
Section 4, we consider a centralized scenario and discuss its complexity; we also show
effective approximate solutions in this scenario. Section 5 extends the solutions to
an distributed environment. In Section 6, we describe a two-tier architecture to
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integrate the self-protection and the main protection objectives. Section 7 offers
simulation results that verify the effectiveness and efficiency of our algorithms.
Finally, we conclude our paper in Section 8.

2. RELATED WORK

Wireless sensor networks have received a lot of attention recently due to its unique
capabilities and the associated wide spectrum of applications. A pioneer work
discussing the challenges of sensor networks can be found in [Estrin et al. 1999]. A
general overview and a survey focusing on the routing protocols can be found in
[Akyildiz et al. 2002] and [Al-Karaki and Kamal 2004], respectively.

In many sensor network applications, providing desired field coverage or object
protection is a key design objective. A typical coverage criterion is that every point
of the field should be k-covered, which is studied in [Slijepcevic and Potkonjak
2001]. The k-coverage problem is further examined in [Kumar et al. 2004], which
proposes a sleeping/active schedule to minimize energy consumption. In [Kumar
et al. 2005], barrier coverage is considered, where the sensors can be used as barriers
of, say, international borders. The problem is formulated as a k-multi-path problem
and solved optimally if the sensors are centrally controlled. Distributed algorithms
is also discussed in their work. Coverage of individual objects is studied in [Cardei
et al. 2005], which shows that the problem is NP-complete and heuristics are then
developed. Other related works include target tracing for mobile objects [Zhang and
Cao 2004] and variable-quality of coverage [Gui and Mohapatra 2004]. Besides these
theoretical studies, practical surveillance systems are also under active development;
see for examples [He et al. 2004][Yan et al. 2003].

A closely related and yet opposite research direction is to find breach paths in
the sensor protected area. A representative example is the maximal breach path
[Meguerdichian et al. 2001], as described in the introduction. The maximal breach
path shows the protection quality of the sensor area. The smaller the weight of
the maximal breach path is, the better the area is protected. It is followed by
minimal and maximal exposure paths [Meguerdichian et al. 2001][Veltri et al. 2003]
that focus on the paths with the least and most expected coverage.

Our work is motivated by these studies on quality coverage of the sensor field or
protection of valuable objects. However, to the best of our knowledge, the above
studies do not address the possible weakness of the sensors themselves. Our self-
protection does not conflict with these protection objectives; it can be viewed as
a complementary new metric for the quality of coverage/protection. This metric
is important because without protected sensors, quality coverage/protection for
others can hardly be achieved.

In addition to coverage quality, network connectivity is also an important factor
successful operation of a multi-hop sensor network. The relation between coverage
and connectivity is studied in [Wang et al. 2003], which suggests that if the com-
munication range of a sensor is twice of the sensing range, then the sensor network
is connected if the area is covered in a convex region. Additional work can be found
in [Shakkottai et al. 2003][Zou and Chakrabarty 2005].

In this paper, however, we focus on the coverage issue. The operations of report-
ing an abnormal event after it is detected are out of the scope of this paper. In our
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 09 2001.
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scheme, sensors need to exchange information with their neighbors. Therefore, the
ratio range must be larger than sensing range for the operations of our protocols.
This is true in practice [Miluzzo et al. 2006]; in particular, when the sensors are
moving from short range 802.15.4 to Wi-Fi or even longer transmission ranges.

3. SELF-PROTECTION: THE PROBLEM

We formulate the sensor network as a graph G(V,E). V represents the set of sensor
nodes, and E is the set of directed links, (u, v), where nodes u, v ∈ V and v is in
the sensing range of u. We use |V | and |E| to denote the number of nodes and the
number of links, respectively, and assume that |V | = N . A sensor is called active,
if it is able to provide coverage for the surrounding environment; otherwise it is
called a sleeping sensor.

Definition 3.1. A sensor network is k-self-protected if each sensor (active or
sleeping) is covered by at least k − 1 active sensors.

In this paper, we focus on the 2-self-protection only; yet the techniques described
can be extended to k-self-protection. In the rest, self-protection simply refers to the
2-self-protection, and we will point out the techniques for generalization whenever
necessary.

Since energy consumption is a major concern in sensor networks, we study two
energy measures. First, we find the smallest number of sensors to activate for
self-protection. Second, notice that for long term operations of a sensor network,
a common strategy for sensors is to alternate between active and sleeping states.
Thus, we find the maximum number of disjoint sets of sensors, each set of which
can provide self-protection when the sensors in this set are activated. Consequently,
different sets of sensors can work in turn. The lifetime of the sensor network is
multiplied by the number of disjoint sets. Formal definition of the two measures
are as follows:

Definition 3.2. A Minimum Self-Protection is a self-protection for the senor net-
work, where the number of nodes selected to be active is minimized at a certain
time.

Definition 3.3. A Maximum Disjoint Self-Protection is a set of disjoint self-
protections for the sensor network, where the cardinality of the set is maximized.

4. CENTRALIZED SCENARIOS

We first consider the scenario where the sensors can be centrally controlled. This is
often achievable in small-scale sensor networks. We prove that both the minimum
self-protection problem and the maximum disjoint self-protection problem are NP-
complete. We then present an approximation algorithm for the minimum self-
protection and discuss solutions for finding these self-protections.

4.1 Minimum Self-Protection: Centralized Scenario

Theorem 4.1. Finding minimum self-protection is NP-complete.

Proof. It is easy to see that the decision problem of validating a given self-
protection is solvable in polynomial time. Therefore, the minimum self-protection
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is in NP class. To show this problem is NP-hard, we reduce the Minimum Set Cover
to it; the former is known to be NP-complete [Garey and Johnson 1979].

Given a set cover instance, (U,C), where U = u1, u2, u3, . . . , un is the universe of
the elements and C = c1, c2, c3, . . . , cm is the family of the subsets of U , construct
network G = (V, E), where each node v ∈ V corresponds to an element of U or an
element of C. Thus we have |V | = |U | + |C|. E consists of two parts: 1) Make
full connection of nodes representing the elements from C; 2) For each node v ∈ V ,
representing ui ∈ U , 1 ≤ i ≤ n, connect v with the node w ∈ V , representing
cj ∈ C, 1 ≤ j ≤ m where ui ∈ cj .

We next show that by finding a minimum self-protection, P, in G, we can find a
minimum set cover for (U,C) in polynomial time. For each node v in P representing
an element ui, delete v and change it to w, which represents the subset cj containing
this single element ui. The resulting protection is still a minimum self-protection
with no isolating node, and this operation is polynomial. It is easy to see that
the resulting nodes representing cj are indeed a minimum set cover, because if
there is another set cover with fewer sets, when mapping back to G, we can find a
self-protection with fewer nodes, which contradicts to our assumption that P is a
minimum self-protection.

The minimum self-protection problem can be formulated as a constrained dom-
inating set problem, i.e., the degree of every node in the set has to be at least
k− 1 for k-self-protection and one for self-protection. The subgraph formed by the
dominating nodes does not need to be connected, however; only isolating nodes
are prohibited. We then show that an approximation algorithm exists for min-
imum self-protection through minimum dominating set problem; the cost of the
self-protection is the number of sensors selected to be active.

Lemma 4.2. The cost of the minimum self-protection is at most twice of the
cost of the minimum dominating set [Garey and Johnson 1979]. And this is also
an upper bound.

Proof. A dominating set is a set of node where all remaining nodes in the
network will connected to at least one node in the dominating set. It is easy
to see that a minimum self-protection is a dominating set. We now prove, by
contradiction, that the cost of this minimum dominating set is at least half of the
cost of minimum self-protection.

If the minimum dominating set contains fewer nodes than half of the minimum
self-protection, then we add the same number of nodes adjacent to the nodes in
this minimum dominating set. The resulting set of nodes is clearly a minimum
self-protection. This contradict to that the cost of the protection is minimum. This
bound is also a lower bound since the minimum dominating set can also be an
independent set, e.g., the network is a straight line.

Theorem 4.3. A 2(1+log|V |) approximation algorithm exists for minimum self
protection.

Proof. A (1 + log|V |) approximation algorithm for minimum dominating set is
given in [Johnson 1974]. Since the cost of minimum self protection will not be less
than minimum dominating set problem, then by doubling this, we will have an easy
2(1 + log|V |) approximation algorithm.
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4.2 Maximum Disjoint Self Protection: Centralized Scenario

Theorem 4.4. Finding k-disjoint self-protection is NP-complete for all k.

Proof. It is easy to see that the problem is in NP class. We now reduce the
k-disjoint set cover problem to it; the former is a known NP-complete problem
[Cardei and Du 2005]. Let U = u1, u2, u3, . . . , un be the universe of the elements
and C = c1, c2, c3, . . . , cm be the family of the subsets of U . A k-disjoint set cover
problem is defined as whether C can be partitioned into k-disjoint set covers of U .

Given any instance of disjoint set cover, construct a network G = (V,E) similar
to the proof of Theorem 4.1. We find a k-disjoint self protection in this network. We
prove that we subsequently find a k-disjoint set cover: For all the links connecting
the node representing cj and ti, we remove ti. The resulting set is a disjoint set
cover, since every set of nodes will dominate all other nodes. The cardinality of
this disjoint set cover is k.

Corollary 4.5. Finding Maximum Disjoint self-protection is NP-complete.

Proof. We can reduce 2-Disjoint self-protection to it, since an obvious observa-
tion is that after merging any disjoint sets of nodes of self protection, the resulting
set is still a valid self protection.

To find a maximum disjoint self-protection, we may use the minimum self-
protection as a building block and iteratively find the solution. An alternative way
is that both the minimum self-protection and the maximum disjoint self-protection
can be formulated using integer programming. Heuristics can thus be constructed
by relaxing the integrity constraints.

The centralized algorithms are suitable for small-scale sensor networks, where all
the sensors can be easily controlled through a central unit. For example, the video
sensor monitoring systems in museums, where the number of art collections to be
protected is very limited.

5. DISTRIBUTED SCENARIOS

In a large sensor network, each sensor needs to make decisions based on lim-
ited information. In this section, we present two distributed approaches for self-
protection, pre-scheduled independent activation (PIA) and neighborhood cooper-
ative self-protection (NC). In pre-scheduled independent activation, an activation
schedule is pre-defined and each sensor follows this schedule without knowing the
behavior of other sensors. In neighborhood cooperative self-protection, sensors ne-
gotiate activation schedules with each other in a distributed manner. In both PIA
and NC, while maintaining qualified protection, sensors need to minimize and bal-
ance the energy consumption. We study the relationship between the quality of
the self-protection with some key parameters of the system, such as the life time
of each sensor and the expected life time of the system, the sensing range of each
sensor and the density of the sensor network.

Let R be the sensing range and l be the life time of a single sensor with full
activation. We assume the sensors are uniformly distributed with density d.

ACM Transactions on Sensor Networks, Vol. 2, No. 3, 09 2001.



118 · Dan Wang et al.

5.1 Two Randomized Algorithms for Pre-scheduled Independent Activation (PIA)

In the centralized scenario, the sensor network can find a set of sensors so that all
the sensors are protected. In the distributed scenario, this deterministic allocation
can be difficult to achieve with no global information. We thus adopt the following
probabilistic definition for self-protection:

Definition 5.1. Given user defined tolerance parameter δ ∈ (0, 1), a protection is
said to be (1-δ)-self-protected if in any given area, the probability that the sensors
in this area are not protected is less than δ.

Notice that this definition is an extension for our self-protection in the probabilis-
tic point of view. It can be extended to (1-δ)-k-self-protection where the probability
that a sensor is not k-self-protected is less than δ1.

In PIA, a timer and an activation probability p are built in each sensor. When
the timer expires, the sensors activate itself with probability p and reset the timer.
The key parameter a sensor needs to set for PIA is p, given the user required δ
and the network setting. The timers for the sensors also need to be synchronized.
Techniques in previous studies of synchronization (e.g., [Elson and Estrin 2001][Li
and Rus 2004]) can be used. In addition, a rough synchronization is enough for our
algorithm as for each period of time, there can be an initial adjustment phase to
adapt to the skew of the sensor clocks.

We now discuss two randomized algorithms: in the first, a sensor reactively links
to another active sensor after activation; in the second, a sensor pro-actively decides
its partner before activation.

5.1.1 Total Random Activation. Each sensor independently makes decisions to
activate itself with probability p. After activation, the sensor will search within its
sensing range of other active sensors, and connect them as partners. If there is no
other active sensor in its neighborhood, the sensor goes back to sleep.

To determine the activation probability p, we assume the sensors are on a unit
size mesh where the distance between each neighboring sensor is 1√

d
and R > 1√

d
. In

our simulation, we relax this assumption and show similar results hold for random
uniform distribution.

Theorem 5.2. The sensor network is (1-δ)-self-protected if p >
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2d .

Proof. Let Yi be a random variable where Yi = 1 if sensor i is activated and
Yi = 0 otherwise. Let S denote the set of sensors in a circle with radius r = 1

2R. If
any sensor that falls into this circle is active, all sensors in this circle are covered; see
Fig. 2. Define Y where Y =

∑
i∈S Yi. The total number of sensors in this circle is at

least n = 1
2R2d−c, where c is a constant, as approximated by the inner square of this

circle; see Fig. 2. We omit c as it can be compensated by a small adjustment in the
probability. Clearly, we have E[Y ] = 1

2R2dp. To construct a self-protection, at least
2 sensors need to be activated in this circle, i.e., we need to find Pr[Y < 2]. Since
each sensor makes activation independently, using Chernoff’s inequality [Motwani

1Usually, δ is a small number. For example if δ = 10%, we have a 90%-self-protection, i.e., the
probability that a sensor is protected is 90%.

ACM Transactions on Sensor Networks, Vol. 2, No. 3, 09 2001.



Preparing Articles for the ACM Transactions on Sensor Networks · 119

    R

    r

R

(a)

     R

R

(b)

Fig. 2. (a) Outside circle has radius R, equal to the sensing range; inside circle has radius r = 1
2
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Any sensor activated in this circle will protect all sensors in this circle. The number of sensors is
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and Raghavan 1995], we have Pr[Y < 2] = Pr[Y < 2
E[Y ]E[Y ]] < e−(1− 2

E[Y ] )
2 E[Y ]

2 <

δ. By solving the last inequality, we have p >
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2d . The theorem
follows as the circle is arbitrarily chosen.

In the above proof, R should be smaller than the sensor area; so as to make d
meaningful for arbitrary chosen circles. This is true in practice where the entire
sensor area is much larger than the sensing range of each individual sensor. For
boundaries of the sensor network, the density usually is less than the area inside
the sensor networks. One solution is to deploy sensors in a slightly enlarged sensor
area. Otherwise, it is possible to make the inside area of the sensor network along
the boundaries “denser” to compensate the empty outside regions.

The bound in Theorem 5.2 is a lower bound. While provides guarantee for (1-δ)-
self-protection, in practice it may activate more sensors than necessary. It, however,
gives us important information of the relations between different parameters. Ob-
viously, the activation probability p is inversely proportional to sensing range R2

and density d, implying that the sensing range has a significant impact on p. The
user confident level is easier to boost (i.e., the error δ is easier to reduce), as p ∝
O(ln 1

δ ). In fact, from probability theory and randomized algorithms, repeating the
sampling O(log k) times will improve δ to δ

k . It is worth noting that, given a certain
density d and sensing range R, it is possible that we can not achieve a certain level
of self-protection at all; if the sensors are too sparse. Therefore, to achieve a qual-
ity protection, we may have to sacrifice the cost of deploying more sensors. This is
formally stated in Corollary 5.3, which is also illustrated by numerical experiments
shown in Fig. 3 where R = 3 and the area is a 40× 40 square.

Corollary 5.3. To achieve the protection ratio (1-δ), the minimum density of

the network is d >
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2 .

Proof. Directly from
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2d < p < 1.
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and Paired Random Activation.

We are also interested in the life time of the system. The life time of the network is
directly related to the life time of each sensor. Neglecting the energy consumption
during the sleeping state and other light-weight uses, the expected life time of
the network can be estimated as L = l

p if the active sensor sets are periodically
alternated in a random fashion. This result, together with Corollary 5.3, implies
that the life time of the network is proportional to the sensor density, as formally
stated in Corollary 5.4. This is consistent with the experimental findings in [Xu
et al. 2001].

Corollary 5.4. To achieve the protection ratio (1-δ) and the expected life time

L, the minimum density of the sensor network d >
2L

(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

lR2 .

5.1.2 Paired Random Activation. The sensors will first arbitrarily choose one
of their neighbors to form pairs. Sensor pairs will activate themselves with certain
probability, which, by re-using notations, is also denoted as p. Compared to Total
Random Activation, where the sensors may not find other active sensors in its
surroundings after activation, Paired Random Activation guarantees sensors are
activated in a protected way.

Similar to Total Random Activation, for analytical purposes, we assume that the
sensors are placed in a unit mesh. Sensor pairs are specifically chosen in parallel
with each other as shown in Fig. 2 (b) and the distance between the two sensors
in a pair is R. Intuitively, we paired the sensors that they will cover a larger area.

Theorem 5.5. The sensor network is (1-δ)-self-protected if p >
2(1+ln 1

δ +
√

ln 1
δ (1+ln 1

δ ))

R2d .

Proof. Let Yi be a random variable where Yi = 0 if sensor pair i is not activated
and Yi = 1 if activated. Let S denote the set of pairs in a

√
2

2 R×(R+
√

2
2 R) rectangle.

Let Y be the total number of pairs activated in this rectangle, we have Y =
∑

i∈S Yi.
The number of pairs in this rectangle is at least n =

√
2

2 R×
√

2
2 Rd = 1

2R2d, where
we count the pairs with both ends being in the rectangle only. It follows that
E[Y ] = 1

2R2dp. Note that whenever a pair located in this rectangle is activated,
the entire rectangle will be protected, as shown in Fig. 2 (b). Therefore, the
probability that the rectangle is not protected is Pr[Y < 1]. Since all pairs are
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 09 2001.
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activated independently, using Chernoff’s inequality, we have Pr[Y < 1] = Pr[Y <
1

E[Y ]E[Y ]] < e−(1− 1
E[Y ] )

2 E[Y ]
2 < δ. By solving the last inequality, the theorem

follows.

We compare Paired Random Activation and Total Random Activation by using
the activation bounds in Theorem 5.2 and 5.5. Although these bounds are not
tight, they give important indication of the performance of the two algorithms.
Numerical experiment results are shown in Fig. 4, where the total number of
sensors is 5000, the sensor field is 40×40, and R = 3. We see that, when δ is small,
the number of sensors required to achieve (1-δ)-self-protection in Paired Random
is much larger than Total Random. For such small δ, we need a more refined
protection and high activation probability for both algorithms. Consequently, even
if sensors make activation decision individually in Total Random, the probability
that they can not find other active sensors in their neighborhood is relatively small
if a large number of sensors are activated; Paired Random, however, might activate
more sensor than needed in this case. On the other hand, when δ is large, the two
algorithms perform closely. The drawback of Total Random is that some sensors
might not find protection after activation in this case.

While our analysis is based on a mesh sensor network and various assumptions,
our simulations results in Section 7 validate the above conclusions for uniformly
distributed sensor networks.

5.2 Neighborhood Cooperative Self-Protection

In PIA, to accurately estimate the activation probability p, the density of the sensor
network should be known. This, however, can not be easily obtained if the sensors
are deployed arbitrarily, e.g., from an aircraft. We now present another distributed
self-protection, Neighborhood Cooperation, where sensors work cooperatively to
provide necessary protections without knowing the density information.

There have been many studies on neighborhood cooperation in sensor networks,
e.g., Geographical Adaptive Fidelity (GAF) [Xu et al. 2001] and Probing Envi-
ronment and Adaptive Sleeping (PEAS) [Ye et al. 2003]. In GAF, the sensors
cooperate for routing. The area is divided into virtual grids, and each sensors in
a grid can reach all the sensors in the neighboring grids. Thus, the sensors in a
grid are equivalent to each other and only one sensor shall be active at a time. The
sensors in a virtual grid alternate between sleeping and active states. An additional
discovery state is used to assist state transition. PEAS focuses failure prone sensor
networks. Sensors alternate between two states, probing environment and adaptive
sleeps. In the probing state, each sensor sends out probing messages and collects
replies. Each active sensor will measure the frequency of the probing message from
its neighbors and attach this information in the reply messages. In the adaptive
sleeping state, each sensor sleeps for a duration according to the estimation of active
sensors by the frequency information. PECAS [Gui and Mohapatra 2004] extends
PEAS by allowing each active sensor to reply the probing message with a vari-
able next sleep time, indicating the remaining active period of this sensor. Upon
receiving this message, the probing sensor will activate itself accordingly.

Our Neighborhood Cooperative (NC) self-protection is motivated by the above
studies. The key difference is that, unlike these schemes where only one active sensor
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Sleeping

Discovery Waiting

Active

Fig. 5. State Transition Diagram.

is needed, in our setting, sensors not only need to decide whether they should keep
active, but also have to wait for other sensors to form pairs if appropriate.

The NC algorithm has four states, namely, active, discovery, waiting, and sleep-
ing; see Fig. 5 for the state transition diagram. In the sleeping state, the sensor is in
the power saving mode for a period of sleep time dur. After the timer expires, the
sensor changes to the discovery state and sends out probe messages to its neighbors.
The active neighbor sensors will reply with rejection messages, which includes their
remaining active time. If the sensor receives more than rNum rejections, it will
return to the sleeping state and set sleep time dur to the smallest remaining active
time it receives. Otherwise, it will change to the waiting state, and periodically
sends out probe messages. If it receives another probe message, the two sensors
will form a pair and activate themselves. The pair sensors will stay for a duration
of work time dur in the active state. The work time dur and sleep time dur are
chosen uniformly from [0, MAX WORK TIME] and [0, MAX SLEEP TIME].

Fig. 6 gives an illustrative example of the state transition for a sensor network
consisting of five sensors. In Fig. 6 (a), sensor 2 and 3 are in the active states,
protecting each other and the surrounding sleeping sensors. In Fig. 6 (b), two
sleeping sensors 1 and 4 wake up and send discovery messages to their neighbors.
We set rNum = 2 in this example, so sensor 1 switches to the waiting state and
sensor 4 returns to sleep after receiving two rejections. Sensor 4 sets the sleeping
time to the remaining working time for the active sensors. In Fig. 6 (c), Sensor
0 changes to waiting state, and the waiting sensors send probe messages to the
neighbors. In Fig. 6 (d), the two waiting sensors 0 and 1 become active. The two
original active sensors 2 and 3 return to sleep as their working timers expire, and
the sleeping sensor 4 wake up to the discovery state.

The basic design philology of NC is to use rNum to control the quality of the
self-protection and the sleep/work schedules to balance the energy consumption.
Its performance will be evaluated through simulations in Section 7.

6. BINDING WITH THE MAIN OBJECTIVES

As we mentioned earlier, self-protection improves the robustness of the network, but
itself is never the single objective in the system design. It serves as a complement
to such main objective(s) as monitoring the field or valuable objects. Therefore,
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 09 2001.
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Fig. 6. (a) A snapshot of the sensor network; (b) Sensor 1 and 4 are in discovery state; (c) Sensor
4 returns sleep after receiving two rejections (rNum = 2); Sensor 1 switch to waiting state; (d)
Sensor 0 and 1 change to active state and sensor 4 wakes up again.

an effective integration of self-protection with these main protection objective is a
critical issue.

We suggest a two-tier architecture, in which the sensor network will first calcu-
late the set of sensors that can provide self-protection. All the sensors will then
participate in the operations for the main objectives. The set of sensors to stay
in active is the union of that for self-protection and for the main objectives. An
interface is provided between the two tiers for communicating of their respective en-
ergy consumption. Each tier then independently optimizes its coverage and energy
consumption.

We adopt this architecture for its simplicity and adaptability to different cover-
age/protection scenarios (i.e., main objectives). The main design principle is that
the sensor network should first be self-protected. Then the sensors will participate
the calculation for the main objectives, according to their energy status. We focus
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on the interface of how the sensors should know the energy status so that they can
estimate the self-protection correctly. We thus concentrate on how to enhance our
self-protection algorithms for PIA and NC, respectively.

6.1 Energy Adjustment for PIA

In Pre-scheduled Independent Activation (PIA), the sensors are aware of their total
remaining energy and the energy usage for self-protection and operations for the
main objectives. Since each node does not know the energy consumption of other
sensors, to balance the load, the sensor needs to have the knowledge of the average
energy consumption ratio between the cost of self-protection and the cost of the
main objectives. This information can be estimated based on the functionality
of the main objective and previous experiences. Thus, the sensors can evaluate
the speed of its own energy consumption according to history information. If the
energy consumed by the coverage for the main objective is high, then this sensor
will not be included in the calculation of the main objective in the future round.
For example, the calculation for the coverage of the main objective can be based
on a sub network by removing this sensor.

6.2 Energy Adjustment for NC

In Neighborhood Cooperative Self-Protection (NC), the sensors negotiate with
neighboring sensors. To estimate the self-protection correctly according to the en-
ergy consumption, the sensors include their remaining energy information in each
outgoing message. Accordingly, every sensor receiving the energy information can
make decisions on extending or shrinking its work time dur and sleep time dur. Let
e remain be the remaining energy of a sensor and avg be the average energy re-
maining for the sensors in its neighborhood, we choose work time dur uniformly
from [0, MAX WORK TIME] multiplying an adjustment factor of ( e remain

avg )2. On
additional concern in this setting is that two active sensors might not go to sleep
together; consequently, if one active sensor in a pair returns to sleep, the other one
will wait and activate the next sensor that is in discovery state.

It is worth noting that the active/sleeping commands from the two tiers could be
conflict for individual sensors; A closer interaction and joint optimization between
the two tiers would be superior in balancing energy consumption. Nevertheless, the
overall system can be quite complex and the optimization might not universally fit
to diverse main objectives; we thus leave it as a future work.

7. PERFORMANCE EVALUATION

7.1 Simulation Setups

In our simulation, unless otherwise specified, we uniformly deploy 500 sensors into
a square field of [40m, 40m]. The transmission range of each sensor is set to 3m.
To remove randomness, each point in our figure represents an average of 50 random
and independent experiments.

Note that we have obtained bounded approximation algorithms for the central-
ized scenario, and the properties of the related problems have been well studied in
the literature; hence, we focus on the evaluation of the distributed scenario.
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Fig. 7. A Voronoi Diagram of a sensor network.
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Fig. 8. Weight of the maximal breach path as a function of ratio of active sensor attacked.

7.2 The Necessity of Self-Protection

As an additional level of protection, self-protection has additional demands from
the network, such as denser sensor deployment and higher energy consumption. It
is therefore important to justify its necessity. In the first set of experiment, we use
the maximal breach path [Meguerdichian et al. 2001], a typical protection scheme
for the main objective, to show that the protection quality can be poor without
self-protection.

To find the maximal breach path, one can build an auxiliary graph based on the
Voronoi Diagram induced from the topology of the sensor network (See Fig. 7).
The weight of each edge in this auxiliary graph is the minimum distance of the
edge to the nearest sensors. The problem can then be solved by finding the path
with the highest minimum-weight-edge in this auxiliary graph. The deployment
of sensor should minimize the weight of the maximal breach path. To attack this
coverage, we selectively dismantle a few sensors that are not protected by others.
The set of isolated sensors selected should maximize the profit, i.e., making the
maximal breach path as wide as possible. This selection problem is NP-complete.
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Table I. Overhead of Self-protection
Activation Probability p (%) Overhead (%) to achieve Self-Protection

10 44.2
15 30.0
20 19.8
25 12.7
30 9.07

In our implementation, we use a simple heuristic, which randomly selects a subset
of sensors to remove and calculate the resultant maximal breach path, and repeats
this process k = 8 times. We then pick the best subset, and compare the weight of
the maximal breach path before and after the removal of the isolated sensors.

We set the activation probability p = 0.1. In expectation, a total of 50 sensors
will be in the active state. We attack isolated sensors only and the attack ratio
is set from 0% to 30%. We can see from Fig. 8 that by attacking a few isolated
sensors, the weight of the breach path is increased substantially. For example, in
our experiment, if 25% of the isolated sensors, (5.86 on average, i.e. 1.17% of the
total nodes and 10% of the active nodes) are attacked, the weight of the maximal
breach path will increase by 39.4%. This degradation is remarkable; also note that
a simple interference would achieve the same result of physical removal. Intuitively,
this difference is because the coverage of the sensor network has to put on the whole
area, while the attacks can target on some weak points of the sensor network. We
thus conclude that self-protection is of great importance given that the sensors
themselves can be attacked.

As claimed, self-protection usually incurs additional activation of sensor nodes.
This overhead depends on the definition of the cost of the main objectives of the
application. In our paper, we draw an abstraction for the self-protection so as
to avoid any specific main objective. Nevertheless, we quantify this overhead in
maximal breach path. Notice that theoretically the overhead of self-protection is
at most twice compared to without self-protection (for 2-self-protection). This is
hardly reached as illustrated in Table I. In Table I, we evaluate the percentage of
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additional sensors needed for self-protection as compared to the activation proba-
bility. Notice that the more sensors are activated, the less possibility of the isolated
sensors and thus the less overhead of the self-protection.

7.3 Performance of Pre-scheduled Independent Activation (PIA)

We study the effectiveness of the two pre-scheduled random algorithms (Total Ran-
dom and Paired Random) for PIA in Fig. 9. The activation probability for Total
Random is from 5% to 40%; The activation probability for Pair Random is halved,
so that the expected number of active sensors is the same as that in Total Ran-
dom. We can see that Total Random performs worse than Paired Random if the
activation probability is small, because, after activation, sensors might not find
other active sensors in their neighborhood. When activation probability is high,
the number of sensors unprotected by Total Random is less than Paired Random.
One reason is that in Paired Random, sensors need to find a pair sensor before
activation; Not all sensors, however, will find such a pair if all the neighbor sensors
are paired by other sensors in advance. In addition, Total Random potentially en-
ables to a better distribution of the active sensors, which will also contribute to its
protection capability.

We next evaluate the parameters that affect self-protection quality. In Fig. 10,
we consider the change of the maximal breach paths before and after an attack
for Total Random Activation. In particular, we are interested in the enlargement
ratio of the weight of the maximal breach path. The base line corresponds to the
default network setting, where the sensing range is 3m. Obviously, the higher the
activation probability, the smaller the enlargement of the weight of the maximal
breach path. To understand the impact of the sensor density and sensing range,
we also show the results corresponding to 500 sensors with sensing range of 4m,
and 670 sensors with sensing range 3m, respectively. That is, a respective increase
of 1

3 for sensing range and density. We can see that the sensor network with the
default setting are most vulnerable to the attack and the enlargement ratio is the
highest. It follows our intuition that a denser deployment, or equivalently, larger
sensing range, provides better protection. Note that the coverage of each sensor is
a square function of the sensing range; hence, an increase of 1

3 for the sensing range
has a higher impact (less enlargement ratio).

In Fig. 11, we compare the Total Random Activation and Paired Random Ac-
tivation in terms of the weights of the corresponding maximal breach paths. As
before, the activation probability of Paired Random is half of the activation prob-
ability of Total Random, and the attacks focus on isolated active sensors only. We
can see that Paired Random performs better than Total Random since our network
is a fairly sparse network. As the activation probability increases, however, the dif-
ferences become marginal. It is also clear that Paired random does not distribute
the active sensors as good as Total Random because the weight of the maximal
breach path is generally larger before attacks. All these observations are consistent
with our analysis in Section 5.1.

7.4 Performance of Neighborhood Cooperative Self-Protection

In neighborhood cooperation, we consider the energy consumption of sending, re-
ceiving, idling and sensing, and neglect the cost of sleeping, which is generally small

ACM Transactions on Sensor Networks, Vol. 2, No. 3, 09 2001.



128 · Dan Wang et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

10 15 20 25 30

E
nl

ar
ge

m
en

t R
at

io

Activation Probability(%)

Base
Sensor No.=670

Sensing Range=4

Fig. 10. The enlargement ratio of the maximal breach path as a function of activation probability.

2

3

4

5

6

7

8

10 15 20 25 30

W
ei

gh
t o

f t
he

 M
ax

im
al

 B
re

ac
h 

P
at

h

Activation Probability(%)

Total Random(Before Attack)
Total Random(After Attack)

Paired Random
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in practice. We adopt the parameters in [Mainwaring et al. 2002] as transmission,
20nAh (10−9 Ampere-hours) and receiving, 8nAh. The energy consumption for
sensing is remarkably smaller than transmission, 1.447nAh. We assume packet
transmission has a rate of 6 per idling time. Therefore, according to [Mainwaring
et al. 2002] we set our costs, transmission : receiving : idling : sensing to 15:6:6:1.
Similar energy consumption ratio is also observed in [Chen et al. 2001][Xu et al.
2001]. We assume that the sensors sensing the environment once per second. The
total energy for a sensor is set to 80mAh and the duration of our experiment is
1500 seconds. We study the effect of different parameters in our simulations.

We compare the difference between PIA and NC with different parameters. For
the pre-scheduled independent activation, we set the interval time to 20 seconds,
i.e., each sensor will randomly activate itself with probability p every 20 seconds.
For neighborhood cooperation, to have a similar effect, the ratio work time dur :
(sleep time dur + work time dur) is set to p. In our setting, p = 10%, work time dur
= 10 seconds, and sleep time dur = 90 seconds. rNum is set to 2 and 5, respectively.
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The initial protection ratio is set to be the same.
The comparison is shown in Fig. 12. In PIA, the protection quality is relative

stable over time. In NC, the protection is improved over time. This is because in
PIA, each time the network rebuilds the active sensor set, the protection capability
remains unchanged, which is, however, not the case for NC. In the latter, the sensors
will know the next sleep time from other active sensors and awake at that point of
time; this gradually increases the number of sensors needed for protection. Since
the process stops according to the number of rejection messages, i.e., the value of
rNum, rNum acts an indicator for the system to discourage (or encourage) future
active sensors: If the rejection rate is high, then sensors will return to sleep more
frequently; otherwise, the sensors will have a higher chance to go to waiting state
and subsequently transfer to active state. Clearly, we can boost the protection
capability of PIA by increasing p. As argued in our analysis before, this depends
on the deployment of the sensor networks, which may not be easily controlled.
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The corresponding energy consumption can be seen in Fig. 13. Clearly, PIA
is more energy effective, as it does not require extra message exchanges, a major
energy consumption for sensor networks. In addition, the number of active nodes in
use is less than NC as time progresses. We thus argue that PIA is more beneficial
if the sensor network is well planed, e.g., the density is easy to control so that we
can pre-estimate the activation probability more accurately, and NC is better for
dynamic environments.

We next consider the impact of sensor distributions. In Fig. 14, we introduce
a biased distribution, where 1

4 sensors are uniformly distributed in one half of the
sensor area, and the remaining 3

4 sensors are uniformly distributed in the other half
of the sensor area; in other words, one part of the network is dense and the other
part is sparse. We see that NC performs worse in this biased distribution than in
uniform distribution since there are fewer sensors in the sparse area. PIA, however,
shows an opposite trend, suggesting that PIA benefit more from the biased network,
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in particular, the dense part of the sensor network.

7.5 Binding with the Main Objectives

Finally, we study the interactions between the self-protection and the main objec-
tives. To have our self-protection algorithms universally applicable, we consider the
main objectives as a black box, and the self-protection module can only estimate
the energy consumption of the main objective module. We focus on the capabilities
of PIA and NC in energy balancing. If the energy consumption for protecting the
main objectives is balanced for each sensor, then the overall energy usage for each
sensor will simply drop proportionally. Thus, we focus on the case where the energy
consumption of the main objectives is not balanced for each sensor.

We assume that 20% of sensors are heavy loaded by the main objectives while the
remaining 80% of the sensors are light loaded. These sensors will periodically carry
on a task which costs certain amount of energy from 100nAh to 350nAh. We set
the period to 100 second, and after 1500 seconds, we calculate the average energy of
the sensor and count the number of sensors with residual energy being lower than
30% and 50% of the average energy. The results are shown in Fig. 15. We can see
that in NC, the increase of energy consumption for the main objectives does not
noticeably affect the number of sensors with low residual energy, suggesting a good
energy balancing. On the contrary, for PIA, unfortunately, the number of sensors
with low residual energy linearly increases when increasing the energy spending for
the main objectives.

We can consider the the superiority of Neighborhood Cooperation (NC) in energy
balancing from another point of view: There are certain sensors which are of “high
value” for achieving the main objectives. Consequently, these sensors should not
be burdened with self-protection, and other sensors should help protect these “high
value” sensors, as NC does. We can generalize this where less valuable sensors
provide protection to more valuable sensors, resulting in a more flexible and robust
multi-tier protection architecture.

8. CONCLUSION AND FUTURE WORK

In this paper, we pointed out that the sensors themselves can be the weakness in a
wireless sensor network for protection applications. Through analysis and simula-
tions, we showed that, by interfering a small set of sensors, the protection/coverage
capability of a well-planned sensor network can be significantly damaged, and pro-
tections for the sensors themselves are thus necessary. We further demonstrated
that the sensors can be effectively protected by themselves, to which we referred to
as self-protection.

We for the first time presented a formally study of the self-protection strategies.
We showed that the problems are generally NP-complete, and developed efficient
and bounded approximation algorithms for centrally-controlled sensors. We further
presented fully distributed implementations for large-scale sensor networks.

In our study, we consider the main protection objectives as a black box, and
our self-protection algorithms are generally applicable with different field/object
protection algorithms. We however conjecture that some main protection objects
might be overlapping with and thus assist self-protection while others might intro-
duce conflicts. Therefore, an interesting future work, as we stated in the paper, is
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to joint optimize the self-protection and other protection objectives.
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