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1. INTRODUCTION

A wireless sensor network consists of a large collection of sensor nodes, and is often
deployed in an open area with no traditional wired or wireless network support.
Each sensor node is a small device. It is not only short of battery power, but
also restrained by memory storage. As a result, one sensor can store only a small
amount of data collected from its surroundings, and a large quantity of sensor nodes
have to work collaboratively for data gathering, storing, and replicating. To collect
the data from the sensor nodes, an agent or base station (referred to as a server
in this paper) functions as an intermediate gateway between a sensor network and
the remote world.

Many recent studies are interested in data collection from harsh and extreme en-
vironments [Dimakis et al. 2005][Widmer and Boudec 2005]. In these environments,
the communications between the sensor nodes and the server can be expensive and
scarce, and the data are collected occasionally. In each data collection, a fast data
retrieval is usually desired [Dimakis et al. 2005]. Typical examples include the
habitat monitoring system in Great Duck Island [Mainwaring et al. 2002]; some
birds are notoriously sensitive to human intervention, and thus, data collection are
done occasionally. In each collection, the presence of human being should be mini-
mized and, hopefully, far away from the habitat center. Applications of monitoring
systems in chemical plants also share similar characteristics, where the technicians
occasionally approach the sensing area to collect data and each data collection
should be performed quickly for safety purposes.

In the current popular data collection techniques, a server sends out a query to
a root sensor and the root sensor spreads the query to the sensor network. The
data are then routed from the source sensors to the root sensor. This collection
technique, however, is not suitable for the applications described above. First, this
technique can introduce a long delay in each data collection due to data searching
and aggregation [Krishnamachari et al. 2002][Wang et al. 2005]. Second, this tech-
nique is beneficial if data can be aggregated so that the payload will be reduced in
the intermediate nodes. If raw data are required, then the root sensor will be bur-
dened by uploading all data from the sensor network to the server. Third, in many
situations, some part of the sensor network may not be accessible due to failure. A
ubiquitous access is thus suggested in [Dimakis et al. 2005]. In this scenario, data
are redundantly stored in the sensor network and the server just randomly contacts
a few sensor nodes to retrieve data. This server accessing (also known as blind
access) is easy to implement. If the data can be retrieved accurately, the scheme
is also much faster. In addition, it inherently distributes the communication cost
from the root sensor to multiple sensor nodes, which balances the load.

Unfortunately, as illustrated in Fig. 1, this straight forward approach may intro-
duce large replication. Redundancy management have been studied in many known
coding algorithms, e.g., different types of erasure codes [Blahut 1983]. Most of these
codes, however, are generated at a central entity and then distributed to different
storage locations. This is not realistic in our application, because no sensor node is
capable to store all the data, let alone to perform complicated encoding operations.
A potential solution rises from random network coding [Dimakis et al. 2005][Medard
et al. 2005][Widmer and Boudec 2005], which distributively manipulates the data
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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(a)

(b)

Fig. 1. An illustrative example of blind access. There are 4 different data segments distributed
in the network. Each sensor (represented by a small circle) can store only one data segment
(represented by the texture). (a) Server is absent. (b) Server access. The server randomly contacts
several sensors to upload data. In this example, the server contacts 4 sensors, and unfortunately
obtains only 3 different data segments.

in each node. Such operations combine all (say, N) data segments, making the
coded data segments being equivalent to each other in decodeability. Thus, each
sensor can store a small number of data segments and the server can decode all
the original data as long as N combined data segments are collected. A fast and
load-balanced data collection is then realized.

A key deficiency of this conventional network coding is the lack of support for
removing obsolete data. Removing obsolete data is crucial for the sensor network.
First, the resource of the sensor storage has a limit. If the sensor network gets
unattended, e.g., because the weather prohibits the server to perform the data
collection for a long time; the total data to get stored may exceed the total storage
space of the entire sensor network. In many practical applications, new data has
higher value than old ones. Thus, the sensor network needs to have the ability to
remove old data in order to accommodate newly collected ones. Second, collecting
all the data may consume too much energy; and the more data collected, the larger
number of sensors need to be queried. To remove data in conventional network
coding scheme, the coded segments have to be first decoded; and then re-encode
into new combined data. This set of operations is time- and resource-consuming
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[Gkantsidis and Rodriguez 2005]. Even worse, given that a sensor can only store a
partial set of the combined data, it is impossible to carry out decoding operations
in each individual sensor.

In this paper, we present Partial Network Coding (PNC), which effectively solves
the above problems. PNC inherits the blind access capability of NC, and yet
achieves the following salient features: 1) It allows a higher degree of freedom in
coded data management, in particular, decoding-free data removal; 2) Its compu-
tation overhead for encoding and decoding is almost identical to the conventional
network coding scheme; and 3) We proved that its performance is quite close to
the conventional network coding scheme as well, except for a sub-linear overhead
on storage and communications. We also address a set of practical concerns to-
ward building and maintaining a PNC-based sensor network for continuous data
collection and replacement. The feasibility and superiority of PNC are further
demonstrated through simulation results.

The remainder of this paper is organized as follows. In section 2, we present the
related work. We briefly introduce the system model and explain the motivations
in section 3. The theoretical foundations for partial network coding are established
in section 4. In section 5, we discuss the practical concerns toward using the partial
network coding in sensor networks and show a distributed protocol design. The
performance evaluation of PNC is presented in section 6. Finally, we conclude the
paper and discuss future directions in section 7.

2. RELATED WORK

Wireless sensor networks have been extensively studied recently and surveys can
be found in [Akyildiz et al. 2002][Al-Karaki and Kamal 2004][Estrin et al. 1999]. In
many applications, a sensor network is query based [Madden et al. 2002], where a
server queries the sensors, and the latter cooperatively response as a single entity.
For such queries as Maximum, Minimum, and Average [Wang et al. 2005], a popular
scheme is to construct a tree among the sensor nodes with the root being responsible
for collecting data. This scheme works well if the data can be aggregated in the
intermediate sensors [Heinzelman et al. 2000][Intanagonwiwat et al. 2000]. In our
application, we are interested in blindly collecting the up-to-date raw data from the
sensor network, which calls for different solutions.

Coding is a powerful tool for randomized data storage and collection. A typical
coding scheme is the erasure codes [Blahut 1983][Lin and Costello 2004], in which
a centralized server gathers all N data segments and builds C coded segments,
C ≥ N . If any N out of C coded segments are collected, the original data segments
can be decoded [Gallager 1963][Luby 2002]. A practical investigation of these codes
can be found in [Plank and Thomason 2004]. As mentioned before, these centralized
operations are not suitable for our application environment that involves a large
quantity of tiny sensors. An alternative is network coding [Ahlswede et al. 2000][Zhu
et al. 2004], which distributes the encoding operations to multiple nodes.

Network coding was first introduced in [Ahlswede et al. 2000] to improve the
performance of multicast routing. In the proposal, a router in the network can not
only relay the data packets, but also code the data packets. The throughput of the
network can thus be significantly improved. To guarantee decoding of the the coded
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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data packets by the receivers, a centralized management of the co-efficient matrix is
needed. Random linear coding [Medard et al. 2005] was proposed thereafter to relax
this central control feature. The co-efficient of the codes are picked randomly from
a finite field by each individual node. It has been shown [Medard et al. 2005] that
if the finite field is chosen appropriately (large enough), then the linear dependency
of the co-efficient is negligible and the probability of successful decoding of the code
words is high. Our work also incorporates this feature.

Network coding was later suggested for efficient data storage and distribution
[Deb and Medard 2004]. Using network coding for data distribution is further
theoretically studied in [Medard et al. 2005], and a practical system for random
file distribution is presented in [Gkantsidis and Rodriguez 2005]. Recently, network
coding and its related extensions have been introduced in wireless sensor networks
for ubiquitous data collection [Dimakis et al. 2005][Widmer and Boudec 2005].
In these studies, the data segments to be collected are static and fixed. On the
contrary, we focus on continuous data, where obsolete data have to be evicted from
a limited buffer. The proposed partial network coding complements the previous
studies by demonstrating a fully localized algorithm that allows the removal of the
obsolete data.

Our application scenario is also closely related to the Delay Tolerant Network
(DTN) or extreme network architecture [Cerf et al. 2004][Fall 2003][Jain et al.
2004]. A typical example is the ZebraNet in Africa [Juang et al. 2002], where
researchers have to travel to the sensor network in person to collect data. Other
recent examples can be found in [Dimakis et al. 2005][Ho and Fall 2004][Wang et al.
2005][Widmer and Boudec 2005]. One important feature of these networks is that
each node needs to store data temporarily and submits data when needed, but,
again, they generally assume that the data are never obsolete, which is different
from our focus.

3. MOTIVATIONS AND PRELIMINARIES

3.1 Model and Notations

We now give the a formal description of the system. We assume that the total
number of up-to-date events to be recorded in the whole system is N . Each event
(e.g., the temperature goes beyond 100◦C), whenever generated, is recorded by all
the sensors in the sensor networks. The event is represented by one data segment,
denoted by cj , and cj′ is fresher than cj if j′ > j1. Similar to existing studies on
linear network coding, we use

∑N−1
j=0 βj × cj to generate a coded data segment fi,

where −→β = [β0, β1, · · · , βN−1] is a co-efficient vector. Each item βi is randomly
generated from a finite field Fq. Since the coding can be viewed as a combination
process, fi is also referred to as a combined data segment, and cj as an original data
segment. Notice that the size of fi remains equal to cj . We define the cardinality

1We emphasize that the data should be considered as a generalized data, besides just specific
numerical readings. For example, it can be a time mark, e.g., all sensors record the time when
certain event happens. The time granularity should be reasonably discrete so that all the sensors
is able to record the same data. The data can also be some predefined interesting events, e.g.,
observation of wild animals, etc. In general, if the “distance” between different events is sufficient
large then there will be no misunderstandings among the sensors.
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Table I. List of Notations
Notation Definition

N Number of original data segments to be collected
B Buffer size of each sensor
cj Original data segment with index j
βj Coding coefficient for cj

fi Combined data segment with index i
fk

i fi, with the oldest original segment k

k̂ Cardinality of the combined data segments
W Number of sensors queried by the server for each access
q Size of finite field for coefficients

of fi to be the number of original data segments it contains, and the full cardinality
of the system is the highest possible number, i.e., N .

The total number of sensors in the network is M , and each has a buffer of size
B (< N) for storing the data segments. For each server access, W sensors are to be
contacted and, without loss of generality, each sensor will upload one data segment
from its buffer.

A summary of the notations can be found in Table I. Clearly, to obtain all
the N original data segments, we must have W ≥ N , and even so, not all the
segments are necessarily obtained in one access. Consider a naive data storage and
collection scheme without any coding. Assume that B segments (out of the N up-
to-date original segments) are stored in each sensor’s buffer and the distribution is
uniform. The server blindly collects data from N sensors. The success ratio for this
naive scheme is

∏N−1
i=0

N−i
N

2. Here, the success ratio serves as the major evaluation
criterion in our study, and is defined as follows:

Definition 1. (Success Ratio) The success ratio is the probability that a scheme
successfully collects all the N original data segments. The default settings of W and
B are W = N and B = 1, which are their lower bounds for valid schemes.

For the naive scheme, its success ratio is a decreasing function of N . As shown
in Table II, even for N = 2, the probability is barely 50%, and the performance is
extremely poor for larger N .

3.2 Network Coding based Collection: Superiority and Problems

We now show that network coding can significantly increase the success ratio. With
network coding, all data segments are stored in a combined fashion, and the N
original data segments can be decoded by solving a set of linear equations after
collecting any N combined data segments. A necessary condition here is that the

2One may suspect that if the server specifically requests data segments from each sensor node, the
performance may improve. Unfortunately, this is not always the case. Consider that the buffer
size of each sensors to be B = 1. Assume there are two pieces of information X and Y to be
collected. The server contacts two nodes n1 and n2. The probability without server specification
is 50% (The possible combinations from n1 and n2 are (n1, n2) = (X, X), (Y, Y ), (X, Y ), (Y, X);
and the last two succeed.). The probability with server specification is only 25% (wlog, the server
specifically requests X from n1 and Y from n2. The possible combinations from n1 and n2 are
still (X, X), (Y, Y ), (X, Y ), (Y, X); and only the third one succeeds.) Intuitively, as the server does
not know which sensor has what information, it can not request “correctly”.
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Table II. Sucess ratio of the naive scheme (W = N, B = 1)

N Success Ratio N Success Ratio

2 0.5 6 0.0154321

3 0.222222 7 0.0061199

4 0.09375 8 0.00240326

5 0.0384 9 0.000936657

Table III. Probability of Linear Independency as a Function of Finite Field Size (q).

q Probability q Probability q Probability

21 0.288788 25 0.967773 29 0.998043

22 0.688538 26 0.984131 210 0.999022

23 0.859406 27 0.992126 211 0.999511

24 0.933595 28 0.996078 212 0.999756

coefficient vectors must be linearly independent. This is generally true for a large
enough field size q [Medard et al. 2005]. As shown in Table III, the probability of
linear independency is over 99.6% for q = 28, and this is almost independent of
N . As such, for the network coding based data storage and collection scheme, the
success ratio with W = N and B = 1 is close to 100%.

So far we have focused on static data only. In network coding, it is easy to com-
bine new data segments to existing data segments, which increases the cardinality.
The reverse operation is difficult, however. Specifically, to remove a data segment,
we have to first decode the data segments and combine the remaining data segments
to a new one. This is time- and resource-consuming for power limited sensors. Even
worse, it is often impossible for B < N , because decoding requires N combined data
segments. On the other hand, for continuously arrived data, if we keep obsolete
data segments in the system, we have to upload more data segments than necessary
to the server for a successful decoding of N needed data segments. Eventually, the
buffer will overflow, and the system simply crashes. This becomes a key deficiency
for applying network coding in continuous data collection.

4. PARTIAL NETWORK CODING BASED DATA STORAGE AND REPLACEMENT

In this section, we show a new coding scheme that conveniently solve the problem
of data removal, thus facilitating continuous data management. Our coding scheme
enables the combination of only part of the original data segments, and we refer
to it as Partial Network Coding (PNC), cf. network coding (NC) and no network
coding at all (Non-NC).

4.1 Overview of Partial Network Coding

In PNC, instead of having full cardinality of each combined data segment, we have
varied cardinalities from 1 to N . Formally, for original data segments c0, c1, . . . , cN−1,
we have a coding base B = {fk|fk =

∑N−1
j=k βj × cj , k ∈ [0, . . . , N − 1], βj ∈ Fq}.

We use −→β = [βN−1, βN−2, . . . , βk] to denote a co-efficient vector. We omit this −→β ,
however, and use fk = [cN−1, cN−2, . . . , ck] for ease of exposition if the context is
clear. Notice that if k̂ denote the cardinality of a combined data segment, then the
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f0 = [c3, c2, c1, c0]

f1 = [c3, c2, c1]

f2 = [c3, c2]

f3 = [c3]

Fig. 2. An example of the coding base for PNC with N = 4.

cardinality of fk can be calculated by k̂ = N − k. The coding base for N = 4 is
illustrated in Fig. 2. We may further drop the superscript k if the cardinality of
the combined data segment is clear in its context.

In our application scenario, each sensor stores only a subset of these combined
data segments given buffer size B < N . The storage for each sensor is S = {fk

i |fk
i ∈

B, 0 ≤ i ≤ B − 1}. Again, we may use fi provided that k is clear in the context to
represent the ith combined data segment in this sensor. An illustrative example is
shown in Fig. 3, which also includes the corresponding NC and Non-NC schemes.
From 3(c), we can see that, when a new c4 is generated and c0 becomes obsolete,
sensors s0 and s4 can simply drop the longest combined data f0 in their respective
buffers. The buffers of s0 and s4 then become {f0 = [c4, c3, c2], f1 = [c4]} and
{f0 = [c4, c3], f1 = [c4]}, respectively. This simple example demonstrates the salient
feature of PNC, that is, removing the obsolete data without decoding.

4.2 Encoding and Decoding

We now give a formal description for the encoding and decoding process of partial
network coding.

The encoding of PNC is an incremental process and to be performed by each
sensor node. Every time one original data segment c is encoded with a combined
data segment fk. Formally,

Encoding(fk, c)
Randomly generate βi from Fq.
fk+1 = fk + βic. (This addition is performed in Fq).

The encoding process is a sub-function of the data replacement algorithm per-
formed at each sensor. In Section 4.4, we will show how each sensor performs data
replacement for the combined data segments in its buffer.

The decoding of PNC is performed by the server. The server collects W combined
data segments f = [f0, f1, . . . , fW−1]. The server also collects the co-efficient vectors
[−→β0,

−→
β1, . . . ,

−−−→
βW−1] which forms a W ×N co-efficient matrix A = [aij ] = [−→βi ]. The

decoding process is basically to solve a set of linear equations given the N original
data segments c = [c0, c1, . . . , cN−1] to be the variables. Formally, we look for the
solutions of f = Ac. We apply Gaussian Elimination as follows.

Decoding(f,A, c)
Perform Gaussian Elimination on A and f to obtain an echelon form.
If aN−1,N−1 6= 0 then c = A−1f ,

else the rank of A is less than N and the set of equations is not decodeable.
We will discuss how the server collects the combined data segments and co-
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s0 : {c3, c1}, s1 : {c1, c0}
s2 : {c3, c0}, s3 : {c3, c1}
s4 : {c3, c2}, s5 : {c2, c0}

(a) Non-NC

s0 : {f0 = 5c3 + 2c2 + 3c1 + 4c0, f1 = 7c3 + 2c2 + 3c1 + 4c0}
s1 : {f0 = 3c3 + 2c2 + 10c1 + c0, f1 = 10c3 + 2c2 + 5c1 + c0}
s2 : {f0 = 2c3 + 5c2 + 2c1 + 4c0, f1 = c3 + 15c2 + 6c1 + 3c0}
s3 : {f0 = c3 + 18c2 + 9c1 + 4c0, f1 = c3 + 8c2 + 9c1 + 14c0}
s4 : {f0 = 5c3 + 2c2 + 3c1 + 4c0, f1 = 2c3 + 6c2 + 3c1 + 4c0}
s5 : {f0 = 7c3 + 7c2 + 9c1 + 5c0, f1 = 8c3 + 8c2 + 8c1 + 4c0}

(b) NC

s0 : {f0 = [c3, c2, c1, c0], f1 = [c3, c2]}
s1 : {f0 = [c3, c2, c1], f1 = [c3]}
s2 : {f0 = [c3, c2, c1], f1 = [c3, c2]}
s3 : {f0 = [c3, c2], f1 = [c3]}
s4 : {f0 = [c3, c2, c1, c0], f1 = [c3]}
s5 : {f0 = [c3, c2, c1], f1 = [c3, c2]}

(c) PNC

Fig. 3. Data distribution in 6 sensors (s0 through s5) each with two storage units. (a) Non-
NC, only original data segments are stored, (b) NC, combined data segments are stored where
the cardinality of each segment is N , (c) PNC, data are stored in a combined fashion where the
cardinality are arbitrary. We omit the coefficients for each combined data segment in PNC.

efficient vectors in practice in Section 5.1. Again, we emphasize that W (≥ N)
indicates the number of transmission needed between the server and the sensors.
Therefore, it is directly related to the efficiency of the PNC scheme. We will analyze
in Section 4.5 their relationship and show that a sublinear overhead (W = N +

√
N)

is sufficient enough to guarantee successful decoding.

4.3 Distribution of Cardinality

Partial network coding intrinsically manages the cardinality of the combined data
segments by setting some of the co-efficient to zeros. It is not difficult to see that,
for a server collection, if the contacted nodes provide combined data segments with
high cardinalities, then the success ratio will be higher3. We summarize this in the
following two observations.

Observation 1. The success ratio is maximized if every node provides the client
the combined data segment with the highest cardinality from its buffer.

Observation 2. Consider time instances t1 and t2. If at t1, the probability for
each node to provide high cardinality data segments is greater than t2, then success

3On the other hand, if the sensor network does not have, say, the combined data segment with the
highest cardinality (N), no matter how many data segments the server collects, it is impossible
for the server to decode. This is because in the co-efficient matrix, the co-efficient associated with
variable c0 (the oldest non-obsolete original data segment) is 0.
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ratio for a data retrieval at t1 is higher than that at t2.

Generally speaking, in each particular time instance, it is ideal for the system to
have combined data segments of cardinalities as high as possible. In an extreme
case, if all the combined data segments in the system have cardinality N , the success
ratio is 100% but the system is essentially reduced to the conventional network
coding based. Once a new data segment arrives, all the combined data segments
will have to be deleted to make room for the new segment. For subsequent server
collections, no data segment but the newest one can be answered.

Since the data arrival and the server collection times are application-specific, an
optimal choice of the cardinality distribution thus depends on the requirement of
each particular application and how the overall profit function is defined. We now
consider the performance of PNC with a uniform cardinality distribution through-
out the lifetime of the system, i.e., for each collected data segment, the probability
of encountering any cardinality should be 1

N . This distribution does not favor data
arrivals or server collection at any particular time, and is thus applicable to a broad
spectrum of applications that have no specific arrival/collection patterns. It also
serves as a baseline for further application-specific optimizations. We show in the
next sub-section the storage and data replacement scheme to maintain the uniform
cardinality of the entire sensor network.

4.4 Data Storage and Replacement in PNC

In our network, a sensor can not store data segments of all the different cardinalities
in its limited buffer. As shown in Fig. 3, a sensor with a buffer size of two segments
will never see all the four possible data segments. Besides, it is impossible for
the sensors to know exactly what other sensors store. As such, maintaining the
uniformity of cardinalities becomes a great challenge in partial network coding.

We solve this problem by a Data Replacement algorithm locally executed at each
sensor (Fig. 4). It translates the uniformity maintenance problem to a uniform
configuration for the initial distribution; the latter is much easier to achieve.

Algorithm Data Replacement(cn)
cn: newly recorded data
for i = 1 . . . B

if cardinality(fi) < N ,
Encoding(fi, cn)

else
fi = βncn

Fig. 4. Data Replacement Algorithm.

Theorem 1. If the cardinality is uniformly distributed, then after executing the
Data Replacement algorithm (Fig. 4), the distribution of the cardinality remains
uniform.

Proof. If the distribution of the cardinality is uniform, then the probability
that a combined data has cardinality k̂ is 1

N for all k̂ = 1 . . . N . After executing
Data Replacement, the probability that a combined data segment has cardinality
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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k̂ is equal to the probability that this segment previously has cardinality k̂ − 1 ,
k̂ = 1 . . . N − 1, and the probability for a combined data segment has cardinality 1
is equal to the probability it previously has cardinality N . Hence, the probability
is still 1

N , and the distribution remains uniform.

The above theorem suggests that a uniformity is inherently maintained in data
replacement, and the algorithm is fully distributed and localized. Therefore, before
network depolyment, we can uniformly assign the cardinalities to the sensors. As-
sume B = 1; after the deployment, the sensor assigned with cardinality k̂ can wait
for N − k̂ events and record and combine the k̂ following events only. The initial
cardinality distribution of the combined data in the sensors is then uniform. The
above configuration can be easily generalized to larger buffer sizes.

4.5 Performance Analysis of PNC and Enhancements

We now analyze the performance of PNC, and identify its weakness. We then
present two effective enhancements to improve its performance.

Theorem 2. The success ratio of PNC based data collection is no worse than
the naive collection (Non-NC).

Proof. The only possibility for Non-NC to collect all the N original data seg-
ments is to collect each of them exactly once. On the contrary, for PNC, if we
can collect N combined data segments with every cardinality presents, then we can
decode all the original data segments. This is because, a matrix with N different
cardinalities is automatically an echelon form and thus decodeable. Since the prob-
ability of collecting a specific data segment and that of encountering a cardinality
are both 1

N , the expected success ratio of PNC is no worse than Non-NC. Note that,
some combinations without all the cardinalities can be decodable as well; hence,
PNC could achieve a higher success ratio.

It is also worth noting that, when the buffer size of a sensor increases, it can
upload a data segment of higher cardinality when queried. The success ratio of
PNC will thus be improved. On the contrary, for Non-NC, since each sensor can
only randomly picks the data segment from its buffer for uploading, its performance
remains unchanged.

We go on to compare PNC and NC. We know that, by ignoring the linear de-
pendency of coefficients and data removal, NC achieves 100% success ratio when
W = N combined data segments are collected. An interesting question is thus
whether PNC can achieve the same performance, or, if not, what is the overhead.
To give some intuition, we see that in PNC, the chances for encountering cN−1 and
c0 are not identical: the most up-to-date data segment cN−1 is easier to collect be-
cause every combined data segment contains cN−1; on the contrary, the oldest data
segment c0 (but not obsolete) exists in the combined data segment with cardinality
of N only. As such, the decoding ratio with PNC after blindly accessing a subset
of sensors could be lower than that with NC.

To address the above problem, we make two enhancements to the original PNC
scheme. First, we extend the cardinality of the system from N to N +

√
N ; that

is, in addition to N required data segments, we store another
√

N obsolete data
segments in the system. These obsolete data segments makes the originally oldest
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N−1, . . . , c2
√

N−1, . . . , c0, . . . , c−
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√
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, . . . , c
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, . . . , c0]
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√
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√
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]

Fig. 5. A snapshot of the buffer at a sensor. We can see that f0 has a cardinality of N +
√

N
(with

√
N obsolete data segments combined). When a new cN is generated, according to Data

Replacement algorithm, it will be combined to all fi, and f0 will be discarded. f1 however will
have a cardinality of N + 1 (combined with one obsolete data segment c0). We can guarantee
that, at any given time, each sensor will have a data segment of cardinality at least N .

data segment relatively “younger” and therefore more likely to be collected; Second,
we expand the buffer size of a sensor to B =

√
N + 1, which facilitates the first

enhancement. With these two modifications, the following lemma shows that there
is a scheme such that each sensor can upload a data segment with cardinality at
least N when queried.

Lemma 3. By extending the cardinality of the system to N +
√

N and the buffer
size to

√
N + 1, each sensor can have a combined data segment with cardinality at

least N in its buffer.

Proof. Consider the following storage scheme for each sensor: A sensor picks
a random number k ∈ [−√N, 0] (we use a negative index to denote an obso-
lete data segment) and stores combined data segments f0 = [cN−1, . . . , ck], f1 =
[cN−1, . . . , ck+

√
N ], f2 = [cN−1, . . . , ck+2

√
N ], . . . , f√N = [cN−1, . . . , cN−

√
N−k].

The difference of the cardinality between fi and fi+1 is
√

N for all 0 ≤ i ≤ (B−1).
The buffer requirement of this scheme is

√
N +1, and for any k the sensor chooses,

the cardinality of f0 is greater than N . In addition, after executing the Data
Replacement algorithm, the cardinality of f0 remains greater than N until it is
discarded upon the arrivals of

√
N new data segments. After that, the cardinality

of f1 will be greater than N , and the iteration continues.

A concrete example of a snapshot of the buffer at a sensor node after these two
modifications is shown in Fig. 5, where we denote the

√
N obsolete data with

negative indices. We then have the following observation on the performance of
PNC as compared to NC.

Theorem 4. The success ratio of PNC with B =
√

N + 1 and W = N +
√

N is
100% (neglecting linear dependency of the coefficients).

Proof. From Lemma 3, the server can collect
√

N +N combined data segments
with cardinality at least N . For decoding, we are trying to solve a set of linear
equations, of which the coefficients form a (N +

√
N) × (N +

√
N) matrix. Since

the cardinality of each coefficient vector is at least N , then the rank of this matrix
is at least N . Therefore, we can solve the first N variables (which contributes to
the rank).
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Corollary 5. The success ratio of PNC with B =
√

N + 1 and W = N +
√

N
is identical to the success ratio of NC with B = 1 and W = N .

In other words, after sacrificing a sublinear buffer overhead (
√

N) at each sensor
and a sub-linear communication overhead (

√
N), the PNC will be able to decode

all the N original data segments in a blind access as NC does.

5. PROTOCOL DESIGN AND PRACTICAL ISSUES

In this section, we address some major practical concerns, and present a collabora-
tive and distributed protocol for continuous data collection with PNC.

5.1 Computation and Communication Overheads

Since the sensors are small and power constrained entities, the PNC operations must
be light-weighted. It is known that the computational overhead for network coding
lies mainly in the decoding process. This is however performed in the powerful
servers. Each sensor just needs to randomly generate a set of coefficients, combine
newly arrived data with those in the buffer, or remove an obsolete data segment.
All of these operations are relatively simple with low costs. Another overhead is
the transmission cost. For network coding based application, besides the combined
data, the coefficient vectors have to be uploaded for decoding. Such overheads are
generally much lower than the data volume, and our simulation results have shown
that the benefits of PNC generally overcome these overheads.

An alternative way to reduce the communication overhead is using polynomial
interpolation [Suli and Mayers 2003]. We change the coding base as B = {fk|fk =∑N−1

j=k βj × cj , k ∈ [0, . . . , N − 1], β ∈ Fq}. Notice that the major difference in this
setting is that an integer β is chosen and the coefficient vector is (1, β, β2, . . . , βN−1)
(for a combined data segment of cardinality N). Therefore, only β, a constant in
respect to N , is needed to be uploaded. If all β uploaded are different from each
other, then the coefficient vectors are guaranteed to be linearly independent [Suli
and Mayers 2003]. Therefore, the overhead is reduced substantially. This, however,
does not come for free. If two sensors choose the same β, then these two combined
data segments are linear dependent. The linear dependency is thus higher than the
case where all items of the coefficient vectors are chosen randomly. Formally, the
linear independency probability is p =

∏N−1
i=0

q−i
q , where q is the size of the finite

field Fq. Fig. 6 illustrates the relationship of p, N and q. To migrate this effect,
we can use larger finite field Fq. Comparing q = 28 and q = 216, the probability
of linear independency has been remarkably improved. For different applications,
this is worthwhile as the increase of Fq costs only logarithmic additional bits.

5.2 Multiple Data Pattern

In many applications, the sensor network is required to collect multiple data ranges
or patterns. For example, the sensor network may need to track the temperature
of multiple critical levels. Therefore, the sensors need to be invoked at different
times to record different data sets. The problem here is whether to use a mixed
storage with each sensor splitting its buffer to store different temperature levels,
or just assign different subset of sensors to record different levels. The tradeoff
is obvious: the former might record certain temperature levels incompletely if the
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Fig. 6. Probability of linear independency as a function of the number of data segments.

buffer is too small, i.e., smaller than N ; the latter, while fully recording certain
levels of temperature, will risk the incapability of decoding an entire level.

The above all or nothing effect is also considered in [Chou et al. 2003]. Yet, for
PNC based collection, we can see that a larger buffer might provide data with higher
cardinalities, and it is easy to add an importance parameter in our system. That is,
for important data patterns, we can use more sensors to maintain them, and thus
have higher probability to successfully collect them. We will further investigate the
impact of the importance parameter in the next section through simulations.

5.3 Collaborative and Distributed Implementation

To guarantee success, our PNC suffers only a sublinear overhead (
√

N) in buffer
storage and communication cost. In practice, if N is too big, even a buffer of size√

N + 1 might not be available at a tiny sensor. In addition, the buffer sizes of the
sensors might not be identical. To overcome these problems, the sensors can work
collaboratively to provide combined data segments when queried. Specifically, they
can form clusters in advance, where the members of a cluster maintain different
cardinalities. A cluster can then upload one highest cardinality data segment upon
accessing.

We thus suggest the following collaborative and distributed implementation. We
assume that the server is interested in m data patterns and, for each pattern, Ni

recent data segments, 1 ≤ i ≤ m. After deployment, each sensor will send a probe
message to its surrounding area to form a cluster, where the number of sensors in
this cluster, n, is greater than

∑m
i=1 Ni. Presumably, the sensors in one cluster can

reside in 1 or 2 hops from each other. If n is too large, a two tier structure can
be built, where each cluster in the first tier stores the data for a single pattern. A
cluster head is then selected for each cluster, which distributes a storage schedule
to the sensors in its cluster. When a sensor receives a server query, it first forwards
this message to the cluster head; the cluster head checks whether this query is to
search a data pattern associated with its own cluster. If so, the head will notify the
sensor that currently has the combined data segment of the highest cardinality to
upload the data; otherwise, it will forward the query to an appropriate head that
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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is associated with the pattern for further processing.

6. PERFORMANCE EVALUATION

6.1 Simulation Settings

In this section, we present our simulation results for PNC-based sensor data collec-
tion. We deploy 1000 sensors randomly into a field of 10m × 10m. The distance
between the server and the sensor nodes is much larger than the distance between
the sensors, and, as suggested in [Lindsey and Raghavendra ], we assume that there
is a 10-fold difference. The server can thus access the data without necessarily en-
tering deep into the sensor field, which is useful for data collection from a dangerous
area. The default number of data segments that the server collects is the most re-
cent 50 data segments (N = 50) and the default buffer size B is 1. We examine
other possible values in our simulation as well. The linear equations in network
coding are solved using the Gaussian Elimination [Gentle 1998], and the coefficient
field is q = 28, which can be efficiently implemented in a 8-bit or more advanced
microprocessor [Widmer and Boudec 2005]. To mitigate randomness, each data
point in a figure is an average of 1000 independent experiments.

6.2 Comparison of Energy Consumption

Since NC does not have the capability of data removal, it will eventually lead to
a crash of the system in continuous data collection. Therefore, in our simulations,
we only study the performance of PNC and compare PNC with Non-NC.

We first compare the energy consumption of PNC with Non-NC. We use the
energy model by [Mainwaring et al. 2002]. The energy consumption of transmitting
one packet is 20nAh (10−9 Ampere hour). The field will generate events which are
of interest in an hourly basis and the sensors will record these events. Server will
randomly and occasionally approach with an expected interval of 20 hours. The
server is interested in the most recent N = 50 data pieces. It will first randomly
collect 50 data segments and if some original data segments are missing (for Non-
NC) or the combined data segments can not be decoded (for PNC), then the server
will send additional requests one by one, until all 50 data segments are obtained.
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The results are shown in Fig. 7.
It is clear that PNC performs better than Non-NC for different N . It can be seen

that the energy consumptions are linear with respect to the number of required data
(N), but the slope for PNC is much smaller. As a result, when N is greater than 50,
the energy consumption with Non-NC is 3 to 4 times higher than that with PNC.
The energy consumption with PNC is further reduced when clusters are employed
(the cluster radius is set to 2 or 3 hops, respectively), because data segments with
higher cardinalities could be uploaded from a larger aggregated buffer.

6.3 Performance of PNC

In our applications, when server approaches, a fast data collection is always desired.
Therefore, it is better for the server to estimate the number of sensors it should
query and send the query simultaneously, instead of in an incrementally fashion as
previous section. Success ratio is thus a good indicator of how many sensors should
be queried at once. Therefore, we use success ratio to evaluate the performance of
PNC starting from this section.

6.3.1 PNC vs Non-NC. We revisit the performance of PNC and Non-NC using
success ratio. Fig. 8 shows the success ratio as a function of the number of data
segments collected (W ). Not surprisingly, the success ratio increases when W in-
creases for both PNC and Non-NC, but the improvement PNC is more substantial.
For example, if 100 data segments are collected, the success ratio is about 80% for
PNC; for Non-NC, after collecting 200 data segments, the success ratio is still 40%
only.

6.3.2 Effect of Buffer Size. We then increase the buffer size from B = 1 to 2
and 3 to investigate its impact. We require the sensors to upload the data segment
of the highest cardinality for each server access. The results are shown in Fig. 9,
where a buffer increase from 1 to 2 has a notice improvement in success ratio, and
a buffer of 3 segments delivers almost optimal performance. This is not surprising
because there is a higher degree of freedom for storing and uploading data in a
larger buffer space. We emphasize again the performance of Non-NC will not be
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improved by increasing the buffer size, as the sensor node can only randomly pick
a data segment to upload.

In our analysis, we show that given W = N +
√

N , and B =
√

N + 1 the system
guaranteed to decode N original data segments (ignoring linear dependency). In
this case, the server has to decode N +

√
N data segments, among which

√
N are

obsolete. An interesting question is thus: Can we reduce the overhead for W but
still guarantee an optimal success ratio? Unfortunately, from Fig. 10, we can see
that this unlikely happens. Among the 1000 experiments, only in 4 experiments
the server successfully decodes before collecting all the N +

√
N data segments. We

conjecture that
√

N could be a lower bound of the overhead, though it has yet to
be proved.

The above two sets of results suggest that PNC works quite well for a reasonable
buffer size even without extension to include obsolete data segments. Therefore,
unless a guarantee is desired, the straightforward PNC is enough for most applica-
tions.

6.3.3 Impact of N . We then explore the impact of the cardinality N . In Fig. 11,
we depict the decoding ratio for different number of original data segments (N=20,
50, and 100). The x-axis denotes the ratio between the number of data collected
and the cardinality, i.e. λ = W

N . We can see from Fig. 11 that their differences are
insignificant, and general reduce when W increases. Recall that, the performance
of Non-NC decreases sharply when N increases, as shown in Table II, while NC is
marginally affected by N only. These simulation results thus reaffirm that PNC
inherits the good scalability of NC.

6.4 Effect of Clustering

As discussed in section 5, to surpass the limited buffer size, the sensors can form
clusters to achieve a larger aggregated buffer space. In Fig. 12, we show the success
ratios for a buffer limited sensor network with different cluster radiuses, i.e., the
number of hops to reach the farthest sensors, ranging from 0 to 3. When the radius
is 0, there is basically no cluster and a contacted sensor has to respond to the
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server immediately using data from its local buffer. We can see that the success
ratio significantly increase when the clustering algorithm is enabled. For a cluster
radius of 2, it is already quite close to 100%.

6.5 Impact of Multiple Pattern

We next investigate the impact of requiring the sensor network to maintain multiple
data patterns, e.g., to record more than one event of interest. Fig. 13 shows
the success ratio for a 4-pattern scenario. To differentiate the importance of the
patterns, we have assigned different number of sensors to each pattern (in this
example, 12.5%, 12.5%, 25%, and 50% of the total number of sensors).

Not surprisingly, the success ratio favors data pattern with more sensors assigned.
An interesting observation is that the improvement is not uniform for all the four
patterns, either. It favors first for the data pattern with the largest number of
assigned sensors (50%), then the pattern with the second largest number of as-
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signed sensors (25%), and so forth. This is clearly desirable given that we want to
differentiate the patterns.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel coding scheme, Partial Network Coding (PNC),
which effectively solves the problem of removing obsolete information in coded data
segments. The problem is a major deficiency of the conventional network coding.
We proved that the success ratio of PNC in data collection is generally better than
a non-coding scheme and is close to the conventional network coding, and this
is achieved with only a sub-linear overhead on storage and communications. We
then addressed several practical concerns toward implementing PNC in resource-
constrained sensors, and demonstrated a collaborative and fully distributed protocol
for continuous data collection in large sensor networks.

In network coding research, it is known that the higher the cardinality is, the more
the benefits we could expect. Therefore, many existing schemes have focused on
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achieving a full cardinality in data combination; For example, the proposals in [Deb
and Medard 2004][Dimakis et al. 2005][Gkantsidis and Rodriguez 2005][Medard
et al. 2005] generally increase the cardinality by combining as much data as possible
in intermediate nodes and then forward to others. Our work on partial network
coding, however, shows that the opposite direction is worth consideration as well.

Nevertheless, there are still many unsolved issues for PNC. Beyond the practical
issues toward implementing a real PNC-based sensor network, we are interested
in the following two questions: First, based on our simulations, we observe that
the performance of PNC is very close to NC. We therefore suspect whether the
overhead of

√
N reaches the potential limit of PNC? Second, our PNC is only

used for data collection. We expect that an enhancement could facilitate more
complicated queries, such as Max/Min, Quantile, and Average/Summation. Given
its flexibility in data management, we believe that PNC can be applied in many
other applications, and the solutions to the practical and theoretical issues in PNC is
thus urged, especially considering the recent flourish of data streaming in numerous
fields.
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