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Providing field coverage is a key task in many sensor network applications. With unevenly dis-
tributed static sensors, a quality coverage with acceptable network lifetime is often difficult to
achieve. Fortunately, the recent advances on embedded and robotic systems make mobile sensors
possible, and we suggest that a small set of mobile sensors can leveraged toward a cost-effective
solution for field coverage. There are however a series of fundamental questions to be answered
in such a hybrid networks of static and mobile sensors: 1) Given the expected coverage quality
and system lifetime, how many mobile sensors should be deployed? 2) What are the necessary
coverage contributions from each type of sensors? and 3) What working and moving patterns
should the sensors adopt to achieve the desired coverage contributions?

In this paper, we offer an analytical study on the above problems, and the results also lead
to a practical system design. Specifically, we present an optimal algorithm for calculating the
contributions from different types of sensors, which fully exploits the potentials of the mobile
sensors and maximizes the network lifetime. We then present a random walk model for the mobile
sensors. The model is distributed with very low control overhead. Its parameters can be fine-
tuned to match the moving capability of different mobile sensors and the demands from a broad
spectrum of applications. A node collaboration scheme is then introduced to further enhance the
system performance.

We demonstrate through analysis and simulation that, in our mobile assisted design, a small
set of mobile sensors can effectively address the uneven distribution of the static sensors and
significantly improve the coverage quality.
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1. INTRODUCTION

Wireless sensor networks have recently been suggested for many protection and
surveillance applications. One key objective of these applications is to detect ab-
normal events in a sensing field, which depends on the coverage quality of the sensor
network. The k-coverage is a common criterion, where any point in the sensor field
should be covered by k sensors [Slijepcevic and Potkonjak 2001]. For many ap-
plications, it turns out that a deterministic k-coverage is too expensive and not
necessary. Therefore, probabilistic coverage [Gui and Mohapatra 2004][Xu et al.
2001] is introduced and every point is covered with certain ratio. This ratio tunes
the coverage quality and allows the sensors to switch between sleeping and working
states.

In these studies, only static sensors are used. The quality of coverage is noticeably
affected by the initial deployment of the sensors. For uneven sensor distributions,
the sensors in a sparse area may have to stay active longer to ensure the coverage
quality. The batteries of these sensors will be depleted earlier and thus making the
area even sparser. In the extreme case, an area will be uncovered by any sensor,
leaving a hole in the field. Unfortunately, such unfavorable sensor distributions are
inevitable in many applications where a well-controlled or manual deployment is
not practical.

Recent advances of embedded hardware and robot have made mobile sensors
possible. The mobile sensors have the same sensing capability as static sensors,
but are able to move in a field, and their batteries can be rechargeable. In other
words, their lifetime is not necessarily bounded by the limited battery. While fully
mobile sensor networks remain expensive and the routing and information exchange
can be quite complicated therein, we expect that a hybrid network assisted by a
small set of mobile sensors can be a cost-effective solution toward coverage with
unevenly distributed sensors. A first design in this direction was presented in
[Wang et al. 2003], which suggested a reposition of the mobile sensors after the
initial deployment. The one-time reposition unfortunately cannot well combat the
uneven sensor distribution in many cases. Consider Fig. 1, where there are a
number of static sensors and three mobile sensors to cover a field. Each sensor can
cover its associated grid. If there are no mobile sensors, grid 6 will never be covered.
If only one-time repositioning for the mobile sensors is employed, the coverage can
be enhanced, but there will still remain grids with permanently fewer sensors than
others.

In this paper we propose a mobile sensor assisted network that fully exploits
the movement capability of the mobile sensors. In our solution, the mobile sensors
are always in motion to assist the static sensors; the occurrence probability of the
mobile sensors in each grid, or their contribution for covering the grid, is adaptively
determined according to the network configuration. From a statistical point of view,
the overall coverage is enhanced, and energy consumption of the static sensors is
more balanced.

The main challenges in designing such a mobile sensor assisted network are,
first, to clarify the necessary coverage contributions from the static and mobile
sensors; and second, to find specific models for the mobile sensors to achieve their
desired coverage contribution. In this paper, we for the first time offer an analyt-
ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.
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Fig. 1. Field covered by a mobile sensor assisted network, circles representing static sensors and
stars representing mobile sensors.

ical study on the above problems, and the results also lead to a practical system
design. Specifically, we present an optimal algorithm for calculating the contribu-
tions, which fully explores the potentials of the mobile sensors and maximizes the
network lifetime. We also illustrate the number of mobile sensors needed given the
expected system lifetime and the coverage quality requirement. We show concrete
schemes to achieve the contributions. For the static sensors, we use a simple ran-
dom sleep/work scheduling. We then present a random walk model for the mobile
sensors that achieves their coverage contribution.

Our mobile sensor assisted architecture is general enough and offers a promising
baseline for the demands from diverse applications. Various enhancements can be
integrated to improve the performance of the system. Indeed, we point out several
interesting observations from this design. Particularly, a wall effect may prevent
mobile sensors from moving freely in a field. We effectively solve this problem
through an optimal mobile sensor allocation algorithm. We then outline a sen-
sor collaboration scheme which further reduces redundant coverage from different
sensors.

Extensive simulations have been carried out to study our mobile sensor assisted
network under various configurations. The results demonstrate that a small set
of mobile sensors can significantly improves the coverage quality and the system
lifetime.

The rest of the paper is organized as follows. In section 2, we present the related
work. We outline our mobile sensor assisted architecture in section 3. The respec-
tive contributions from static and mobile sensors are derived in section 4. Section
5 discusses the random walk based mobility model and solutions for the wall effect.
In section 6, we present an in-network collaboration protocol to avoid redundant
activation. The performance of the mobile sensor assisted network is evaluated in
section 7. We discuss a generalization of the underlying grid structure in section 8.
Finally, section 9 concludes the paper.
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2. RELATED WORK

Wireless sensor networks have been widely studied in recent years, focusing on
those with static sensors; a survey can be found in [Akyildiz et al. 2002]. The
effective coverage using static sensors is one of the key problems in sensor network
applications, and has been examined in various aspects, such as field/path coverage
and determinstic/probabilistic coverage. Related work can be found in [Gui and
Mohapatra 2004][Slijepcevic and Potkonjak 2001][Yan et al. 2003] and the references
therein. Many studies propose grouping the sensors into grids [Gui and Mohapatra
2004][Xing et al. 2004][Xu et al. 2001], where all sensors in a grid are equivalent
in their functionality, such as coverage capability. The surveillance systems in [Gui
and Mohapatra 2004][Yan et al. 2003] further suggest that the static sensors can
be redundantly deployed and work in turn to extend the lifetime of the system.
Especially, a collaborative protocol is built in PEAS [Ye et al. 2003], where the
sensors exchange messages with the neighbor nodes. When a sensor observes that a
certain number of neighbors are awake, it goes back to sleep. Similar collaborative
schemes with different objectives can be found in [Gui and Mohapatra 2004][Wang
et al. 2007]. These schemes are robust to node failures. However, they usually do
not provide coverage guarantee. A probabilistic coverage scheme RIS is proposed
in [Kumar et al. 2004], where the static sensors are randomly deployed and activate
themselves with certain probability. It studies the relationship of such parameters
as the total number of static sensors needed, the activation probability, the sensing
range etc. Similar schemes with different objectives have been studied in [Yan et al.
2003][Wang et al. 2007]. The sensors in these schemes usually make independent
decisions; and hard or statistical coverage guarantee can be achieved. As shown
in the Introduction, using randomly deployed static sensors only may results in
uneven load on each individual sensors. Therefore, our configurations for the static
sensors are motivated by their work, but emphasize on the interactions with the
mobile sensors.

The advances in embedded systems and hardware designs have realized mobile
sensors, such as Robomote [Sibley et al. 2002] and Khapera [Mondada et al. 1993].
Unlike the static sensors, which are tightly constrained by the energy supplies, their
batteries are rechargeable. Recent work also suggests that much longer working
time and shorter recharging time can soon be expected [Kansal et al. 2004].

The mobility model of mobile nodes has long been a classic problem in ad hoc
and cellular wireless network research. The random walk, random waypoint walk,
random trip, and fluid models have been widely used to capture the mobile be-
haviors. A survey and comparison of these models can be found in [Schindelhauer
2006]. However, most of them analyze the mobility behaviors, while not for guiding
the movement of the mobile nodes.

Using mobile sensors for coverage has been recently considered in [Liu et al.
2005][Wang et al. 2003]. Liu et al. [Liu et al. 2005] extend the definition of cov-
erage, which is originally given in static geographic sense, into the time domain.
Informally, the coverage is evaluated as the fraction of the covered area at a point of
time. They conclude that, compared to using uniformly distributed static sensors,
it is more beneficial if all sensors are mobile and are traveling in a random walk
fashion. A more recent work [Bisnik et al. 2006] studies the velocity and movement
ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.
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strategies for a network of mobile sensors to improves the field coverage. It shows
the relationship of the necessary number of mobile sensors, the minimum speed
and the event detection (coverage) requirement. However, energy is not considered
in their work. While these theoretical results are elegant and exciting, the mobile
sensors remain expensive nowadays; it is unlikely a fully mobile sensor network is
practical in the near future. In addition, when all the sensors are in random move-
ment, packet routing (e.g., after an abnormal event is detected) and information
dissemination will be much more complicated.

We thus envision a mobile sensor assisted network consisting of static and a few
mobile sensors. If the number of the mobile sensors is small, the cost of building such
a network remains acceptable, and the performance could be significantly improved,
as shown in our study. A first study towards building a hybrid sensor network is
presented in [Wang et al. 2003], which compensates poor initial sensor distributions
by strategically repositioning some mobile sensors. Specifically, the sensors, after
deployment, will first estimate the coverage holes according to a Voronoi diagram
and then use a bidding protocol to guide the mobile sensors to better positions. The
bidding protocol trade-offs the moving distance and the coverage quality. Another
work is in [Zou and Chakrabarty 2004] where the new locations are calculated
based on virtual force. More specifically, if the distance between two sensors is
less than a threshold, there is a repulsive (negative) force to push them apart.
Otherwise, there is a attractive (positive) force between them. The key difference
here is that we consider continuous movement for the mobile sensors, while they
focus on one-time repositioning. Some other one-time reposition schemes can be
found in [Howard et al. 2002a][Howard et al. 2002b][Zou and Chakrabarty 2003]
and a common drawback is that, after the mobile sensors are reposited, the field
coverage may still be unbalanced, possibly leaving coverage holes. Our proposal
can be viewed as a series repositioning of the mobile sensors. Over a long range of
time, each grid will statistically have a better share of the presence (coverage) of
the mobile sensors. We demonstrated the potential benefit of continuous movement
through both analytical and experimental results.

3. ARCHITECTURE OVERVIEW

3.1 Network Models

The mobile sensor assisted network in our study consists of both static and mobile
sensors, which collectively monitor a field of interest. As in previous studies [Gao
et al. 2001][Karp and Kung 2000][Xu et al. 2001], we assume that the field is a
square and can be divided into n2 virtual grids, indexed from 0 to n2 − 11. This
virtual grid structure is not special, and we will show in Section 8 that our analysis
and algorithms can be easily extended to hexagon or other virtual structures. We
admit that a square field is a simplification. For any arbitrary field, a set of virtual
square grids may not exact match the field especially in the borders. How to
partition the field so that it can be covered by a set of grids falls in the scope of
computational geometry. In this paper, we take this simplification the same as the
previous works so that we can focus on the behavior of the sensor nodes. Through

1In this paper, we use the grids to denote a grid of n2 cells.
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Fig. 2. The movement of a mobile sensor. The probabilities for moving to or staying in a grid are
determined according to the network configuration.

GPS or available positioning services [Albowitz et al. 2001][Bulusu et al. 2000], the
sensors are aware of their location information and, hence, their associated grids.
The size of each grid is

√
2

2 R×
√

2
2 R, where R is the sensing range of a static sensor.

As such, any active sensor in a grid can cover the whole grid. The sensing range of
a mobile sensor can be smaller, e.g., R

2 , as it can reposition itself to the center of
its grid. An example of the grid structure is shown in Fig. 1.

Notice that in this paper, we only focus on sensing and coverage, when a sensor
(mobile or static) detects an abnormal event in its grid, it should report the event
to a predefined agent. The reporting mechanism is out of the scope of our study,
and existing virtual grid based algorithms can be used [Xu et al. 2001].

Given that the static sensors in one grid are equivalent in coverage, they do not
have to be active simultaneously, so as to save energy. The deployment of the static
sensors is often nonuniform; and even worse, holes (grids with no static sensors)
can exist, creating permanently uncovered regions2. On the other hand, the mobile
sensors are always active, and can move in the field over time (Fig. 2), which we
will explore to boost the coverage quality.

3.2 Performance Measurement

Since our focus is on field coverage, we define a measure of how well a location is
covered as below, which is motivated by [Xing et al. 2004].

Definition 1. A sensor field is said to be δ-covered if, at any point in time, at
least an expected δ ∈ (0, 1) fraction of the whole area is covered by one or more
active sensors3.

Let δ be the minimum coverage ratio required by the user, our objective is to
ensure this quality, while maximizing the lifetime of the network.

It is worth noting that the battery of state-of-the-art mobile sensors is recharge-
able [Kansal et al. 2004]; hence, the lifetime of the whole network is bounded by

2Even if the deployment is a globally uniform distribution, local fluctuations still would occur,
resulting in uneven numbers of sensors in different grids.
3Notice that in this definition, we are more restricted as we request in every point of time, the
expected coverage is above δ.
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that of the static sensors. As a measurement, we use the lifetime of the first dying
out sensor to represent the system lifetime. This definition has been widely used
in existing studies [Chang and Tassiulas 2000][Younis and Fahmy 2004], and essen-
tially suggests a load-balanced operation for the static sensors. The effectiveness
of this definition has been validated by our simulation results in Section 7. From a
functional point of view, once the first static sensor dies, its grid needs additional
assistance from the mobile/static sensors, which in turn increases the workload of
other static sensors, resulting in a domino effect that quickly drains the power of
the whole network. Thus, the death of the first sensor serves as a good indication
to the end of the steady-state operation. Note that, however, our architecture is
general enough that other load balancing lifetime definitions are possible. For ex-
ample, the system lifetime is equal to the expected lifetime of a static sensor, or
the expected working time of a static sensor with 10% of its residual energy.

In summary, given a coverage requirement, the network lifetime depends on the
activation models of the static sensors, which further depend on the sensor distri-
bution and the potential contributions from the mobile sensors.

3.3 Working and Moving Models

Given the system model and the performance measures, a natural question is what
kind of working and moving models of the sensors can achieve the coverage ob-
jective. In our basic framework, we adopt a random activation scheduling for the
static sensors, and a random walk model for the mobile sensors. More specifically,
our mobile sensor assisted network goes through the following stages:

1) Parameter Initialization: After deployment, one or more mobile sensors travel
around the field and collect the distribution information of the static senors in all
grids. The mobile sensors compute the movement schemes for themselves (algo-
rithms to be specified in Section 5) as well as the activation probability of the
static sensors (algorithms to be specified in Section 4). The mobile sensors then
notify the static sensors of their activation probability.

2) Field Monitoring: Consider the time slots are discrete. In each time slot, a
static sensor independently activates itself with the activation probability obtained
in the initialization stage and then monitors its grid. Each mobile sensor indepen-
dently decides to move into one neighboring grid or to stay in the current grid, and
then monitors the grid where it resides.

The advantages of using a probabilistic operation over a deterministic one are
many. First, our technique is easier to implement because it involves simple op-
timization in the initial stage for the sensors. Second, the behavior of each type
of the sensors are statistically identical. This is useful especially for recharging or
replacement of mobile sensors. The substitute mobile sensors can easily follow the
mobility model and continue to monitor the sensor field, regardless of the current
state of other sensors, whereas a deterministic scheme may involve re-optimization.
Third, a probabilistic coverage is generally more resistent to intruders that try to
learn the sensor behaviors.

Our architecture offers achievable and reasonably good solutions to the problem
of the uneven distribution of static sensors. It is however worth emphasizing that
many practical enhancements could be added to this baseline framework, and we
will discuss some of them later.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.
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Notation Definition

n Grid dimension
N Total number of grids, i.e., n2

p Activation probability for static sensors
R Sensing range of a static sensor
δ Required coverage ratio for the sensor field

d(i) Density of the static sensors for grid i
li The index of grid with density rank i
M Number of mobile sensors
Pij Probability that a mobile sensor moves from grid i to j
πj Coverage contribution by a mobile sensor for grid j
π Vector of πi

mi Mobile sensor i
si Static sensor i

Table I. List of Notations

For ease of exposition, we list the notations used in this paper in Tab. I.

3.4 Performance at a Glance

Before going into the detail design, we first make an analytical comparison of the
performance of three different strategies, i.e., using static sensors only, mobile sen-
sors with one-time reposition and our mobile assisted scheme. Let the number of
grids be N ; the number of mobile sensor nodes be M ; and the number of static sen-
sor nodes be N . Assume to obtain an expected system lifetime span, the activation
probability of a static sensor node should be less than p̂.

1) Static Sensors vs. One-Time Reposition: We compare the number of static
sensors needed to achieve the required coverage ratio δ by these two schemes.

We first consider the minimum density of a grid if there are only static sensors.
Let the density of static sensors in a grid be d. To achieve the required coverage
ratio δ, we should have (1− p̂)d ≤ 1− δ; which implies d ≥ log(1−δ)

log(1−p̂) . Let Yi denote
a random variable of sensor node i such that Yi = 1 if node i falls in a certain
grid, and Yi = 0 otherwise. Then, Pr[Yi] = 1

N . As we assume the sensor nodes are
uniformly and randomly deployed, consequently, Y0, Y1, . . . , YN are independent.
Let Y =

∑N
i=0 Yi. By Chernoff Bound, we have Pr[Y < d] = Pr[Y < d

E[Y ]E[Y ]] ≤
e−(1− d

E[Y ] )
2 E[Y ]

2 . Notice that here E[Y ] = N
N and d

E[Y ] < 1 must be satisfied.
If we have static sensors only, to maintain the coverage, the expected number of

grids that has less than d static sensors must be less than 1. Therefore, Pr[Y <

d]×N ≤ 1. This implies that e−(1− log(1−δ)N
log(1−p̂)N )2× N

2N ×N ≤ 1.
Then consider that we have mobile sensors and apply one-time reposition scheme.

To simplify the analysis, we assume that there is a perfect movement scheme so
that each mobile sensor is able to move to the right grid which has insufficient
coverage. Since we have M mobile sensors, to maintain the coverage, we need
Pr[Y < d]×N ≤ M . This implies that e−(1− log(1−δ)N

log(1−p̂)N )2× N
2N ×N ≤ M .

Thus, the number of static sensors needed is:
ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.
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Fig. 3. The number of static sensors needed as a function of activation probability; N = 100,
δ = 0.85.
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N(
√

4
√

log(N) + ( log (1−δ)
2 log (1−p) )

2 + log (1−δ)
2 log (1−p) ) Static Sensors Only;

N(

√
4
√

log( N
M ) + ( log (1−δ)

2 log (1−p) )
2 + log (1−δ)

2 log (1−p) ) One Time Reposition;
(1)

To better understand these two inequalities, we plot the numerical results shown
in Fig. 3, where M = 1 indicates the scheme of static sensors only. Not surprisingly,
we can see that when the activation probability is low, the number of static sensors
needed is high. Another important observation is that when the total number of
static sensors is high (∼ 900), the impact of increasing the number of mobile sensors
(from 5 to 30) is much less significant than that when the total number of static
sensors is low. This is not surprising as when the reposition is done, the mobile
sensor is dedicated to a certain grid. Thus, if the number of static sensors is high,
say, 900, the impact of 30 mobile sensors is much less than their impact upon 300
static sensor. We see that in [Wang et al. 2003], the ratio of the mobile sensors is
30%, which is a large fraction of the network nodes. In this paper, we fully release
the mobile sensors so that they do not need to dedicate to a certain grid and show
that an even smaller number of mobile sensors can achieve better performance.

2) One-Time Reposition vs. Mobile Assisted Scheme: We then look into our
Mobile Assisted Scheme. We study the number of mobile sensors that are needed
to achieve the same coverage ratio δ given the total static sensors fixed. To simplify
the analysis, we still assume that there is a perfect mobility scheme to fully utilize
the potential of the mobile sensors.

Consider a specific grid in the mobile assisted scheme. If the number of static
sensors in this grid is k, the total uncover probability is (1− p̂)k. Let the assistance
from the mobile sensors for this grid to be πk. That is, the probability that a
mobile sensor will be present is πk. As the coverage requirement is δ, we should
have (1 − p̂)k × (1 − πk) ≤ (1 − δ); which implies πk ≥ 1 − (1−δ)

(1−p̂)k . The number
of grids with k static sensors is (Pr[Y < k]− Pr[Y < k − 1]) ×N . The necessary
number of mobile sensors for covering the grids with k static sensors is thus (Pr[Y <
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Fig. 4. The number of mobile sensors as a function of activation probability; N = 100, N = 1000,
δ = 0.85.

k]−Pr[Y < k−1])×N ×πk. Notice that no mobile sensor assistance is needed for
the grids with d static sensors where d satisfies (1−p̂)d ≥ (1−δ), i.e., d = d log(1−δ)

log(1−p̂)e.
For one-time reposition, each mobile node has to be fixed in a grid and the

presence cannot be fractional. As a summary, the total number of mobile sensors
needed in these two schemes are:

M ≥
{

(
∑d

i=1(Pr[Y < i]− Pr[Y < (i− 1)]))×N One Time Reposition;
(
∑d

i=1((Pr[Y < i]− Pr[Y < (i− 1)])πi))×N Mobile Assisted;
(2)

We plot the numerical results in Fig. 4. Not surprisingly, we can see that the
Mobile Assisted scheme performs better than the One-Time Reposition scheme.
We can see that when the activation probability of static sensors is p = 0.2, the
number of mobile sensors needed for one-time reposition is 2.5 times than that of
the mobile assisted scheme. When the activation probability of the static sensors
is high, the performance of the mobile assisted scheme is not as significant in the
figure. The reason is that the above analysis is based on Chernoff Bound. The
original form of Chernoff Bound is Pr[Y < (1− ε)µ] < e−

ε2µ
2 . Here 0 < ε < 1 and

Chernoff Bound has higher precision when ε is small. In our analysis, this means
that 0 < d

E[Y ] < 1 and the smaller d
E[Y ] is, the tighter the bound is. Easily, we see

that the bound is tighter when p is small.
Nevertheless, these analytical analysis has shown us the advantage of our mobile

assisted scheme. We will develop specifically the contribution from different types
of sensors, a concrete movement scheme for the mobile sensors, as well as the
simulations in the following sections.

3) Energy Comparison: The advantage of mobile assisted scheme does not come
for free. The mobile sensors need to move continuously, which consumes energy.
It has been shown that Robomote consumes 27.96 Joule per meter [Sibley et al.
2002]. The communication is usually in the order of 100 × 10−9 Joule per bit
[Heinzelman et al. 2000]; and the sensing is even an order less energy consuming
ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.
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than communication. While the energy consumption of the sensors is well-known to
vary based on the device and the functionality, one may analyze a trade-off point
where our scheme best fits in. We emphasize, however, that the mobile sensors
are more easily to move to certain locations (e.g., a charging dock) to re-charge
their batteries or to have them being replaced. This is particularly important for
applications in harsh environments, where battery recharge or change is difficult
for static sensors. Examples include chemical plant monitoring where the safety of
human technician entrance is not known, or habitat monitoring where the birds are
sensitive to human intervention. With mobile sensors, the human technicians can
stay within a distance waiting for them to return for battery re-charge or change.

We consider it future work where the traveling distance of the mobile sensors
should be joint optimized for those applications where the sensor batteries are not
easy to recharge and the energy reserve of the mobile sensors is within a range to
that of the static sensors.

4. COVERAGE CONTRIBUTIONS FROM STATIC AND MOBILE SENSORS

In our mobile sensor assisted network, the coverage of a grid is achieved by the
combined efforts of static and mobile sensors. A grid is said to be covered at time
t if either a static sensor in this grid is active or a mobile sensor resides in the grid
at time t. To balance the workload, it is desirable to assign the static sensors with
an identical activation probability p. An illustrative example of coverage is shown
in Fig. 5 (refer to Fig. 1 for the distribution of the sensors in this example).

We now identify the necessary long-term coverage contributions from the two
types of sensors. Clearly, for grid i, i = 0, 1, . . . , n2 − 1, the contribution from a
mobile sensor depends on the fraction of time that the mobile sensor will be present
in this grid; in other words, the probability that it travels to the grid. We denote
this probability by πi. The contribution from a static sensor in the grid is equal to
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its activation probability p: the higher this probability, the better the coverage it
provides.

We now focus on the optimal values of p and π = [π0, π1, . . . , πn2−1] . In the next
section, we will present a concrete random walk model that achieves π.

To facilitate our discussion, we use d(i) to represent the density of grid i, i.e., the
number of static sensors in this grid. Let M be the number of mobile sensors in the
network. Given coverage requirement ratio δ, the following formulation maximizes
the network lifetime:

minimize p

s.t. π0 + π1 + . . . + πn2−1 ≤ 1 (3)

(1− p)d(0) × (1− π0)M ≤ 1− δ (4)

(1− p)d(1) × (1− π1)M ≤ 1− δ (5)

...

(1− p)d(n2−1) × (1− πn2−1)M ≤ 1− δ (6)

where Eq. (3) gives the contribution constraint of each mobile sensor, and Eqs. (4)
- (6) ensure the coverage ratio of the grids, i.e., if Eqs. (4) - (6) are satisfied, the
overall expected coverage ratio is greater than δ.

Algorithm CalcContribution()
1 SortGrid();

2 for (K = 0; K < n2; K++)
/ ∗ (1− p)d(lK) ≤ 1− δ ∗ /

3 p = 1− d(lK)√1− δ;
4 for (i = 0; i < K; i++)

/ ∗ (1− p)d(li) × (1− πli )
M ≤ 1− δ ∗ /

5 πli = 1− M

√
1−δ

(1−p)d(li)
;

6 if (
∑n2−1

i=0
πli > 1)

7 break;

8 AdaptP();

Fig. 6. Algorithm CalcContribution()

We present algorithm CalcContribution() that solves this optimization problem
(see Fig. 6). The intuition behind this algorithm is that the network lifetime is
determined by the sensors in the grid with the least number of static sensors as these
sensors will have the highest activation probability and the shortest lifetime. We
ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.
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Algorithm AdaptP(ε,K)

1 phigh = 1− d(lK)√1− δ
2 if (K 6= n2 − 1), plow = 1− d(lK+1)√1− δ
3 else plow = 0
4 while (phigh − plow > ε)

5 p =
plow+phigh

2
6 for (i = 0; i < K; i++)

7 πli = 1− M

√
1−δ

(1−p)d(li)
;

8 if (
∑n2−1

i=0
πli > 1), plow = p;

9 else phigh = p
10 return phigh

Fig. 7. Algorithm AdaptP()

thus first put all the mobile sensors to assist the grid with the least number of static
sensors; and see whether the activation probability of the sensors in this grid can be
reduced to the same activation probability of the grid with the second least number
of static sensors. If we have enough mobile sensors (notice here the mobile sensor
may not need to stay put in the grid, but only contribute a share of its presence
in this grid), we continue to the grid with the third least number of static sensors.
We stop until all the mobile sensors are fully exploited. In CalcContribution(),
we first invoke subroutine SortGrid() to sort the grids in ascending order of their
densities. Let li represent the index of the grid with rank i after sorting, i.e.,
d(l0) ≤ d(l1) ≤ . . . ≤ d(ln2−1). We then search for K, the rank after which the
grids are dense enough to be covered by the static sensors only. We start searching
for K from 0, and evaluate the p for the current setting of K. If we can find a valid
p and πli , then we increase K, until

∑n2−1
i=0 πli > 1 (intuitively, this says that the

potential of the mobile sensors is fully exploited) or K reaches n2. In this process,
p is decreasing because additional assistance from the mobile sensors is introduced
after each iteration.

Note that p is a real number but K is discrete. Hence, after the above process
terminates, we in fact have an upper-bound on p corresponding to K, and a lower-
bound on p corresponding to K+ 1. To find the optimal and practical p, we invoke
a subroutine AdaptP() (in Fig. 7), which performs a binary search for the p and
adjusts πli accordingly. The termination of this subroutine depends on the precision
of p, i.e., ε, which is usually a predefined value. In our experiments, the depth of
the binary search of the subroutine of AdoptP() is set to a constant factor of four.

The next theorem states that algorithm CalcContribution provides a solution that
can be arbitrarily close to the optimal solution. Its running time is independent of
the number of sensors.

Theorem 1. Algorithm CalcContribution() provides a solution p that is at most
ε from the optimal solution p∗ where ε can be arbitrarily small. Given a fixed ε, the
complexity of the algorithm is max (O(N2), O(N log ε)) where N is the number of
grids. This is independent of the number of sensors.

Proof. We first prove the optimality. Assume that there is an optimal solution
p∗. With this p∗, we can calculate the associated minimum π∗li that satisfy Eqs.
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(4) - (6). We will first show that with p∗ and π∗, the grids that are not covered by
mobile sensors are the same as that found from algorithm CalcContribution().

Assume ∃i, π∗li = 0. We consider the grid li∗ with the minimum density among
all these grids that are not covered by mobile sensors. This i∗ must be coincident
with K found from CalcContribution(). Otherwise, since p > p∗, then i∗ > K. In
this case, as

∑
i πi ≤ 1, the CalcContribution() will continue at line 6 and increase

K until K = i∗. If ∀i, π∗li > 0, K in line 6 will be increased until K = n2 − 1.
We then show that with subroutine AdaptP(), p must be within a distance of

ε from p∗. This is straightforward as in subroutine AdoptP(), the choice of plow

always violates Eq. (3). Therefore, p > p∗ > plow. Since phigh − plow < ε and
p = phigh, then p− p∗ < ε.

The complexity of the algorithm is dominated either by line 2 and line 4 of the
main algorithm, which is N2, or line 4 and line 6 of the subroutine of AdaptP(),
which is O(N log ε).

In practice, if there are many grids and N is large, it may take a long time for a
single mobile sensor to collect all the field information. In this case, we can first do
a simple uniform partition of the field according to the number of mobile sensors
and let each mobile sensor be responsible for the information collection in a subfield.
As such, the initialization phase can be remarkably shortened.

For some applications, if there is an expected system lifetime L to monitor the
sensor field and a coverage quality requirement δ, we can also compute the number
of mobile sensors needed under current sensor deployment by a variant of CalcCon-
tribution(). The algorithm and discussion are in the Appendix of the paper.

5. A RANDOM WALK MODEL FOR MOBILE SENSORS

In the previous section, we obtained π, the long-term coverage contribution by
the mobile sensors to the grids. It remains to show a concrete mobility model
that can achieve this distribution. To this end, we demonstrate a viable and yet
simple random walk model in this section. In this random walk model, the specific
movement method for a mobile sensor when arriving at each different grid will be
determined; and following this movement scheme, the long term probability π that
the mobile sensor will be presence in this grid will be guaranteed.

5.1 A Random Walk Model

In the random walk model, a mobile sensor will either stay in a grid, or move into
an adjacent grid along four directions,4 as shown in Fig. 2. In this section, we will
determine the probability for a mobile sensor to choose the five possible movements
in the next time slot. We consider decisions depending only on the current grid
where a mobile sensor resides. This results in a Markov chain where each grid is
a state. We use Pij to denote the transition probability from grid i to grid j. See
Fig. 8 for an illustration. Given the long-run distribution π, this Markov chain
obeys the following balance equations,

4For a mobile sensor in a boundary grid, it might have 3 or 2 directions to move only.
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Fig. 8. Markov chain for the random walk model.

πj =
n2−1∑

k=0

πkPkj , j = 0, 1, . . . , n2 − 1 (7)

n2−1∑

k=0

πk = 1 (8)

n2−1∑

j=0

Pkj = 1, ∀k ∈ [0, n2 − 1] (9)

0 ≤ Pij ≤ 1, ∀i, j (10)

Pij = 0, ∀i, j, grids i, j not adjacent (11)

where the first four equations are standard steady-state constraints for Markov
chains [Karlin and Taylor 1998], and Eq. (11) suggests that no transition is possible
for two non-adjacent grids.

Our problem now is to determine the transition probabilities Pij in this system
of equations to reach the stationary distribution π. This is the inverse of the
traditional “given transition probability, find stationary distribution” problem in a
Markov chain.

First of all, we need to ensure that the Pij obtained can guarantee a limiting
distribution π. By ergodic theorem [Ross 1989], a Markov chain that is aperiodic,
irreducible and positive recurrent has a limiting distribution5. Since there are only

5Aperiodic means that Pii > 0. Irreducible means that all states are reachable from all other
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a finite number of states in our system, if our Markov chain is irreducible, it is
positive recurrent. As such, if we ensure that the Markov chain is aperiodic and
irreducible, it is sufficient to guarantee this π exists. For ease of discussion, we now
assume that πk > 0 for k = 0, 1, . . . , n2 − 1. We will generalize the solution later.

To ensure aperiodicity, we can set all the Pii to be strictly positive. To ensure
irreducibility, the mobile sensors cannot be trapped in a grid or a group of grids;
hence, we have an additional set of constraints:

∀i, 0 < Pii < 1, (12)

which indicates that whenever a mobile sensor moves into a grid, the probability
that it will stay in this grid should be strictly less than 1. A stronger condition is

Pij > 0, ∀i, j, grids i, j are adjacent, (13)

which ensures that the mobile sensor always has chance to move into a neighboring
grid. Eq. (10) can then be replaced by

0 < Pij < 1, ∀i, j that are adjacent (14)

It is not difficult to see that the above set of equations have multiple solutions.
We now illustrate one solution set. Our strategy is to first find a set of solution to
Eq. (7) and Eq. (8) and then try to satisfy all others. Notice that if πkPkj = πjPjk,
Eq. (7) can be satisfied. We set Pkj = πj and Pjk = πk for all Pjk 6= 0 and Pkj 6= 0.
This can always be achieved because either Pkj and Pjk are both strictly positive,
or Pkj = Pjk = 0. We then set Pii = 1 −∑n2−1

j=0 Pij , and it is easy to verify that
Pii > 0. Therefore, Eqs. (7), (8) and (9), (11) are satisfied. Since πk, πj 6= 0, 1 we
have Pjk, Pkj 6= 0, 1, and Eqs. (12), (14) are satisfied.

In summary, the solution set is

Pjk =
{

πk ∀j 6= k and j, k are adjacent;
0 ∀j 6= k and j, k are not adjacent; (15)

Pjj = 1−
n2−1∑

k=0

Pjk ∀j 6= k (16)

Here we emphasize again that we assume πk > 0 for k = 0, 1, . . . , n2− 1. In section
5.3, we will investigate an interesting impact of πk = 0, i.e., that certain grids do
not need assistance from the mobile sensors. As the transition probability Pij for
each grid is calculated from πi, it is guaranteed that given all the mobile sensors
follow Pij , the long term contribution will be achieved.

5.2 Boosting Movement

It is worth noting that the definition of coverage quality (Definition 1 in Section
3.2) does not account for the moving frequency of the mobile sensors, nor the

states. Positive recurrent means that the sensor will return to a state within finite time.
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Fig. 9. Wall effect. Darker grids have denser static sensors.

convergence time of the system. A lazy movement, where there is a high probability
for the mobile sensors to stay in the same grid, would achieve the same coverage
ratio. An extreme example is one-time repositioning of the mobile sensors: a higher
fraction of the sensor field can be covered, but the coverage could still be unbalanced
or even with holes if the number of mobile sensors is not enough.

Our random walk model can effectively solve this problem by adaptively setting
the transition probabilities, allowing a wide range of movement frequencies. The
strategy is to adjust the existing solution within the constraints to obtain another
viable solution set. Specifically, to satisfy Eq. (7), we only need to have πkPkj =
πjPjk; thus setting Pkj = απj and Pjk = απk also works given α > 0. Let
αl, αu, αr, αd denote the adjustment factors for the four directions. To achieve a
higher moving frequency, we can increase αl, αu, αr, αd, and the constraints will
still be satisfied as long as the sum of the outgoing probabilities in a grid is less
than 1. In our experiments, we set a threshold for Pii: if a Pii is greater than the
threshold, we increase the α’s until all Pii’s are less than the threshold, or there is
no possible further reduction. We call the scheme after this adjustment aggressive
movement.

5.3 The Wall Effect and Solutions

We have assumed that πi is non-zero in the previous Markov chain calculation. In
practice, πi can be zero for dense grids, i.e., those ranked higher than K in algorithm
CalcContribution(). These grids will not get assistance from the mobile sensors and
can simply be ignored in forming the Markov chain, if they are sparsely distributed.
However, if a collection of such grids are connected, a wall can be formed, which
partitions the field into two or more disjoint subfields. Given the presence of a
wall (or multiple walls), a mobile sensor can not move freely in the whole field, and
the expected distribution is no longer achievable. An example of this wall effect is
shown in Fig. 9 where grids 3, 6, 9, 13 have dense static sensors and thus form
a wall, splitting the fields into two subfields. Grid 0 and 4 also have dense static
sensors. Compared to the wall grids, they still need some assist from mobile sensors.
We call them semi-walls as these grids make traveling in subfield (0, 1, 2, 4, 5, 8,
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12) difficult, i.e., it may take a long time for the mobile sensors in grids 1, 2, 5 to
reach grid 8, 12. As such, the coverage of the non-wall grids strongly depends on
the initial placement of the mobile sensors, and a strategic allocation of the mobile
sensors to the subfields is thus necessary.

5.3.1 Mobile Sensor Allocation for Subfields. Assume that, after invoking al-
gorithm CalcContribution in the initial stage, the sensor field is divided into C
subfields by walls. It is easy to see that the number of mobile sensors needed
in each sub-field (excluding the wall grids) is independent of other subfields. We
thus focus on a particular subfield, e.g., the kth one. Assume this subfield in-
cludes Ck grids, and similar to the notations used previously, let grid lki be the
ith rank in this subfield after sorting in ascending order of the densities, i.e.,
d(lk0) ≤ d(lk1) ≤ . . . ≤ d(lkCk−1). Let Mk be the number of mobile sensors to
be assigned to this subfield. Our objective is to find the minimum Mk that pro-
vides the desired coverage for this subfield. This problem can be formulated as
follows:

minimize Mk

s.t. πlk0
+ πlk1

+ . . . + πlk
Ck−1

≤ 1 (17)

(1− pmin)d(lk0 ) × (1− πlk0
)Mk ≤ 1− δ (18)

(1− pmin)d(lk1 ) × (1− πlk1
)Mk ≤ 1− δ (19)

...

(1− pmin)d(lk
Ck−1

) × (1− πlk
Ck−1

)Mk ≤ 1− δ (20)

where pmin is the optimal value of p obtained in CalcContribution. To maximize
the expected network lifetime, this value should still be identical for all the static
sensors, even in the presence of subfields.

We can iteratively reduce Mk starting from M −∑k−1
j=0 M j . We allocate mobile

sensors to each subfield one by one and, for the kth subfield, we start with the
remaining mobile sensors after assigning all k − 1 subfields. We then calculate
the the corresponding πlk

i
in each iteration. We stop until Eq. (17) is violated,

(intuitively, this means that fewer sensors cannot provide necessary coverage). We
thus obtain optimal Mk and πlk

i
. Since the grids within the subfield all have πlk

i
> 0,

we can set the transition probabilities as before. The transition probabilities also
guarantee that a mobile sensor will remain in its subfield during the random walk.

It is worth noting that after we calculate each Mk individually, it is possible that∑C
k=0 Mk > M . This is because a sensor cannot be allocated fractionally. Given

this negative impact of the walls, we need to increase pmin by decreasing K; the
contribution from the static sensors is thus increased. We continue until a K is
found such that

∑C
k=0 Mk ≤ M .
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5.3.2 Subfield Partitioning. Besides the wall grids, other dense grids may have
a very small πi, implying that the mobile sensors should seldom visit them. Two
examples are the grids 0 and 4 in Fig. 9. These two grids make a smooth walking in
subfield (0, 1, 2, 4, 5, 8, 12) difficult and will significantly increase the convergence
time of the system.

In the presence of semi-walls, we can further partition the subfields to balance the
movement of the mobile sensors. Again, since the mobile sensors cannot be allocated
fractionally, we have to strike a balance between the coverage and convergency. In
our experiment, we set a threshold for the grids of semi-walls and show that the
convergence time improves noticeably.

6. SENSOR COLLABORATIONS

So far we have established the respective contributions from static and mobile sen-
sors, and the activation and movement strategies for them. This framework is easy
to implement as it involves node interactions in the initial period only, and all the
remaining operations are randomly and independently performed in a distributed
fashion. Within this basic framework, various node interactions/collaborations
could be introduced to further enhance the system performance. More importantly,
though the framework statistically guarantees the coverage, the independent behav-
ior will result in overlapping coverage by the mobile and/or static sensors. That
is, if there is no knowledge exchange between neighboring sensors, multiple sensors
may cover the grid simultaneously; which is a waste. We thus outline a simple yet
effective node collaboration scheme.

The key idea here is to prevent overlapping coverage of a grid by different sensors.
Intuitively, if a static sensor finds that there is a mobile sensor or another static
sensor in work, it can return to sleep mode. Or if two mobile sensors find that they
are trying to enter the same grid at the same time slots, one should restrain. To
this end, we introduce a sensor collaboration protocol with two contention phases
(The pseudo-code for the collaboration scheme can be found in Fig. 10.). Without
loss of generality, we consider a time slot starting at Ti of length T . The first phase
[Ti − t, Ti] is used for contention between mobile sensors to enter one certain grid;
the second phase [Ti, Ti + t] is used for suppressing multiple activation of the static
sensors. Here, t is a fixed parameter such that t ¿ T .

In [Ti − t, Ti], mobile sensor mj first decides which grid it will enter in the next
time slot. Then, mj randomly generates a number tj ∈ [0, t] and, at time Ti − tj ,
sends a probe message to the sensors in the selected grid. If the grid has a mobile
sensor or an active static sensor, it will allow mj to enter in the next slot only if
mj is the first one sending the probe message. In [Ti, Ti + t], each static sensor
also generates tj ∈ [0, t], and, at time Ti + tj , activates itself with probability p and
broadcasts a probe message to its neighbors in the same grid. If a neighbor is a
mobile or an already activated static sensor, it will reply by a reject message; The
newly activated sensor thus has to deactivate itself to save energy.

We see that basically, the mobile sensors will randomly select a time tj in the
window of [Ti− t, Ti] and mobile sensor who has the earliest tj will enter and cover
the grid in the next time slot. This mobile sensor will also suppress the activation of
all the static sensors. If there is no mobile sensor, the static sensors will randomly
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Time slots [0, T1], [T1, T2], . . ., [Ti, Ti+1], . . .
Slot length T (À t); contention interval [Ti − t, Ti + t];

Mobile sensor mj

mj at time Ti − t
mj randomly picks a number tj ∈ [0, t].
determines next grid l to move in (could be unchanged)

mj at time Ti − tj
broadcasts Probe Message to sensors in grid l

mj upon receiving Probe Message from mk in [Ti − t, Ti]
if mj will stay in l in [Ti+1, Ti+2],

replies with Reject Message
else if mj received probe messages from other mk′ ,

replies with Reject Message
else records node mk (as mk′ in the next round)

mj at time Ti

if no reject message received, enters grid l

mj upon receiving Probe Message from sk in [Ti, Ti + t]
replies with Reject Message

Static sensor sj in grid l

sj upon receiving Probe Message from mk in [Ti − t, Ti]
if sj received other probe messages,

replies with Reject Message
else records node mk

sj at time Ti

sj randomly picks a number tj ∈ [0, t]
determines activation with p

sj at time Ti + tj
if succeeded in activation,

broadcasts Probe Message to sensors in grid l
if no reject message, turns active

sj upon receiving Probe Message from sk in [Ti, Ti + t]
replies with Reject Message

Fig. 10. Sensor Collaboration Protocol.

select a time in the window of [Ti, Ti + t]; and the sensor who has the earliest time
will become active to cover this grid for the next the time slot. Thus, we have the
following observation.

Observation 1. There will be at most one sensor that is active in each grid
during any time slot.

The overhead of this protocol depends on the number of sensors who activated
simultaneously. We will show the overhead in our simulation.

7. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the mobile sensor assisted network
in field coverage through simulations. We focus on the following typical measures:
coverage quality, network lifetime, and convergence time.
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Fig. 11. Residual energy after the death of the first sensor.

In our simulation, we deploy 1000 static sensors in a field of 140m × 140m and
the sensor field is partitioned into 100 virtual grids. The battery power for each
sensor is 10000mAh, and can last for one day with persistent activation. We neglect
the energy cost during dormant states.

We have examined the energy consumption status of the static sensors in our
system. Fig. 11 shows the cumulative distribution curve of the residual energy
after the death of the first sensor. We can see that at this time more than 70%
of the sensors has residual energy less than 1000mAh (10% of the total energy
reserve). It implies that the remaining operation time of the system is very limited,
and the lifetime of the first dead sensor thus serves as a legible measure for the
system lifetime.

We compare our mobile assisted scheme with both static sensor only scheme and
a state-of-the-art one-time reposition scheme [Wang et al. 2003]. We applied its
bidding protocol so that the mobile sensors will move to the positions where there
are less number of static sensors. As this one-time reposition scheme requests all
the sensors to stay awake after reposition, we modified it so that the sensors will
switch between sleep and awake states.

Unless otherwise specified, the following default parameters are used in our sim-
ulation: The expected coverage quality is δ = 0.85, and the length of each time
slot is 1 minutes. The total number of time slots is set to 1000. Each point in our
figures is the average of 100 independent experiments.

7.1 Contribution of Mobile Sensors

In first set of experiments, we deployed different number of mobile sensors in the
field to observe their effectiveness. In Fig. 12, we show the network lifetime as a
function of the number of mobile sensors. The number of mobile sensors varies from
20 to 60, which accounts for only a small portion of all the sensors. For comparison,
we also plot the results with static sensors only; to ensure fairness, in this case, we
deployed additional static sensors (the same amount as mobile sensors), which are
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Fig. 13. System lifetime with or without collaborations.

equipped with extra-batteries to remain active throughout the experiments. In our
figures, we use w/ MS, w/o MS to denote the experiments with or without mobile
sensors; w/ C, w/o C to denote the experiments with or without using the sensor
collaboration protocol; and Bid to denote the one-time reposition scheme [Wang
et al. 2003].

We observe that the use of mobile sensors substantially increases the network
lifetime. For example, consider the case where there are 50 mobile sensors, the life-
time (w/ MS, w/o C) is three times longer than without mobile sensors (w/o MS,
w/o C). In addition, we see that the lifetime improves steadily when more mobile
sensors are deployed. On the contrary, by adding a few static sensors only, there is
no clear improvement of the system lifetime. The performance of one-time reposi-
tion (Bid) is also better than without mobile sensors. The performance increases
as the number of mobile sensors increases. Nevertheless, the performance is much
worse than our mobile assisted scheme, especially when collaboration is used. Node
collaboration also improves the lifetime for both with and without mobile sensors,
ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.



· 133

 0

 2

 4

 6

 8

 10

 20  25  30  35  40  45  50  55  60

Li
fe

 ti
m

e 
of

 th
e 

S
ys

te
m

 (
D

ay
s)

Number of Mobile Sensors

MS, Random
MS, Biased

Bid, Random
Bid, Biased

w/o MS, Random
w/o MS, Biased

Fig. 14. Comparison of the system lifetime for uniform and biased distributions of static sensors.

but more substantially if mobile sensors are used. The improvement percentage is
plotted in Fig. 13. We can see that without mobile sensor (w/o MS, w/ C), there is
a 10% to 20% lifetime improvement with sensor collaboration compared to without
collaboration. If mobile sensors are used, this effect is much pronounced. This is
because without mobile sensors, the lifetime is constrained by the grids with fewer
sensors, resulting in smaller chance of suppressing redundant activations. Since
node collaboration substantially improves the system performance, for the rest of
our experiments, we will focus on the performance of the system with collaboration
only.

We next consider the effect of two different distributions of the static sensors.
First, we deployed the static sensors randomly and uniformly. Second, we added
some bias on the distribution, where the right side of the sensor field was two times
denser than the left side of the sensor field. Fig. 14 shows the comparison results.
Not surprisingly, the lifetime has reduced in biased distribution since the system
is more stressed. With assistance from mobile sensors, however, the situation im-
proves fast; for example, with 20 mobile sensors, the lifetime is only marginally
better than with no mobile sensors at all, whereas with 60 mobile sensors, the life-
time is less significantly affected by the bias of the distribution. We see this effect
both in our mobile assisted scheme and the one-time reposition scheme; though the
one-time reposition scheme has worse performance. This clearly shows the inherent
adjustment capability of using mobile sensors.

7.2 Convergence Time

We now study some internal parameters of our mobile assisted scheme. We consider
the convergence time of the network, in particular, the effect of moving speed of
the mobile sensors. We simulated 50 mobile sensors and 1000 static sensors in the
sensor field. In initialization, the whole sensor field was partitioned into subfields by
walls. All mobile sensors belonging to the same subfield were dispatched to the grid
with the highest index in this subfield. Fig. 15 shows the coverage quality over time
for both aggressive and lazy movements. We see that if there are high transition
probabilities between adjacent grids, the convergence time is much smaller. For
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Fig. 15. Comparison of the coverage ratio as a function of running time for varying movement
patterns.
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Fig. 16. Comparison of the coverage ratio as functions of running time with partitioning.

example, with aggressive movement, the system reaches 85% coverage after 200
minutes, while lazy movement has yet to reach this ratio after 1000 minutes. We
can also see from Fig. 15, that the coverage ratio with static sensors only is only
around 70%.6

We consider the effect of finer partitioning of the subfields. From Fig. 16, we see
that finer partition improves the convergence time with both aggressive and lazy
movements.

These experiments clearly show that the walls and semi-walls in the field would
remarkably affect the convergence of the system, and our allocation algorithms for
the mobile sensors can effectively solve this problem.

6Note that the curves go up and down in the figure. This is because each point in the figure
represents one specific time. Our algorithms target on a statistical coverage; and at each point of
time, we observe variations in the coverage ratio.
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Fig. 17. Duration (minutes) to detect all abnormal events.
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Fig. 18. Abnormal event detection. SS: Detected by static sensors only; MS: Detected by mobile
sensors only; Both: Detected by both. (a) Mobile sensors with lazy movement. (b) Mobile sensors
with aggressive movement.
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7.3 Aggressive Movement in Event Detection

While finer partitioning makes the the convergence time of lazy movement close
to that of aggressive movement, we argue that aggressive movement can be much
more effective than lazy movement in abnormal event detection.

We randomly generated abnormal events in the sensor field. In Fig. 17, we show
the time needed to detect all these events for three strategies, namely, aggressive
movement, lazy movement and without mobile sensors. Not surprisingly, the more
abnormal events there are, the longer it takes to find all of them. We see that with
aggressive movement, the detection time is not only shorter than the other two,
but also increases more slowly when the number of abnormal events increases. The
gain obtained from aggressive movement compared to lazy movement is around
5% to 15%. Notice that this is achieved neither by increasing the number of the
mobile sensors nor by increasing their physical speeds, but simply by improving
the transition probabilities between the grids. We see that the one-time reposition
scheme is only slightly slower than in abnormal event detection. We should recall
that the one-time reposition scheme achieves this by significantly shorter system
lifetime. Finally, note that the detection time of using static sensors only is re-
markably longer than the other three. In fact, in some tests, the events can never
be fully detected if the grids has no any static sensor; we set an expiration time of
20 in such cases, which explains the high average detection time.

To further understand the contributions from static and mobile sensors, we show
in Fig. 18 the ratio of the abnormal events detected by different types of sensors,
namely, static, mobile, or both. We see that the static sensors are still the main
source in coverage, detecting 55% to 60% of the abnormal events alone. The mobile
sensors detect around 20% and for the other 20% cases, static and mobile sensors
observe the abnormal events simultaneously. Again, this shows that a small number
of mobile sensors can serve as an effective method for field coverage. Fig. 18 (a)
and (b) demonstrate the scenario where the mobile sensors adopt lazy movement
and aggressive movement strategies. We can also see that, if aggressive movement
is adopted, the mobile sensors become more effective in detecting abnormal events.

The overhead of different sensors in our collaboration protocol is illustrated in
Fig. 19. Though the total time slots is 1000 in our simulation, here the overhead
is only averaged over the total time slots that the sensor is in active. We see that
the overhead is around 7 packets per time slot. Our protocol is localized, resulting
a moderate overhead.

8. GENERALIZING GRID STRUCTURE

We have assumed a square grid structure for the field in our study, which has also
been widely adopted in this research area. A limitation of the square grid structure
is its inflexible moving directions. As an example, consider an abnormal event is
Rm + d away from a mobile sensor, where Rm is the sensing range of a mobile
sensor and d is a small distance. If the event happens in the upper-right direction
(see Fig. 20 (a)), then because the two grids are not adjacent, the mobile sensor
will detect it after moving at least twice. A hexagon structure, like that in the
cellular network, will perform better in this case. As shown in Fig. 20 (b), only
if the abnormal event is more than 2Rm away from the mobile sensor can it avoid
ACM Transactions on Computational Logic, Vol. V, No. N, October 2010.
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Fig. 19. Overhead of the collaboration protocol.

being possibly detected in the next sensor movement.
Our mobile sensor assisted architecture and the mobility models are not restricted

to the square grid structure. They can easily accommodate the hexagon or even
more general polygon structures. Intrinsically, the field is divided into subregions;
and our algorithm specifies that the mobile sensors needs to move to those subre-
gions that have less number of static sensors. Whether the subregion is a grid or
not does not affect the algorithm. In fact, algorithm CalcContribution does not
depend on the grid structure. The next state of Markov chain for the mobile sen-
sors depends on the neighbors of each subregion. Therefore, some transitions need
to be added in the Markov chain, e.g., for the hexagon structure, six transitions
are needed against the four for the square grid case, and other calculations remain
unchanged.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a mobile sensor assisted network architecture, which is
cost-effective and combines the advantages of both static and mobile sensors for
field coverage. We offered an optimal algorithm for calculating the coverage contri-
butions, which fully explores the potentials of the mobile sensors and maximize the
network lifetime. We further presented a random walk model for the mobile sensors.
The model is low-overhead and fully distributed. Its parameters can be fine-tuned
for the same long-term coverage contribution and yet with different moving fre-
quencies. As such, our model is general enough to match the moving capability
of various mobile sensors and the demands from a broad spectrum of applications.
We also showed the wall effect in this architecture, and developed an effective field
partitioning and mobile sensor allocation algorithm. Under our basic framework,
we developed in-network collaboration which further improves system performance.

APPENDIX

Given the expected system lifetime L and the coverage quality requirement δ, the
number of mobile sensors needed can be calculated by Algorithm CalMobile() in Fig.
21. In this algorithm, we first translated the the expected system lifetime L into
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Fig. 20. Abnormal event is shown as a cross. (a) Square grid structure. The mobile sensor in
grid 2 has to move at least two steps to detect the abnormal event, which is only slightly more
than Rm far away from the mobile sensor. (b) Hexagon structure. Only if the abnormal event
is greater than 2Rm away from the mobile sensor, can it avoid being possibly detected in next
sensor movement.

the activation probability p in line 2. We increase M until Eq. 3 is satisfied. This
algorithm can be performed at the Initialization phase after the sensor deployment.
More mobile sensors is then added if necessary.

The running time of this algorithm is upper bounded by the situation that there is
no static sensors in the field at all. Thus, by setting p = 0 to line 6, the termination
condition in line 9 is (1− M

√
1− δ)×N ≤ 1. Recall that N is the number of grids

in the field. Therefore, the upper bound is M = log1− 1
N

(1− δ). To show the basic
idea and simplify CalMobile(), we take a linear implementation in searching for M .
The running time of CalMobile() is thus log1− 1

N
(1− δ). A binary search of M can

be easily applied and the running time can be reduced with a logarithmic factor.
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Algorithm CalMobile()
1 M = 0;
2 p = 1

L
;

3 do
4 M++;
5 for (i = 0; i < n2 − 1; i++)

6 πli = max(1− M

√
1−δ

(1−p)d(li)
, 0);

7 while (
∑n2−1

i=0
πli > 1)

Fig. 21. Algorithm CalMobile()
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